Modal Logic and Kripke Models

Jonathan Prieto-Cubides

University of Bergen, Norway

28 November 2024

Jonathan Prieto-Cubides (University of Bergen, Norway)

- The purpose of a logic is to characterise a notion of logical consequence, to know the difference between valid and invalid arguments.
- One expects a logic to have:
 - A language (the syntax: alphabet, well-formed formulas).
 - A proof system (a set of axioms and rules of inference and the derivability relation (⊢)).
 - A semantics (the notion of truth, and the entailment relation (\models)).

Language of Modal Logic

Definition (Basic Syntax)

A (well-formed) formula A is inductively defined by the following grammar:

 $A, B ::= \Sigma \mid \top \mid \perp \mid \neg A \mid (A \land B) \mid (A \lor B) \mid (A \to B) \mid \Box A \mid \Diamond A \quad \text{(formulas)}$

where *A*, and *B* are metavariables for formulas, and Σ stands for any propositional variable, usually denoted as p, q, r, \cdots . We call \Box and \Diamond the modal operators.

- \top and \bot are logical constants for *always true* and *always false*.
- We could have defined an equivalent language with only \neg and \rightarrow , and define \land , and \lor in terms of these as in propositional logic.
- The formula $\Box A$ is read as "it is *necessarily* true that A".
- $\Diamond A$ can be read as "it is *possibly* true that A".

\Box and \Diamond

- Many notions in natural language come in dual pairs:
 - "always" and "sometimes",
 - "necessarily" and "possibly",
 - "obligation" and "permission",
 - "already" and "not yet", etcetera.
- The following two principles are intuitively valid:
 - $\Diamond A \leftrightarrow \neg \Box \neg A$
 - $\Box A \leftrightarrow \neg \Diamond \neg A$

The same pattern is found in First-order logic:

- $\exists x A(x) \leftrightarrow \neg \forall x \neg A(x)$
- $\forall x A(x) \leftrightarrow \neg \exists x \neg A(x)$
- So take either modality as *primitive*. Here, let's say $\diamond := \neg \Box \neg A$.

Family of Modalities

- Modal logic extends classical logic by incorporating operators that express *modality*.
- Modalities are expressions/ways to qualify the truth of a judgment.

Modal Logic		it is <i>necessary</i> that
	\diamond	it is <i>possible</i> that
Deontic Logic	\mathcal{O}	it is <i>obligatory</i> that
	${\cal F}$	it is <i>forbidden</i> that
	${\cal P}$	it is <i>permitted</i> that
Temporal Logic	$\mathcal W$	it will be the case that
Linear Logic	\mathcal{N}	next time it will be the case that
Epistemic Logic	${\cal K}$	I <i>know</i> that
Doxastic Logic	${\mathcal B}$	I <i>believe</i> that

- Example. "eventually the program will terminate", or
- Example. "it is always the case that the program it is never deadlocked".

Proof System

- The logical system for a language is a set of axioms and rules of inference designed to prove exactly the valid arguments in the language.
- All the modal logics part from the K system:

K system: normal modal logic

- Propositional tautologies such as:
 - $A \rightarrow A$

•
$$A \to (B \to A)$$

•
$$(A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

- $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$
- Modus Ponens: $(A \rightarrow B) \rightarrow ((A \rightarrow B) \rightarrow A)$
- (*G*) Necessitation: If A is a theorem, then $\Box A$ is a theorem.
- (K) Distribution: $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$

Axioms of Modal Logics

On top of **K** system (normal modal logic), we can add the following axioms to obtain different modal logics:

	Axiom	Formula	Λ	Aodal Logic	Axioms
-	D T B 4	$ \begin{array}{c} \Box A \rightarrow \Diamond A \\ \Box A \rightarrow A \\ A \rightarrow \Diamond \Box A \\ \Box A \rightarrow \Box \Box A \end{array} $	א א א א	СТ СD СТВ (4	K + T K + D K + T + B K + 4
	5	$\Diamond A \to \Box \Diamond A$	S	54	KT + 4
o, for example, we have that: • In S4, $\square^n A \leftrightarrow \square A$ for all $n \in \mathbb{N}$. • In S5, $(\square \Diamond)^n \square A \leftrightarrow \square A$ for all $n \in \mathbb{N}$, and		k k S and	СТВ4 СТВ5 55	$\begin{array}{l} K+T+B+4\\ K+T+B+5\\ KTB4,KTB5 \end{array}$	
• III 3 5, (I		$h \leftrightarrow \Box A$ for all $h \in \mathbb{N}$,	anu		

So, for

- The *semantics* for a logic, provides a definition of *entailment* and *validity* by characterising the *truth* of the formulas.
- In propositional logic, e.g., a formula is classically provable if and only if it is valid in every boolean model. So the truth value of a formula can be determined by inspecting a *truth table*. A formula like $p \land q$ is true if and only if both p and q are true.
- However, with new modalities, we can no longer determine the truth value of a formula by a truth table.
- The truth value of p does not determine the truth value of $\Box p$.
- Semantics for modal logics can be defined by introducing *possible worlds* evolving over time.
- The truth in a model is to say *where* the sentence is true or false.

Possible worlds

• In modal semantics, a set *W* of possible worlds is given. A valuation *V* assigns truth values to each propositional variable in each world, so *p* in world *w* may differ from *p* in world *v*.

- Worlds: $W := \{w_0, w_1, \cdots, w_7\}$
- w_1 and w_2 are accessible from $w_0, ...$

● *w*₃ *p*

• w₅ q

Definition (Frame)

- A *frame* is a pair (W, R) where:
 - *W* is a set. The members of *W* are referred to as *worlds*/states. *W* is referred to as the *universe* of the frame.
 - *R* is a binary relation on *W*. The relation *R* is known as the *accessibility relation*.

For a frame $\mathcal{F} := (W, R)$:

- If *R* is reflexive, then the frame \mathcal{F} is called *reflexive*,
- If *R* is transitive, then the frame \mathcal{F} is called *transitive*,
- and so on ...

Examples of different modal logics and their frame conditions

Logic	Frame Cond.	R shape example	
К	None	-	-
KD	Serial	$w_0 ightarrow w_1 ightarrow w_2 ightarrow w_3 ightarrow$	$\forall x \exists y R(x, y)$
КТ	Reflexive	$w_0 \longleftarrow w_1 \longrightarrow w_2$	$\forall x(R(x,x))$
КВ	Symmetrical	$w_0 \leftrightarrow w_1 \leftrightarrow w_2$	$\forall x \forall y (R(x, y) \to R(y, x))$
К4	Transitive	$w_{0} \xrightarrow{w_{1}} w_{2}$	$\forall x \forall y \forall z (R(x, y) \land R(y, z) \to R(x, z))$
К5	Euclidean	$ \begin{array}{cccc} & & & & \\ & & & & \\ & & & & & \\ & & & &$	$\forall x \forall y \forall z (R(x, y) \land R(x, z) \to R(y, z))$

Jonathan Prieto-Cubides (University of Bergen, Norway)

Entailment

Definition (Model)

A *model* is a tuple $\mathcal{M} = (W, R, V)$ where (W, R) is a frame and V is a valuation function, $V \colon \Sigma \times W \to \{0, 1\}$, such that for all $w \in W$, V(p, w) = 1 if and only if p is true in w.

Definition (Entailment)

Let $\mathcal{M} = (W, R, V)$ be a model, and a world $w \in W$. The interpretation of a formula A in the world w is denoted by $w \models_{\mathcal{M}} A$. When the model is clear from the context, we write $w \models A$ instead of $w \models_{\mathcal{M}} A$. The entailment is defined inductively on A as follows:

$$w \models p$$
if $V(p, w) = 1$, for $p \in \Sigma$. $w \models \top$ always true $w \not\models \bot$ always false $w \models \neg A$ iff $w \not\models A$. $w \models (A \land B)$ iff $w \models A$ and $w \models B$. $w \models (A \lor B)$ iff $w \models A$ or $w \models B$.

Jonathan Prieto-Cubides (University of Bergen, Norway)

Definition (Entailment continued)

$$w \models (A \rightarrow B)$$
iff $w \not\models A$ or $w \models B$. $w \models \Box A$ iff $t \models A$ for all worlds t such that $R(w, t)$. $w \models \Diamond A$ iff $t \models A$ for some world t such that $R(w, t)$.

- The relation (⊨) is called the *satisfaction*/forcing/evaluation relation and we can read w ⊨ A as:
 - *w* satisfies *A*, or
 - *w* forces *A*, or
 - *A* is true in *w*, or
 - *w* models *A*.
- Notice that $w \models A$ is uniquely determined by its value on propositional variables.
- Satisability: for a given \mathcal{M} and a formula A, determine whether there is a world w in \mathcal{M} such that $w \models A$.

Definition (Validity)

A formula *A* is *valid* in a model $\mathcal{M} := (W, R, V)$, denoted by $\mathcal{M} \models A$, if and only if $w \models_{\mathcal{M}} A$ for all $w \in W$.

Definition

 \models A is valid if and only if for all models $\mathcal{M} := (W, R, V), \mathcal{M} \models A$.

The following principles are valid:

- Necessitation: If $\models A$, then $\models \Box A$.
- Distribution: $\models \Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$.

- $W = \{w_0, w_1, w_2, w_4\}.$
- $R = \{(w_0, w_1), (w_1, w_1), (w_2, w_1), (w_2, w_4), (w_4, w_1), (w_4, w_4)\}.$
- $\mathcal{M} := (W, R, V)$ where V is induced from the graph, e.g., $V(p, w_0) = 1$ and $V(q, w_4) = 0$.

- $W = \{w_0, w_1, w_2, w_4\}.$
- $R = \{(w_0, w_1), (w_1, w_1), (w_2, w_1), (w_2, w_4), (w_4, w_1), (w_4, w_4)\}.$
- $\mathcal{M} := (W, R, V)$ where V is induced from the graph, e.g., $V(p, w_0) = 1$ and $V(q, w_4) = 0$.

• $\mathcal{M} \models (p \land q) \rightarrow \Box \neg p$ • $\mathcal{M} \models (p \land q) \rightarrow \Box \Box \neg p$

- $W = \{w_0, w_1, w_2, w_4\}.$
- $R = \{(w_0, w_1), (w_1, w_1), (w_2, w_1), (w_2, w_4), (w_4, w_1), (w_4, w_4)\}.$
- $\mathcal{M} := (W, R, V)$ where V is induced from the graph, e.g., $V(p, w_0) = 1$ and $V(q, w_4) = 0$.

 $\bigcirc \mathcal{M} \models (p \land q) \to \Box \neg p$

- $W = \{w_0, w_1, w_2, w_4\}.$
- $R = \{(w_0, w_1), (w_1, w_1), (w_2, w_1), (w_2, w_4), (w_4, w_1), (w_4, w_4)\}.$
- $\mathcal{M} := (W, R, V)$ where V is induced from the graph, e.g., $V(p, w_0) = 1$ and $V(q, w_4) = 0$.

 $\bigcirc \mathcal{M} \models (p \land q) \rightarrow \Box \neg p$

- $W = \{w_0, w_1, w_2, w_4\}.$
- $R = \{(w_0, w_1), (w_1, w_1), (w_2, w_1), (w_2, w_4), (w_4, w_1), (w_4, w_4)\}.$
- $\mathcal{M} := (W, R, V)$ where V is induced from the graph, e.g., $V(p, w_0) = 1$ and $V(q, w_4) = 0$.

- $W = \{w_0, w_1, w_2, w_4\}.$
- $R = \{(w_0, w_1), (w_1, w_1), (w_2, w_1), (w_2, w_4), (w_4, w_1), (w_4, w_4)\}.$
- $\mathcal{M} := (W, R, V)$ where V is induced from the graph, e.g., $V(p, w_0) = 1$ and $V(q, w_4) = 0$.

- $W = \{w_0, w_1, w_2, w_4\}.$
- $R = \{(w_0, w_1), (w_1, w_1), (w_2, w_1), (w_2, w_4), (w_4, w_1), (w_4, w_4)\}.$
- $\mathcal{M} := (W, R, V)$ where V is induced from the graph, e.g., $V(p, w_0) = 1$ and $V(q, w_4) = 0$.

- $W = \{w_0, w_1, w_2, w_4\}.$
- $R = \{(w_0, w_1), (w_1, w_1), (w_2, w_1), (w_2, w_4), (w_4, w_1), (w_4, w_4)\}.$
- $\mathcal{M} := (W, R, V)$ where V is induced from the graph, e.g., $V(p, w_0) = 1$ and $V(q, w_4) = 0$.

$$\mathcal{M} \models (\neg p \land q) \to \Diamond \neg p$$
$$\mathcal{M} \models (\neg p \land q) \to \Diamond (\neg p \land q)$$

Show that $A := \Diamond (p \lor q) \land \Box (\neg p)$ is Ref-satisfiable.

• Let's assume that A is true in a world w_1 . We want to construct a model $\mathcal{M} = (W, R, V)$ such that R is reflexive.

Show that $A := \Diamond (p \lor q) \land \Box (\neg p)$ is Ref-satisfiable.

- Let's assume that A is true in a world w_1 . We want to construct a model $\mathcal{M} = (W, R, V)$ such that R is reflexive.
- That means we need that $\Diamond(p \lor q)$ is true in w_1 and $\Box(\neg p)$ is true in w_1 .

Show that $A := \Diamond (p \lor q) \land \Box (\neg p)$ is Ref-satisfiable.

- Let's assume that A is true in a world w_1 . We want to construct a model $\mathcal{M} = (W, R, V)$ such that R is reflexive.
- That means we need that $\Diamond(p \lor q)$ is true in w_1 and $\Box(\neg p)$ is true in w_1 .
- 1. $w_1 \models \Diamond (p \lor q)$.

Show that $A := \Diamond (p \lor q) \land \Box (\neg p)$ is Ref-satisfiable.

- Let's assume that A is true in a world w_1 . We want to construct a model $\mathcal{M} = (W, R, V)$ such that R is reflexive.
- That means we need that $\Diamond(p \lor q)$ is true in w_1 and $\Box(\neg p)$ is true in w_1 .
- 1. $w_1 \models \Diamond (p \lor q)$. This forces us to create a new world w_2 such that:
 - $R(w_1, w_2)$, and $R(w_i, w_i)$ for all $w_i \in W$.

•
$$V(p \lor q, w_2) = 1.$$

• 2. $w_1 \models \Box(\neg p)$.

Show that $A := \Diamond (p \lor q) \land \Box (\neg p)$ is Ref-satisfiable.

- Let's assume that A is true in a world w_1 . We want to construct a model $\mathcal{M} = (W, R, V)$ such that R is reflexive.
- That means we need that $\Diamond(p \lor q)$ is true in w_1 and $\Box(\neg p)$ is true in w_1 .
- 1. $w_1 \models \Diamond (p \lor q)$. This forces us to create a new world w_2 such that:
 - $R(w_1, w_2)$, and $R(w_i, w_i)$ for all $w_i \in W$.
 - $V(p \lor q, w_2) = 1.$
- 2. $w_1 \models \Box(\neg p)$. Then, for all worlds accessible from w_1 , i.e., $R(w_1, w_i)$ for $w_i \in W$, we must have $V(\neg p, w_i) = 1$.

Show that $A := \Diamond (p \lor q) \land \Box (\neg p)$ is Ref-satisfiable.

- Let's assume that A is true in a world w_1 . We want to construct a model $\mathcal{M} = (W, R, V)$ such that R is reflexive.
- That means we need that $\Diamond(p \lor q)$ is true in w_1 and $\Box(\neg p)$ is true in w_1 .
- 1. $w_1 \models \Diamond (p \lor q)$. This forces us to create a new world w_2 such that:
 - $R(w_1, w_2)$, and $R(w_i, w_i)$ for all $w_i \in W$.

•
$$V(p \lor q, w_2) = 1.$$

- 2. w₁ ⊨ □(¬p). Then, for all worlds accessible from w₁, i.e., R(w₁, w_i) for w_i ∈ W, we must have V(¬p, w_i) = 1. In this case, w₁ and w₂ are the only worlds accessible from w₁.
- Finally, because $p \lor q$ is true in w_2 , q must be true in w_2 .
- So, $V(p, w_1) = 0$, $V(q, w_1) = 0$, $V(p, w_2) = 0$, and $V(q, w_2) = 1$.

$$\bigcirc \stackrel{w_1}{\frown} \stackrel{w_2}{A} \longrightarrow \stackrel{w_2}{q} \rightleftharpoons$$

Rules to construct models

- There is at least a naive procedure to construct these models.
- As starting point, we have a world w_1 and a given formula.
- Notation A1 means that A is true and A0 means that A is false in the world.
- For the propositional fragment, we add the formula to the node of the world if it is true.
 - If $(A \land B)$ 1, then we *add* A1 and B1.
 - If $(A \land B)0$, then we *choose* A0 *or* B0.
 - If $(A \lor B)1$, then we *choose* A1 or B1.
 - If $(A \lor B)0$, then we *add* A0 and B0.
 - If $(A \rightarrow B)1$, then we *choose* A0 or B1.
 - If $(A \rightarrow B)0$, then we *add* A1 *and* B0.
 - If $(\neg A)0$, then we *add* A1.
 - If $(\neg A)1$, then we *choose* A0.
 - If $A \leftrightarrow B$ is true, then we *choose* A1 and B1 *or* A0 and B0.
 - If $A \leftrightarrow B$ is false, then we *choose* A1 and B0 *or* A0 and B1.
- For the modal fragment, . . .

• If $\Box A$ is true, then we *add* A1 in each of the accessible worlds.

- If $\Box A$ is false, then we create a new world with A0 and add arrows to the new world.
- If $\Diamond A$ is true, then we create a new world with A1 and add arrows to the new world.
- If $\Diamond A$ is false, then we *add* A0 in each of the accessible worlds.

Example for constructing countermodels

Find a Ref-countermodel $\mathcal{M} := (W, R, V)$ for $\mathcal{M} \not\models_{\mathsf{REF}} \Box p \to \Box \Box p$.

- We assume that $V(\Box p, w_1) = 1$ and $V(\Box \Box p, w_1) = 0$, for some world w_1 .
- **2** $R(w_1, w_1)$ because *R* is reflexive.
- As $V(\Box p, w_1) = 1$, then $V(p, w_1) = 1$.
- Since we have $V(\Box p, w_1) = 0$, we create a new world w_2 where $V(\Box p, w_2) = 0$ and $R(w_1, w_2)$.
- **(a)** $R(w_2, w_2)$ because *R* is reflexive.
- Secause $V(p, w_1) = 1$, $V(p, w_2) = 1$ by def of \Box .
- Secause $V(\Box p, w_2) = 0$, we need to create a new world w_3 where $V(p, w_3) = 0$, $R(w_2, w_3)$, and $R(w_3, w_3)$.

• Intuitionistic logic:

- Rejects the law of excluded middle ($\vdash A \lor \neg A$) and double negation elimination ($\vdash \neg \neg A \rightarrow A$)
- Developed by Brouwer in early 1900s based on constructive principles
- Initially lacked formal semantics, but now has several:
 - Kripke semantics (1965)
 - Beth semantics
 - Topological semantics
 - Algebraic semantics (Heyting algebras)
- Can be embedded into classical modal logic via the Gödel-McKinsey-Tarski translation

Definition (Kripke Frame)

- A *Kripke frame* is a tuple (W, \leq) where
 - W is a set of worlds, and
 - \leq is a partial order on *W*.
 - A world/state $w \in W$ represents a "state of knowledge."
 - The relation \leq is known as the *information order*.
 - $w \le t$ indicates that the world *w* has at least as much knowledge as the world *t*.
 - Transitioning from *w* to *t* may involve gaining additional information.

Definition (Kripke model)

A *Kripke model* is a tuple (W, \leq, V) where

- (W, \leq) is a Kripke frame, and
- *V* is a valuation function, $V : \Sigma \to Up(W)$, such that:
 - $V(p) \subseteq W$ is the set of worlds where p is true.
 - Up(W) is defined as:

 $Up(W) := \{ S \subseteq W \mid \forall w \in S. \forall t \in W. w \le t \implies t \in S \}.$

- The set Up(*W*) is the set of (upper sets) all subsets of *W* that are closed under the information order ≤.
- What becomes true, it remains true as information increases.

The entailment relation

Definition (Entailment)

Let $\mathcal{M} := (W, \leq, V)$ be a Kripke model, and a world $w \in W$. The interpretation of a formula A in the world w is denoted by $w \models A$ and defined inductively on A as follows:

$w \models p$	iff $w \in V(p)$.
$w \models \top$	always.
$w eq \perp$	never.
$w \models \neg A$	iff, for every $t \in W$ such that $w \leq t$, then $t \not\models A$.
$w \models (A \land B)$	iff, $w \models A$ and $w \models B$.
$w \models (A \lor B)$	iff, $w \models A$ or $w \models B$.
$w \models (A \rightarrow B)$	iff, for every $t \in W$ such that $w \leq t$, and $t \models A$, then $t \models B$., i.e,
	if $t \in V(A)$, then $t \in V(B)$.

- Monotonicity: if $w \models_{\mathcal{M}} A$, then for all *t* such that $w \leq t$, then $t \models_{\mathcal{M}} A$.
- Kripke semantics is sound and complete with respect to the *intuitionistic* provability logic.

• Recall that $\neg A := A \rightarrow \bot$. To say that $\neg A$ is true at some world is to say that we never get *A* anywhere after.

25/30

- Recall that $\neg A := A \rightarrow \bot$. To say that $\neg A$ is true at some world is to say that we never get *A* anywhere after.
- Notice that $\neg q$ is true in w_4 , but neither q nor $\neg q$ can be true at w_0 since they conflict in different branches.

25/30

- Recall that $\neg A := A \rightarrow \bot$. To say that $\neg A$ is true at some world is to say that we never get *A* anywhere after.
- Notice that $\neg q$ is true in w_4 , but neither q nor $\neg q$ can be true at w_0 since they conflict in different branches.
- LEM does not hold in this model, i.e., A ∨ ¬A is not valid in this model for any A. We don't have q or ¬q at w₀. But also, p and ¬p cannot be true at w₀.

No double negation elimination

- The contrapositive of the soundness theorem says that if we can find a Kripke structure in which there is a world where a formula A is not satisfied, then A is not *intuitionistically provable*.
- 2 Let's show that $\neg \neg A \rightarrow A$ is not intuitionistically provable.
- Onsider the following Kripke structure.

$$w_0 \longrightarrow w_1 A$$

- $w_0 \not\models A.$
- So We have that $w_0 \models \neg \neg A$. This is because there exists an extension of w_0 (namely, w_1) that does not force $\neg A$. We have that $w_1 \not\models \neg A$ because there is an extension of w_1 (namely, w_1 itself) that does force A.

• At w_0 , $\neg \neg A$ holds but A does not, proving $\neg(\neg \neg A \rightarrow A)$.

Bonus slides

Go back to classical modal logic

- We can translate intuitionistic logic into classical modal logic using the following translation $g: \mathcal{L}_{int} \to \mathcal{L}_{KT4}$. It is defined as follows by induction on the syntax of formulas:
 - $\top \mapsto \top$,
 - $\bot \mapsto \bot$,
 - $p \mapsto \Box p$,
 - $\neg A \mapsto \Box \neg A$,
 - $A \wedge B \mapsto A \wedge B$,
 - $A \lor B \mapsto A \lor B$, and
 - $A \to B \mapsto \Box (A \to B)$.
- We must add the following axioms to the normal modal logic (\mathbf{K}):
 - T: $\Box A \rightarrow A$, and
 - 4: $\Box A \rightarrow \Box \Box A$.

Dealing with double negation

In terms of the forcing relation, we have the following:

- *w* forces $\neg A$ if and only if no extension of *w* forces *A*.
- Another way to say this is that further we go in the information order, we will eventually find a world that forces *A*.
- *w* does not force $\neg B$ if and only if some extension forces *B*.
- Another way to say this is that there is some information level at which *B* is forced. Recall that we never force ⊥, and ⊥ is locally equivalent to *B* ∧ ¬*B*.
- *w* forces $\neg \neg C$ if and only if no extension *v* forces $\neg C$, if and only if, for every extension *v* of *w* there is *an* extension *t* of *v* that forces *C*. We usually abbreviate this as: *w* forces $\neg \neg C$ if and only if the set of worlds that force *C* is **dense** *above w*.

It is also worth knowing that the forcing relation is often written \Vdash instead of \models .