
Investigations into Graph-theoretical
Constructions in Homotopy Type Theory

Jonathan Prieto-Cubides

Thesis for the Degree of Philosophiae Doctor
Department of Informatics

University of Bergen
2024

© Copyright Jonathan Prieto-Cubides
The material in this publication is covered by the provisions of the Copyright Act.

Year: 2024
Title: Investigations into Graph-theoretical

Constructions in Homotopy Type Theory

Author: Jonathan Prieto-Cubides
Print: Skipnes Kommunikasjon / University of Bergen

Scientific Environment

This thesis, a product of the Department of Informatics at the University of Bergen within
the ICT Research School, was supervised by Håkon Gylterud and co-supervised by Marc
Bezem.

Abstract

This thesis presents a constructive and proof-relevant development of graph theory con-
cepts within Homotopy Type Theory (HoTT). HoTT, an extension of Martin-Löf’s intu-
itionistic type theory, incorporates novel features like Voevodsky’s Univalence principle
and higher inductive types. Its structuralist perspective aligns with standard mathemati-
cal practise by promoting isomorphisms to equalities — inhabitants of the corresponding
Martin-Löf’s identity type. This thesis primarily delves into the foundational mathemat-
ics of graphs, with less emphasis on their practical aspects. The core contributions are
definitions, lemmas, and proofs, which often arise from a synthesis of informal presenta-
tion and formalisation within a proof assistant. We specifically work within the category
of directed multigraphs in HoTT.

Inspired by the topological and combinatorial facets of graphs on surfaces, we for-
mulate an elementary characterisation of planar graphs. This is done without defining a
surface or directly working with real numbers, as found in some literature. Our approach
hinges on graph maps and faces for locally directed and connected multigraphs. A graph
qualifies as planar if it features a graph map and an outer face, allowing any walk in the
embedded graph to be merely walk-homotopic to another.

Among our key discoveries, we ascertain that this kind of planar maps constitutes a
homotopy set, which is finite when the graph is finite. Additionally, we introduce exten-
sions of planar maps to inductively generate examples of planar graphs. We also delve
into further concepts such as spanning trees and the representation of graphs as spaces
through graph maps.

2020 Mathematics Subject Classification: 03B38, 03B70, 68V20, 68V35, 03F65, 05C10

Keywords: constructive mathematics, type theory, mathematical formalisation, univa-
lent foundations, graphs, surfaces, planar graphs, trees

iv Abstract

Abstrakt

Denne avhandlingen presenterer en konstruktiv og bevisrelevant utvikling av grafte-
orikonsepter innen Homotopi-typeteori (HoTT). HoTT er en utvidelse av Martin-Löfs
intuisjonistiske typeteori og inkorporerer nyskapende elementer som Voevodskys uni-
valensprinsipp og høyere induktive typer. Dette strukturalistiske perspektivet er mer
i tråd med standard matematisk praksis enn tidligere formelle systemer fordi i HoTT
forfremmes isomorfier til likheter — elementer i den korresponderende Martin-Löf iden-
titetstypen. Denne avhandlingen går hovedsakelig inn i de grunnleggende aspektene av
grafteori, med mindre vekt på de praktiske sidene. Hovedbidragene er definisjoner, lem-
maer og bevis, som oppstår fra en syntese av uformell presentasjon og formalisering ved
hjelp av en bevisassistent. Vi arbeider spesifikt i kategorien av rettedemultigrafer i HoTT.

Inspirert av topologiske og kombinatoriske aspekter av grafer på overflater, formulerer
vi en grunnleggende karakterisering av planare grafer. Dette gjøres uten å definere en
overflate eller direkte arbeide med reelle tall, som man finner i annen litteratur. Vår
tilnærming er basert på grafkart og flater for lokalt rettede og sammenhengende multi-
grafer. En graf kvalifiserer som plan hvis den inneholder et grafkart og en ytre flate, slik
at enhver sti i den underliggende grafen bare er turhomotopisk til en annen.

Blant våre viktigste funn, fastslår vi at denne typen planarkart utgjør en homotopisk
mengde, som er endelig når grafen er endelig. I tillegg introduserer vi utvidelser av pla-
narkart for å induktivt generere eksempler på planære grafer. Vi ser også på konsepter
som spenntrær og representasjon av grafer som rom gjennom grafkart.

vi Abstract

Resumen

Esta tesis presenta un desarrollo constructivo para el estudio de conceptos de teoría de
grafos dentro de la Teoría de Tipos Homotópica (HoTT), la cual es una extensión de la
teoría de tipos intuicionista de Martin-Löf que incorpora el principio de Univalencia de
Voevodsky y tipos inductivos superiores. Su perspectiva estructuralista se alinea con la
práctica matemática estándar al considerar isomorfismos como igualdades — términos
del correspondiente tipo de identidad en la teoría de tipos de Martin-Löf. Aquí, profun-
dizamos en los fundamentos de las matemáticas, nociones básicas de la teoría de grafos
y en como definir los conceptos correctamente, con menor énfasis en sus aspectos prác-
ticos. Las principales contribuciones de este trabajo son definiciones, lemas y demostra-
ciones, que a menudo surgen de una presentación sintáctica e informal en combinación
con la formalización de dichos conceptos dentro de un asistente de demostraciones. Para
ser más precisos, los objetos de estudio aquí hacen parte de la categoría de multigrafos
dirigidos escritos en HoTT.

Inspirados por la topología y la combinatoria de los grafos en superficies, formulamos
una caracterización de grafos planares. Esto se hace sin definir una superficie o emplear
números reales. Nuestro enfoque se basa en mapas combinatorios de grafos como es-
tructura sobre el tipo de grafo y caras para multigrafos localmente dirigidos y conexos.
Un grafo califica como planar si es posible asociarle un mapa combinatorio y una cara
exterior, permitiendo que cualquier recorrido en el grafo embedido sea meramente ho-
motópico a otro recorrido.

Entre nuestros descubrimientos clave, confirmamos que este tipo de mapas combina-
torios planares constituye un conjunto homotópico, que es finito cuando el grafo es finito.
Además, introducimos extensiones de mapas combinatorios para generar inductivamente
ejemplos de grafos planares. También profundizamos en otros conceptos como árboles
de expansión y la representación de grafos como espacios via tipos inductivos superiores
(HITs en HoTT). Como trabajo futuro se propone una lista de conjeturas que conectan la
caracterización de grafos planares en términos de mapas combinatorios con las construc-
ciones de espacios topológicos usando tipos inductivos superiores.

viii Abstract

▷ “What matters in life is not what happens to you but what you
remember and how you remember it.”

Gabriel García Márquez

Acknowledgements

For those who inspire me and do not even know it.

I would like to express my gratitude to UiB and, in particular, to my mentors Håkon
Gylterud and Marc Bezem for providing me the opportunity to pursue my research with-
out any restrictions. I extend special thanks to Håkon for his assistance, motivation, in-
triguing questions, countless hours spent at the whiteboard, calls, and much more. Also,
I am deeply thankful to Marc for his guidance, encouragement to engage in conferences
and summer schools, personal advice, and the time he devoted to reviewing and provid-
ing feedback on my manuscripts. My sincere gratitude to both of you.

I was privileged to be part of the Programming Theory Group (PUT) at UiB. My grat-
itude extends to my friends and office mates in PUT: Benjamin Chetioui, Tam Thanh
Truong, Elisabeth Bonnevier, and Knut Anders Stokke. Thank you for cheering me up
when I needed it the most, for the countless discussions, and good times we shared.
Thanks to Mikhail Barash for his friendship, emigration stories and advice, and free nice
books on programming languages. ToMagne Haveraaen, Erlend Raa Vågset, UweWolter,
Jaakko Järvi, Daniel Hernandez, Michal Walicki, and Fedor Fomin, I’m grateful for shar-
ing stimulating discussions. I extend special thanks to UiB’s Department of Informatics’
administrative staff, particularly Ingrid Kyllingmark, for her countless assistance on Nor-
wegian bureaucracy during my stay in Bergen.

This thesis discusses mathematical constructions in a recent and exciting research field
in type theory where many branches of mathematics and computer science intersect.
Throughout the process of working on this document, I had the privilege of attending
conferences and summer schools, meeting many people and gaining valuable knowl-
edge. Also, this document has been crafted using several software tools: Agda, Emacs,
Ipe, XƎLATEX, Mathematica, VsCode, q.uiver.app, and the Pragmata and Libertinus fonts.
Thanks to their developers, whose dedication has been instrumental in my work.

I express my gratitude to the following organisations for their support:

▷ COST organisation, for funding my attendance at the EU Types Summer School 2018
(Action CA15123),

▷ Department of Informatics, University of Bergen, for covering all expenses related

https://q.uiver.app/

x Acknowledgements

to my participation in the 2019 Midlands Graduate School in Birmingham and CMU
HoTT Summer School in Pittsburgh, and

▷ Agda Dev Team, for inviting me to join the Agda meetings in 2017 and 2019.

I am deeply grateful to numerous talented members of the community who provided
me direct and indirect inspiration through their work and assistance via key papers, talks,
and discussions. I cannot mention all of them here, but my thanks extend, in no particular
order, to Andreas Abel, Andrej Bauer, Ulrik Buchholtz, Pierre Cagne, Jesper Cockx, Bjørn
Dundas, Martin Escardo, Favonia, Nicolai Kraus, Stefano Piceghello, Paige North, Egbert
Rijke, Jakob von Raumer, Andrew Swan, and Noam Zeilberger. For those not mentioned
here, please see the reference section.

My heartfelt appreciation to Camila Pacheco, Diana Piedra, and Inge, for so nice cook-
ing and chatting sessions, and much more. Family is not only blood but also the people
you meet along the way. Thanks guys! You really made the stay in Bergen of Polis,
Agdis, and me more enjoyable, no doubt. Also, thanks to the Graham Linge family for
their friendship, family dinners, and much more.

Gracias a mi familia: mis padres, Luz Mila Cubides y Rafael Prieto, y mi hermana Lis,
por su apoyo y amor incondicional en la búsqueda de mis metas, incluso cuando esto
significaba estar lejos por largos períodos. A mis amigos alrededor del mundo, ustedes
saben quiénes son, gracias por su apoyo a lo largo de este viaje.

Por supuesto, mi más profundo amor, respeto y agradecimiento a Polis y Agdis. Las
palabras no alcanzan para expresar lo mucho que las amo. Ustedes me inspiran a ser una
mejor versión de mí mismo cada día.

We all stand on the shoulders of giants. These acknowledgements are a small token
of my appreciation for just a few of them.

Keep sharing!
Gracias!

To my beloved Polis and Agdis.

xii Acknowledgements

Contents

Scientific Environment i

Abstract iii

Acknowledgements ix

1 Introduction 1
1.1 Foundations of mathematics . 1

1.1.1 Set theories . 2
1.1.2 Constructive formal systems . 3
1.1.3 Type theories . 4
1.1.4 Martin-Löf type theories . 5
1.1.5 Typing rules . 5
1.1.6 Types, terms, and logic . 8
1.1.7 Formulas as types . 9
1.1.8 Dependent types . 11
1.1.9 Identity types . 14
1.1.10 Extensional and intensional type theories 16
1.1.11 The groupoid model and the homotopy interpretation 17

1.2 Exploring graph theory in univalent mathematics 19
1.2.1 Structure identity principle . 20
1.2.2 The type of graphs and their symmetries 21
1.2.3 Drawing graphs on surfaces . 23
1.2.4 The notion of graph maps and faces 24
1.2.5 Planar drawings . 25

1.3 Formalisation of mathematics . 28
1.4 Formalisations of graph theory . 30
1.5 Short outline of this thesis . 31

2 Mathematical Foundations 33
2.1 Notation . 34

xiv CONTENTS

2.2 Homotopy levels . 35
2.3 Handy equivalences . 37
2.4 Finite types . 39
2.5 Cyclic types . 42

3 Graphs in Univalent Mathematics 47
3.1 The type of graphs . 47
3.2 The category of graphs . 49
3.3 Subtypes and structures on graphs . 51
3.4 Finite graphs . 51
3.5 Walks and strongly connected graphs . 52
3.6 Graph families . 52
3.7 Cyclic graphs . 54
3.8 The identity type on graphs . 55

4 Graph Maps 57
4.1 Symmetrisation of graphs . 57
4.2 Stars and locally finite graphs . 59
4.3 The type of combinatorial maps . 61
4.4 The type of faces . 62

4.4.1 The finiteness property . 68
4.4.2 The boundary of a face . 72

4.5 Examples of graph maps . 74
4.5.1 Generating graph maps . 74

5 Walks and Spherical Maps 79
5.1 The type of walks . 79

5.1.1 Structural induction for walks . 80
5.1.2 A well-founded order for walks 81
5.1.3 Walk splitting . 82

5.2 The type of quasi-simple walks . 83
5.2.1 The finiteness property . 86

5.3 Normal forms for walks . 89
5.4 The notion of walk homotopy . 93
5.5 The type of spherical maps . 95
5.6 Discussion . 102

6 Planar Maps 105
6.1 Planarity in graph theory . 105
6.2 A type of planar maps for a graph . 106

CONTENTS xv

6.3 Planar extensions . 109
6.3.1 Path additions . 109
6.3.2 Planar synthesis of graphs . 117
6.3.3 Biconnected planar graphs . 119

7 Concluding Remarks 123
7.1 Directions of further developments . 125
7.2 Formalisation . 128

Epilogue 129

A Computer Formalisation 133
A.1 Proof assistants . 133
A.2 Agda notation . 134
A.3 Library . 136
A.4 Small excerpts from the library . 138

Appendices

B On Trees and Their Topological Realisation 151
B.1 Introduction . 151
B.2 Computer formalisation in Cubical Agda 152
B.3 Basic concepts . 152

B.3.1 The type of graphs . 153
B.3.2 The type of walks . 153
B.3.3 Rooted trees and subgraphs . 154

B.4 Enlarging rooted subtrees . 156
B.4.1 Oriented spanning trees . 163

B.5 Topological realisation of graphs . 164
B.6 Discussion . 168

C Yet Another HIT for Graphs 171
C.1 The 2-cell topological realisation of graphs 173

C.1.1 Promoting walks to equalities . 173
C.1.2 Recursion principle . 174
C.1.3 Induction principle . 175
C.1.4 Eliminating into propositions . 178
C.1.5 Eliminating into sets . 179

C.2 Promoting walk homotopies to 2-paths 180

D Other Constructions 183

xvi CONTENTS

1
Introduction

This introduction succinctly presents the mathematical foundation pertinent to this the-
sis, supplemented with relevant historical context and examples. It concludes with an
overview of the thesis structure.

1.1 Foundations of mathematics

Mathematics can be seen as the general study of structures such as the symmetry of ob-
jects in geometry, algebra, and category theory [RS20]. These objects may include num-
bers, sets, groups, graphs, topological spaces, and more.

The study of all mathematical objects is fundamentally built upon certain entities,
often overlooked —the primitive concepts. These are not defined by other mathematical
objects, but rather provided by themathematical foundation in use. Examples include the
concept of a set in set theories and the concept of a type in type theories.

The choice of a suitable foundation depends on the nature of the objects studied
and their research goals. Over the past century, a variety of formalism proposals have
emerged [Tro11]. Set theories, having attracted more attention, contrast with type the-
ories. The choice of HoTT for this thesis is motivated by its unique features not present
in set theoretic foundations, particularly, due to its inherently structuralist foundational
language for mathematics, and the way it integrates logic internally.

2 Introduction

1.1.1 Set theories

Set theories, initially proposed by Cantor and Dedekind in the late 19th century and later
reformulated by mathematicians such as Zermelo and Fraenkel in the Zermelo–Fraenkel
set theory (ZF), are often considered the standard approaches for conductingmathematics
in conjunction with classical logic. In set theories, the fundamental concept is that of a
set. Each mathematical object is built upon this idea. A distinguishing feature of these
theories is the external logic, governed by a first-order theory. This system forms the
basis for creating propositions about sets using an equipped binary membership relation,
usually denoted by (∈).

A proposition in this context is a statement with a truth value —either true or false.
The existence of objects within set theory and the validity of certain propositions via
proofs may hinge on axioms such as the Axiom of Choice (AC). Furthermore, principles
like the Law of Excluded Middle (LEM) and Reductio ad Absurdum (RAA) can also play
a role in the reasoning process of these proofs.

Therefore, in the foundations of set theory, we observe a clear distinction between the
deductive system and the objects under consideration.

The emergence of paradoxes in set theory, primarily stemming from the acceptance of
impredicative statements like Richard’s and Russell’s paradoxes [Bag21], questioned the
consistency of mathematics. This period, bridging the late 19th and early 20th century,
was dubbed by mathematicians and philosophers as The Foundational Crisis and marked
a pivotal moment in the history of mathematics.

In the midst of these developments, Hilbert proposed an agenda in the early 20th cen-
tury, aiming to establish a solid foundation for mathematics through formalisation and
consistency. The endeavor, termed as Hilbert’s Program, aimed to axiomatize mathe-
matics, assert its completeness and consistency, and outline the scope of mathematical
knowledge. At the core of Hilbert’s Program lay his belief in the Entscheidungsproblem,
which assumes a universal procedure for determining whether a mathematical statement
is provable or not based on a given set of axioms.

Note 1.1. Hilbert’s Program fostered the development of Mathematical Logic, partic-
ularly proof theory, and yielded significant results that contradicted his initial in-
tuition about the nature of mathematics. These encompass Gödel’s incompleteness
theorems, which not only refuted the assumption of the existence of a complete and
consistent set of axioms for all mathematics but also underscored the inherent lim-
itations of formal systems, including, notably, their incapacity to affirm their own
consistency. Furthermore, these theorems indirectly imply the non-existence of a
universal algorithm that could conclusively determine the truth or falsehood of all
mathematical statements, thereby refuting the feasibility of a comprehensive solu-

1.1 Foundations of mathematics 3

tion to the Entscheidungsproblem.

1.1.2 Constructive formal systems

Apart from classical treatments of set theory, such as ZF and von Neumann–Bernays–
Gödel, we encounter constructive formal systems such as the Constructive Zermelo–
Fraenkel set theory (CZF), and several type theories. These alternative systems not only
present distinct philosophical perspectives and mathematical constructs, such as the pri-
mary notion of type in type theories, but they also adopt different reasoning methodolo-
gies compared to traditional mathematics.

Constructive formal systems involve moving away from the reliance on AC and its
variations like Zorn’s Lemma. Instead of merely positing the existence of an object or
employing principles such as LEM and RAA to same effect, within a constructive sys-
tem, we seek for an actual, tangible method for constructing the object in question. This
aligns with the philosophical perspective of intuitionism, where only objects that one can
construct in time are considered to exist.

Note 1.2. Brouwer’s philosophy of mathematics, known as intuitionism, is the rea-
soning framework of intuisionitic mathematics, one kind of constructive mathematics,
such as Kleene’s, Markov’s and Bishop’s approach. In Brouwer’s perspective, intu-
ition is the creative device to do mathematics. Thus, his mathematics can not conform
to classical principles, such as the proof of the existence of an infinite object, or the
use of oracles such as AC. Constructivemathematics, on the other hand, is one branch
of mathematics where the idea of proofs as objects, and the idea of constructive proofs
as algorithms are taken seriously for the way one does mathematics.

In the context of our study, the role of intuitionistic logic is noteworthy. Contrary to sets,
proofs are not perceived as mathematical objects. Moreover, logic is often viewed not as a
mathematical object itself, but as a meta-mathematical tool —the reasoning system upon
which mathematics relies, as observed in set theoretic foundations. Brouwer’s perspec-
tive diverges here as hinted in Note 1.2, considering, among other aspects, logic as an
integral part of mathematics. This stands in contrast to the formalist approach promoted
by Hilbert and his collaborators.

However, it was not until the 1960s that intuitionistic mathematics began to gain trac-
tion, largely due to Bishop’s work. Bishop adopted a pragmatic approach, using con-
structive methods and reevaluating Brouwer’s and Heyting’s ideas, as documented in his
seminal book Foundations of Constructive Analysis [BB85]. Bishop’s work on construc-
tive mathematics later inspired the development of Martin-Löf’s type theories [Pet19],
subject of the following section.

Bishop’s mathematics is primarily guided by three fundamental principles, which we
strive to adhere to in this thesis [Tro11].

4 Introduction

▷ Avoid concepts defined negatively; also avoid negative results.

▷ Avoid defining irrelevant concepts in favour of more relevant ones.

▷ Avoid pseudo-generality. Introduce any assumption if it facilitates the theory and
the examples one is interested in satisfying the assumption.

1.1.3 Type theories

While no single definition unifies all type theories, a type theory can typically be charac-
terised as a finite collection of rules relating types and terms, expressed using a formal lan-
guage with semantics that justify the constructions and prevent inconsistencies [BDS13;
NPS90].

In type theories, type is a primitive concept and hence, is not explicitly defined. How-
ever, to provide some intuition, a type can be viewed as a collection of values sharing a
particular property, with terms being the elements that inhabit their type. This view al-
lows us to consider other concepts such as the empty type as a type devoid of any terms
and the unit type as the type with a single term. Other examples of types include the type
of naturals, booleans, and lists, as seen in programming languages, which contain terms
such as 123, true, and nil, respectively.

Type theories are not exclusively for non-classical reasoning [Bau17]. Classical math-
ematics can be incorporated simply by adding necessary axioms such as AC into the con-
text. This approach ensures users have explicit knowledge of the axioms in use, thereby
avoiding the implicit and occasionally arbitrary application common in non-constructive
set theories.

As hinted earlier, one attractive feature of type theories, is the internalisation of logic
within the theory. This stands in contrast to set theories, where we encounter two layers:
the deduction system and the objects —sets being the domains of discourse. In type the-
ories, we have a unified layer. This is achieved by the Curry–Howard correspondence,
discussed in Section 1.1.7.

Prominent type theories include Simple Typed Lambda Calculus (STLC) , Martin-Löf’s
Intuitionistic Type Theory (MLTT) [Mar75], Coquand–Huet’s Calculus of Constructions
(CoC) [CH88], and several others present in modern programming languages and notably
in proof assistants and interactive theorem provers like Agda [The23], Coq [The21], and
Lean [dMKA+15].

Here we focus on the application of HoTT for conducting constructive mathemat-
ics. HoTT extends MLTT with several additional features, some of which will discuss in
Chapter 2.

Note 1.3. Russell’s Ramified Type Theory (RTT) is a historical precursor to the type
theories discussed above. While different in nature, it has influenced subsequent the-

1.1 Foundations of mathematics 5

ories like the Simply Theory of Types [Chu40], see also Note 1.8. RTT was employed
in Principia Mathematica (PM), marking the first attempt at formalising mathemat-
ics within a set-theoretic context using type theory and symbolic logic principles to
avoid inconsistencies. In RTT, mathematical objects are classified into types such as
individuals, propositions, or 𝑛-ary relations [LI22]. For a comprehensive historical
account on constructive mathematics, Troelstra’s investigation serves as an excellent
reference [Tro11], and for a detailed discussion on history of type theories prior to
HoTT, see [KLN05].

1.1.4 Martin-Löf type theories

Martin-Löf Type Theories (MLTTs) is a family of formal systems stemming from Martin-
Löf’s seminal work on intuitionistic type theories in the 1970s [Mar75], serving as a foun-
dation for constructive mathematics. MLTTs interweave terms and types via dependent
types, allowing types to depend on terms, thus forming type families. Moreover, these
types can be terms of other types, known as universes, denoted later by 𝒰 . These con-
structs, along with other features like inductive types, not only endow MLTTs with the
expressive power to encode mathematical structures and other concepts, but also facili-
tate the creation of new constructions, all while maintaining constructive reasoning ca-
pabilities.

Modern constructive type theories have originated fromMLTTs, adopting or reformu-
lating the language and analysing concepts such as proposition, judgement, and equality.
MLTTs are formulated using rules that infer valid judgements, that take one of the fol-
lowing primitive forms.

▷ 𝐴 is a type denoted by 𝐴 ∶ U.

▷ 𝐴 and 𝐵 are equal types denoted by 𝐴 ≡ 𝐵.

▷ 𝑎 is of type 𝐴 denoted by 𝑎 ∶ 𝐴.

▷ 𝑎 and 𝑏 are equal terms of type 𝐴 denoted by 𝑎 ≡ 𝑏.

1.1.5 Typing rules

Typing rules in MLTTs are formulated to infer valid judgements, often presented in nat-
ural deduction style, as introduced by Gentzen [Gen64].

A typing context, denoted by a finite sequence of term-type pairs, is employed when
considering judgements, although sometimes omitted for brevity. Contexts can range
from empty to containing multiple assumptions such as 𝑥 ∶ 𝐴 and 𝑦 ∶ 𝐵, symbolised by
𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵.

6 Introduction

For instance, given an arbitrary context Γ, one could represent the four primitive judge-
ments introduced earlier as follows. The turnstile symbol (⊢) is used to indicate that the
judgement is established within the context Γ.

▷ Γ ⊢ 𝑎∶ 𝐴, read as 𝑎 is a well-formed term of type 𝐴 in Γ.
▷ Γ ⊢ 𝑎 ≡ 𝑏∶ 𝐴 read as 𝑎 and 𝑏 are equal terms of type 𝐴 in Γ.

Now to determine whether an arbitrary judgement is well-formed, we need to con-
sider the rules of the type theory in use. These rules are presented in natural deduction
style and share a common structure. Each rule consists of premises and conclusions, ac-
companied by a context. Premises are placed above the line, indicating implication, while
the conclusion is below it.

Consider, for example, the rule to state that if 𝑎 is of type 𝐴 in Γ, then 𝑎 remains of
type 𝐴 in the extended context Γ, 𝑦 ∶ 𝐵 for any type 𝐵; a rule called weakening. This rule
is presented as follows.

Γ ⊢ 𝑎∶ 𝐴
Γ, 𝑦 ∶ 𝐵 ⊢ 𝑎∶ 𝐴

Consider another example, the assume rule, also known as the declare rule. Given a
context containing a variable 𝑥 of type 𝐴, one can obtain 𝑥 ∶ 𝐴. The rule is represented
in the following way.

(… , 𝑥 ∶ 𝐴,⋯) ⊢ 𝑥 ∶ 𝐴
The nature of rules varies based on the specific type theory and its purpose. Some rules

guide the construction of new types and terms. Others, such as the weakening rule or the
declare rule above, are fundamental to the foundational principles, logic, and operational
semantics of the type theory.

However, in a typical presentation as for MLTT, we mostly encounter formation, in-
troduction, elimination, and computation rules. To illustrate how these rules work, we use
product type, denoted by 𝐴 × 𝐵, that is the product type of 𝐴 and 𝐵 for pairs (𝑎, 𝑏) where
𝑎 ∶ 𝐴 and 𝑏 ∶ 𝐵. Assuming an ambient context for these rules, the context Γ and the
turnstile symbol are henceforth omitted.

Formation rules

Formation rules guide the construction of new types. These are formed from primitive
types, like the unit type, via type formers such as (co)products, Σ- and Π-types. The
formation rule for the product is given by:

𝐴 ∶ U 𝐵 ∶ U
𝐴 × 𝐵 ∶ U

1.1 Foundations of mathematics 7

Introduction rules

Introduction rules specify how to construct terms of a given type. With the product type,
we have the following introduction rule:

𝑎 ∶ 𝐴 𝑏 ∶ 𝐵
(𝑎, 𝑏) ∶ 𝐴 × 𝐵

Elimination and computational rules

Elimination rules dictate the use of types and terms, specifying functions on the type. For
the product type, there are two elimination rules. These rules allow us to take a pair of
elements with the goal of extracting either the first or the second element. We achieve
this introducing two functions, namely 𝜋1 and 𝜋2 that intend to project the parts of the
product.

𝑝 ∶ 𝐴 × 𝐵
𝜋1(𝑝) ∶ 𝐴

𝑝 ∶ 𝐴 × 𝐵
𝜋2(𝑝) ∶ 𝐵

The functions 𝜋1 and 𝜋2, previously introduced, are yet to be specified. We need to de-
fine their behaviour under the elimination rules during term computation, which involves
introducing equalities that dictate how these functions reduce.

Consider a pair (𝑎, 𝑏) ∶ 𝐴 × 𝐵. Computation rules simplify term expressions such as
𝜋1((𝑎, 𝑏)) and 𝜋2((𝑎, 𝑏)) to 𝑎 and 𝑏, the first and second elements of the pair, respectively.

𝑎 ∶ 𝐴 𝑏 ∶ 𝐵
𝜋1(𝑎, 𝑏) ≡ 𝑎

𝑎 ∶ 𝐴 𝑏 ∶ 𝐵
𝜋2(𝑎, 𝑏) ≡ 𝑏

Remark 1.4. Types may possess multiple introduction rules, a single one, or none at all.
For instance, the empty type (0) lacks an introduction rule, while the unit type (1) has a
single introduction rule with one inhabitant denoted by ⋆.

⋆ ∶ 1

The natural numbers type, denoted by N, is an example of a type with multiple in-
troduction rules. A natural number is either the term zero or a term derived from the
function suc, which maps a natural number to its successor. These cases form the intro-
duction rules for natural numbers.

zero ∶ N
𝑛 ∶ N

suc(𝑛) ∶ N

Hence, natural numbers like one and two are represented as suc(zero) and suc(suc(zero)),
respectively. The same type is often presented inductively in Agda-like notation, as
shown below.

8 Introduction

data N ∶ U

zero ∶ N

suc ∶ N → N

The non-dependent elimination rule for natural numbers is known as the recursion
principle, while the dependent elimination rule is the induction principle. Since the former
can be seen as a particular case of the latter, let us only present the induction principle
here.

𝑃 ∶ N → U 𝑏 ∶ 𝑃(zero) 𝑓 ∶ ∏(𝑛∶N) (𝑃(𝑛) → 𝑃(suc(𝑛)))
indN(𝑃, 𝑏, 𝑓) ∶ ∏(𝑛∶N) 𝑃(𝑛)

The term computation for the induction principle is given by the following two rules.

𝑃 ∶ N → U 𝑏 ∶ 𝑃(zero) 𝑓 ∶ ∏(𝑛∶N)(𝑃(𝑛) → 𝑃(suc(𝑛)))
indN(𝑃, 𝑏, 𝑓)(zero) ≡ 𝑏 ∶ 𝑃(zero)

𝑃 ∶ N → U 𝑏 ∶ 𝑃(zero) 𝑓 ∶ ∏(𝑛∶N) (𝑃(𝑛) → 𝑃(suc(𝑛)))
indN(𝑃, 𝑏, 𝑓)(suc(𝑛)) ≡ 𝑓 (𝑛)(indN(𝑃, 𝑏, 𝑓 , 𝑛)) ∶ 𝑃(suc(𝑛))

Example 1.5. The addition function on natural numbers, denoted by add, can be de-
fined using the induction principle above. This function is defined by induction on
the first argument. If the first argument is zero, the result is the identity function on
the second argument. Conversely, if it is not zero, the result is the successor of the
result of the function add applied to the predecessor of the first argument and the
second argument.

add∶ N → N → N.
add ∶≡ indN(𝜆𝑛.N → N⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑃
, 𝜆𝑚. 𝑚⏟

𝑏
, 𝜆𝑛. 𝜆𝑔. 𝜆𝑚. suc(𝑔(𝑚))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓
).

1.1.6 Types, terms, and logic

The close relationship between types, terms, and logic emerged during the development
of Lambda Calculus. This connection traces back to work in the 1920s by L.E.J. Brouwer,
Heyting, and Kolmogorov, who focused on a computational view of intuitionistic logic
known as the BHK interpretation.

The BHK interpretation of formulas suggests that we consider proofs as algorithms.
Let us consider this interpretation on the structure of a formula, avoiding extra notation
for the sake of simplicity.

▷ A proof of 𝐴 ∧ 𝐵 is a pair of a proof of 𝐴 and a proof of 𝐵.

1.1 Foundations of mathematics 9

▷ A proof of 𝐴 ∨ 𝐵 is either a proof of 𝐴 or a proof of 𝐵.
▷ A proof of 𝐴 → 𝐵 is a function 𝑓 that transforms a proof of 𝐴 into a proof of 𝐵.
▷ A proof of ∃𝑥∈𝐷(𝐴(𝑥)) is a pair of an element 𝑎 in some domain 𝐷 and a proof that

the 𝐴(𝑎) is true.
▷ A proof of ∀𝑥∈𝐷(𝐴(𝑥)) is a function 𝑓 that converts an element 𝑥 in some domain

𝐷 into a proof of 𝐴(𝑥).
▷ The formula ¬𝐴 is defined as 𝐴 → ⊥, so a proof of it is a function 𝑓 that converts a

proof of 𝐴 into a proof of ⊥. There is no proof of ⊥.
However, at the time of the formulations the BHK interpretation left imprecise funda-

mental concepts: What constitutes a proof? Howdowe define a function or an algorithm?
Are these primary notions, or do they stem from a more fundamental concept?

Note 1.6. The term effectively calculable, associated with computable functions and al-
gorithms, was coined by Hilbert and Ackermann in the 1920s. It emerged from their
quest to identify a mechanism determining the provability of a mathematical state-
ment, as referenced in Note 1.1. In pursuit of a formal definition for effectively calcu-
lable, several computational models were proposed. These encompass Gödel’s gen-
eral recursive functions (1934), Turing’s Turing machines (1936), and Church’s lambda
definability in both Lambda Calculus (1936).

Church first introduced the Lambda Calculus in 1932 [Chu32], featuring the now
ubiquitous 𝜆-symbol to denote anonymous functions [Bar97]. This innovation in-
spired numerous formal systems and notations, including those used in HoTT. In
particular, Lambda Calculus was conceived as an improved method for encoding
mathematics and logic, enabling every object to be represented as a higher-order
function with a single argument. For instance, a natural number 𝑛 could be repre-
sented as a function mapping any other function to its 𝑛-fold composition. In other
words, if we would like to represent 3 in Lambda Calculus, we can do so by defining
the term 𝜆𝑓 .𝜆𝑥.𝑓 (𝑓 (𝑓 (𝑥))). True and false values are defined as combinators 𝜆𝑥.𝜆𝑦.𝑥
and 𝜆𝑥.𝜆𝑦.𝑦 , respectively, and used to represent logical connectives [AK23]. How-
ever, Rosser and Kleene identified inconsistencies in the original untyped lambda
calculus, specifically the existence of a fixed point for negation and the presence of
nonterminating lambda expressions. This led to the development of STT, mentioned
in Note 1.8.

1.1.7 Formulas as types

The Curry–Howard Isomorphism, initially proposed by Curry and later supplemented by
Howard, offers a formal context to address the latter questions by establishing a for-

10 Introduction

mal relationship between logical connectives (including quantifiers) and the unspecified
meanings for concepts suggested by the BHK interpretation, such as proof and func-
tion [How80].

Oversimplifying, Curry and Howard’s contribution connects two seemingly unrelated
domains [Geu09], namely, Intuitionistic Logic and models of computations via Lambda
Calculus (see Note 1.6). Curry and Howard’s idea involves identifying formulas with
types and proofs of those formulas as terms of their corresponding type. This relationship,
is in fact, a bijection/isomorphism, referred to as proposition-as-types, formulas-as-types,
or The Curry–Howard–de Bruijn’s correspondence.

Via this correspondence, we are able to unify the objects and the deductive system
in one internal framework, this goes in contrast with naive set theories where there are
separated in two layers, a first-order logic layer governing our reasoning and proposi-
tions, and the other layer comprising the objects, sets in this case. In type theory, sets
and propositions, all live inside the theory. Let us consider some examples to illustrate
this correspondence.

Via propositions-as-types view, the logical implication 𝐴 → 𝐵 for propositions 𝐴 and
𝐵 aligns to the function type 𝐴 → 𝐵 in type type theory. The formation of the logical
implication 𝐴 ⟹ 𝐵 from propositions 𝐴 and 𝐵 parallels the construction of a function
that transforms a proof of 𝐴 into a proof of 𝐵.

In the following, on the left, we have the implication introduction rule in propositional
logic, and on the right the introduction rule for the function type in type theory.

[𝐴 true]
⋮

𝐵 true
𝐴 ⟹ 𝐵 true

𝑥 ∶ 𝐴 ⊢ 𝑒 ∶ 𝐵
⊢ 𝜆𝑥.𝑒 ∶ 𝐴 → 𝐵

This interpretation casts the modus ponens rule in propositional logic as function ap-
plication. Specifically, given a function 𝑓 that transforms a proof of 𝐴 into a proof of 𝐵,
and a proof 𝑝 of 𝐴, 𝑓 (𝑝) is thereby a proof of 𝐵.

𝐴 ⟹ 𝐵 true 𝐴 true
𝐵 true

𝑓 ∶ 𝐴 → 𝐵 𝑝∶ 𝐴
𝑓 (𝑝)∶ 𝐵

Also, via propositions-as-types, the logical conjunction 𝐴 ∧ 𝐵 aligns to the product
type 𝐴 × 𝐵 in type theory.

𝐴 Prop 𝐵 Prop
𝐴 ∧ 𝐵 Prop 𝐴∶ U 𝐵∶ U

𝐴 × 𝐵∶ U

Now, the introduction rule for conjunction, stating that if 𝑝 is a proof of 𝐴 and 𝑞 is a
proof of 𝐵, then, together, 𝑝 and 𝑞 form a proof of 𝐴∧𝐵, which parallels the introduction
rule for the product type, as shown below. Specifically, if 𝑝 is a term of type 𝐴 and 𝑞 is

1.1 Foundations of mathematics 11

a term of type 𝐵, then (𝑝, 𝑞) is a term of type 𝐴 × 𝐵. Such parallelism extends to other
logical rules, see Section 1.1.8.

⋮ 𝑝𝐴 true
⋮ 𝑞𝐵 true ∧-intro(𝑝, 𝑞)𝐴 ∧ 𝐵 true

𝑝∶ 𝐴 𝑞∶ 𝐵
(𝑝, 𝑞)∶ 𝐴 × 𝐵

To address the correspondence with universal and existential quantifiers, we first dis-
cuss dependent types.

1.1.8 Dependent types

Bishop’s constructive approach and the Curry–Howard correspondence jointly inspired
the development of type theories featuring dependent types, which are types parametrised
by terms of other types. This feature enables a richer language than existing systems,
such as STLC, permitting the formulation of complex concepts and relations between the
mathematical objects in use in a coherent and intuitive manner.

In dependent type theories, the concept of a type family is particularly relevant. A type
family can be regarded as a collection of types indexed by another type. For instance, a
type family 𝐵 indexed by 𝐴 means that for every 𝑥 ∶ 𝐴, there is a type 𝐵(𝑥) that may
depend on 𝑥 . Additional type formers for dependent types include Σ-types and Π-types.

▷ The dependent sum Σ𝑥∶𝐴𝐵(𝑥) represents the type of pairs (𝑎, 𝑏) where 𝑎 ∶ 𝐴 and
𝑏 ∶ 𝐵(𝑥) for types 𝐴 and 𝐵 of 𝑥 . Therefore, the type of products is a particular case
of dependent sums, where 𝐵 is a constant type family. That is, 𝐴 × 𝐵 is equivalent
to Σ𝑥∶𝐴𝐵. We, therefore, use the same notation 𝜋1 and 𝜋2 for the projections of
dependent sums and products.

▷ The dependent productΠ𝑥∶𝐴𝐵(𝑥) denotes the type of functions 𝑓 such that for 𝑥 ∶ 𝐴,
one has 𝑓 (𝑥) ∶ 𝐵(𝑥). The type of functions can be also seen as a particular case of
dependent products, where 𝐵 is a constant type family. That is, 𝐴 → 𝐵 is equivalent
to Π𝑥∶𝐴𝐵.

For conciseness, we exclude further details such as inductive types and pattern-
matching discussions. Nordström et al’s book elaborates on these topics along with the
rules and semantics of MLTT [NPS90; Mar75].

We can now present the correspondence of formulas-as-types, specifically the connec-
tion between logical quantifiers and dependent types.

▷ The formula ∀𝑥 ∈ 𝐷(𝐴(𝑥)) represents a predicate logic statement: “for all 𝑥 in 𝐷,
𝐴(𝑥) is true”. Here, 𝐷 is a domain of discourse (a set of elements under consid-
eration), 𝑥 is an element in 𝐷, and 𝐴 is a predicate on 𝐷. Thus, 𝐴(𝑥) is a truth-
assignable statement about 𝑥 . This formula corresponds, via Curry–Howard, to the

12 Introduction

Table 1.1: Formula-as-types correspondence.

Formula Type
𝐴 ∧ 𝐵 𝐴 × 𝐵
𝐴 ∨ 𝐵 𝐴 + 𝐵

𝐴 ⟹ 𝐵 𝐴 → 𝐵
⟂ 0

⊤ 1

∀𝑥 ∈ 𝐷(𝐴(𝑥)) Π𝑥∶𝐷𝐴(𝑥)
∃𝑥 ∈ 𝐷(𝐴(𝑥)) Σ𝑥∶𝐷𝐴(𝑥)

type Π𝑥∶𝐷𝐴(𝑥), where 𝐷 is a type and 𝐴 is a type family indexed by 𝐷 such that
𝐴(𝑥) is a proposition for all 𝑥 .

▷ Similarly, ∃𝑥 ∈ 𝐷(𝐴(𝑥)) represents a predicate logic statement: “there exists an 𝑥 in
𝐷 for which 𝐴(𝑥) is true”. This formula corresponds to the type Σ𝑥∶𝐷𝐴(𝑥), where
again 𝐷 is a type and 𝐴 is a type family indexed by 𝐷. Proofs of ∃𝑥 ∈ 𝐷(𝐴(𝑥)),
corresponds to pairs (𝑎, 𝑝) presenting the witness 𝑎 that makes the proposition holds.

Remark 1.7. A choice function 𝑓 , as in set theory, is defined on a collection 𝑋 of non-
empty sets. For each set 𝐴 in 𝑋 , 𝑓 (𝐴) is an element of 𝐴 [Sup72, pp. 240.]. The axiom of
choice can be alternatively formulated as the existence of a choice function for every set
or the ability to interchange quantifiers freely, as follows, where 𝐴 and 𝐵 are sets, and 𝐶
is a relation on 𝐴 and 𝐵.

∀𝑥 ∈ 𝐴(∃𝑦 ∈ 𝐵(𝐶(𝑥, 𝑦))) ⟹ ∃𝑓 ∈ 𝐵𝐴(∀𝑥 ∈ 𝐴(𝐶(𝑥, 𝑓 (𝑥)))).

Using propositions-as-types and dependent types in MLTT, we can both express and
derive the logical axiom of choice [Bel21]. This derivation is referred to as the type-
theoretic choice principle, permitting us to alternate between Πs and Σs. Specifically, con-
sider 𝐴 ∶ U, 𝐵 ∶ 𝐴 → U, and 𝐶 ∶ (Σ𝑥∶𝐴𝐵(𝑥)) → U.

∏
(𝑎∶𝐴)

∑
(𝑏∶𝐵(𝑎))

𝐶((𝑎, 𝑏)) → ∑
(𝑓 ∶∏(𝑥∶𝐴) 𝐵(𝑥))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

choice function

∏
(𝑎∶𝐴)

𝐶((𝑎, 𝑓 (𝑎))).

The type above can be inhabited by defining the function choice as follows.

ΠΣ-comm ∶ ∏(𝑎∶𝐴) ∑(𝑏∶𝐵(𝑎)) 𝐶((𝑎, 𝑏)) → ∑(𝑓 ∶∏(𝑥∶𝐴) 𝐵(𝑥)) ∏(𝑎∶𝐴) 𝐶((𝑎, 𝑓 (𝑎))).
ΠΣ-comm(ℎ) ∶≡ (𝜆𝑎.𝜋1(ℎ(𝑎)), 𝜆𝑎.𝜋2(ℎ(𝑎))).

Indeed, the converse can also be derived, demonstrating the ability to alternate Πs and
Σs.

1.1 Foundations of mathematics 13

ΣΠ-comm ∶ ∑(𝑓 ∶∏(𝑥∶𝐴) 𝐵(𝑥)) ∏(𝑎∶𝐴) 𝐶((𝑎, 𝑓 (𝑎))) → ∏(𝑎∶𝐴) ∑(𝑏∶𝐵(𝑎)) 𝐶((𝑎, 𝑏)).
ΣΠ-comm(ℎ, 𝑘) ∶≡ 𝜆𝑎.(ℎ(𝑎), 𝑘(𝑎)).

In HoTT, an extension ofMLTT, we derive a formulation of the axiom of choice [Uni13,
§3.8]. This requires the introduction of a new type constructor, specifically, the higher
inductive type for the propositional truncation of a type, as detailed in Definition 2.2.

Note 1.8. Dependent types, to our knowledge, were first described in logical theory
not by MLTT but by de Bruijn’s Automath project. This project implemented an
extended version of Lambda Calculus with dependent types such as Σ-types and Π-
types [dBru83]. Here are some related historical works.

Church’s 1940 work, The Simple Theory of Types (STT), introduced a formal sys-
tem for representing objects as lambda expressions annotated with types [Chu40].
This provided a more general and consistent presentation of the type theory initially
introduced in Principia Mathematica, albeit with limited expressive power.

This laid the groundwork for advancements starting in the 1960s, which aimed
to enhance the expressiveness of current proof systems and other systems grounded
on Gentzen’s Natural Deduction [Sch72; Pra67]. These enhancements included dif-
ferent forms of quantifiers, such as type abstraction bound by 𝜆, type variables, and
dependent types. Notable contributions in this direction include Girard’s System F
and System F𝜔 , Andrews’s exploration of type theory with type variables, along with
the previously cited de Bruijn’s Automath project.

Example 1.9. Let𝐴 be the type of vector elements, andVec(𝑛) denote vectors of length
𝑛. The dependent typeVec is a family with eachmember, Vec(𝑛), representing vectors
of length 𝑛 ∶ N. This can be defined either inductively, as follows.

data Vec (𝐴 ∶ U) ∶ N → U

nil ∶ Vec(𝐴, zero)
cons ∶ Π𝑛∶ N 𝐴 → Vec(𝐴, 𝑛) → Vec(𝐴, suc(𝑛))

Alternatively, we can define this type through the function Vec ∶ N → U as shown
in (1.1–1). This function can be defined by case-analysis on the natural numbers, this
is referred to as pattern-matching on N. In this approach, we define the function Vec
by a collection of clauses, equations that define the function for specific cases of its
argument.

14 Introduction

Vec∶ U → N → U.
Vec(𝐴, zero) ∶≡ ⊤.
Vec(𝐴, suc(𝑛)) ∶≡ 𝐴 × Vec(𝐴, 𝑛).

(1.1–1)

We could write this type even shorter. If 𝐴𝑛 denotes the type of 𝑛-tuples of ele-
ments of 𝐴, then we could have simply written Vec(𝐴, 𝑛) ∶≡ 𝐴𝑛. Similarly, the type
of list of elements of 𝐴, is defined as below.

List∶ U → U.
List(𝐴) ∶≡ Σ𝑛∶ NVec(𝐴, 𝑛).

From now on, we denote a list of elements of 𝐴 by [𝑎1, … , 𝑎𝑛] where 𝑎𝑖 ∶ 𝐴 for
𝑖 = 1, … , 𝑛. For example, [1, 2, 3] is a list of natural numbers of length three.

1.1.9 Identity types

One of the main focuses in the study of MLTTs is the family of identity types. Specifi-
cally, these types give rise to what is known as propositional equality, which is an equiv-
alence relation among terms or types. Notably, propositional equality is distinct from
definitional equality, the latter being a built-in notion of equality within the type theory,
based primarily on computational or definitional attributes and rules. This distinction
between propositional and definitional equality is of considerable significance. Unlike
definitional equality, propositional equality allows for more complex and intricate ex-
pressions of equivalence, thereby expanding the range of results and equality relations
that can be represented within type theory.

For every type 𝐴, there is a family of identity types relating every pair of its terms.
The identity type, Id(𝐴, 𝑎, 𝑏), frequently denoted by 𝑎 =𝐴 𝑏, or simply 𝑎 = 𝑏 when an
ambient type is present, is referred to as the propositional equality between terms 𝑎 and
𝑏 of type 𝐴. At its core, the type 𝑎 =𝐴 𝑏 represents the type of proofs that establish the
equality between 𝑎 and 𝑏.

𝐴 ∶ U 𝑎 ∶ 𝐴 𝑏 ∶ 𝐴
𝑎 =𝐴 𝑏 ∶ U

Identity types are inhabited by a canonical term, which asserts that every object is
equal to itself in a canonical manner. We denote such a term by refl(𝐴, 𝑎) for the identity
type 𝑎 =𝐴 𝑎 in a rule we will put it as follow.

𝐴 ∶ U 𝑎 ∶ 𝐴
refl(𝐴, 𝑎) ∶ 𝑎 =𝐴 𝑎

1.1 Foundations of mathematics 15

Now that we have defined the identity type, we can define the path induction rule,
which is the dependent elimination rule for the identity type. Given a family 𝐶 of types
indexed by the identity type 𝑎 =𝐴 𝑏, we can define a function 𝑓 that takes in any 𝑝 ∶
𝑎 =𝐴 𝑏 and spits out a term 𝐶(𝑝), as a rule we will put it as follow.

𝐴 ∶ U 𝐶 ∶ ∏(𝑥,𝑦∶𝐴) (𝑥 =𝐴 𝑦) → U 𝑐 ∶ ∏(𝑥∶𝐴) 𝐶(𝑥, 𝑥, refl(𝐴, 𝑥))
ind=(𝐴, 𝐶, 𝑐) ∶ ∏(𝑥,𝑦∶𝐴) ∏(𝑝∶𝑥=𝐴𝑦) 𝐶(𝑥, 𝑦 , 𝑝)

The function ind= introduced above is also known as the 𝐽 -rule. The term computation
for the path induction rule is given by the following rule.

𝐴 ∶ U 𝐶 ∶ ∏(𝑥,𝑦∶𝐴) (𝑥 =𝐴 𝑦) → U 𝑐 ∶ ∏(𝑥∶𝐴) 𝐶(𝑥, 𝑥, refl(𝐴, 𝑥))
ind=(𝐴, 𝐶, 𝑐)(𝑥, 𝑥, refl(𝐴, 𝑥)) ≡ 𝑐(𝑥) ∶ 𝐶(𝑥, 𝑥, refl(𝐴, 𝑥))

Example 1.10. The identity type forms an equivalence relation. It is reflexive by def-
inition.

𝑎

refl(𝐴,𝑎)

The symmetry can be shown by proving that for any 𝑝 ∶ 𝑎 =𝐴 𝑏, there exists a term
sym(𝐴, 𝑎, 𝑏, 𝑝) ∶ 𝑏 =𝐴 𝑎 by path induction.

sym ∶ ∏(𝐴∶U) ∏(𝑥,𝑦∶𝐴) ∏(𝑝∶𝑥=𝐴𝑦) (𝑦 =𝐴 𝑥).
sym(𝐴, 𝑎, 𝑏, 𝑝) ∶≡ ind=(𝐴, 𝜆𝑥.𝜆𝑦.𝜆𝑝. (𝑦 =𝐴 𝑥), 𝜆𝑥.refl(𝐴, 𝑥))(𝑎, 𝑏, 𝑝).

𝑎 𝑏
sym(𝐴,𝑎,𝑏)

𝑝

The transitivity of the identity type follows by defining the following function trans.
Then, given 𝑝 ∶ 𝑎 =𝐴 𝑏 and 𝑞 ∶ 𝑏 =𝐴 𝑐, trans(𝐴, 𝑎, 𝑏, 𝑐, 𝑝, 𝑞) is of type 𝑎 =𝐴 𝑐

trans ∶ ∏(𝑋∶U) ∏(𝑥,𝑦∶𝑋) ∏(𝑝∶𝑥=𝑋 𝑦) ∏(𝑧∶𝑋) (𝑦 =𝑋 𝑧) → (𝑥 =𝑋 𝑧).
trans(𝐴, 𝑎, 𝑏, 𝑐, 𝑝, 𝑞) ∶≡ ind=(𝐴, 𝜆𝑥.𝜆𝑦.𝜆𝑝.∏(𝑧∶𝐴) (𝑦 =𝐴 𝑧) → (𝑥 =𝐴 𝑧), 𝜆𝑥.𝜆𝑦.𝜆𝑟 . 𝑟)(𝑎, 𝑏, 𝑝, 𝑐, 𝑞).

𝑏

𝑎 𝑐
𝑝 𝑞

trans(𝐴,𝑎,𝑏,𝑝,𝑐,𝑞)

16 Introduction

As we will briefly discuss, the identity type is a common topic in the modern study
of type theories. It introduces numerous complexities and poses intriguing questions.
For example, consider two elements 𝑎, 𝑏 of a type 𝐴. Suppose we establish two proofs
of equality, 𝑝 and 𝑞, both of type 𝑎 =𝐴 𝑏. Why stop here? we can consider again the
equalities between 𝑝 and 𝑞, that is, the identity type 𝑝 =𝑎=𝐴𝑏 𝑞. So, this iterative process
could continue indefinitely, resulting in a tower of identity types.

𝑎

⋯

𝑏

𝑞𝑝

𝑟

𝑠

Then, at what point do we reach a state/level in this recursion where we can no longer
distinguish between proofs of equality? The answer lies within the structure of the iden-
tity type. For certain types, like the type of natural numbers, we already know when this
iteration halts, while for others, further investigation is required. We study the struc-
ture of the identity type to understand the structure of the mathematical object we are
studying.

1.1.10 Extensional and intensional type theories

The structure of the type of proofs establishing the equality between two terms is an
essential distinction between dependent type theories. On one hand, we have extensional
type theories where one assumes or derives the reflection rule, also called Axiom K. This
rule identifies the notion of propositional equality and definitional equality [NPS90, §3.9],
which implies that any identity type is a proposition. In other words, in extensional type
theories, any identity type has at most one inhabitant, and consequently, the type 𝑎 =𝐴 𝑎
is only inhabited by refl(𝐴, 𝑎), as in the following rule. Any other proof of 𝑎 =𝐴 𝑎 is
treated, by definition, as an alias of refl(𝐴, 𝑎).

𝑎 ∶ 𝐴 𝑝 ∶ 𝑎 =𝐴 𝑎
𝑝 ≡ refl(𝐴, 𝑎)

On the other hand, a more liberal approach is the intensional version of the identity
type, in which such identity types may consist of more than one element. Understanding
the structural intricacies of the identity type plays a fundamental role in the development
of type theories and the way one conducts mathematics within these theories [Alt19].

Consider the type 𝑝 =𝑎=𝐴𝑏 𝑞, where 𝑝 and 𝑞 are two proofs of the equality between
terms 𝑎 and 𝑏 in type 𝐴. In certain type theories, the Uniqueness of Identity Proofs (UIP)
principle holds, stating that for any such identity type, there is essentially only one proof

1.1 Foundations of mathematics 17

of equality —that is, the identity type is a proposition, and therefore, it is referred to as
proof-irrelevant. If UIP holds, then it does not matter which proof we have: all proofs of
a proposition are indistinguishable from each other. This stands in contrast with proof-
relevant type theories, such as HoTT, where different proofs of an identity may carry
different information and hence are not necessarily interchangeable. Whether UIP holds
or not is a crucial aspect that differentiates various type theories.

1.1.11 The groupoid model and the homotopy interpretation

In 1998, Hofmann and Streicher laid the groundwork for a fundamental shift in perspec-
tive on the structure of identity types [HS98]. They proposed a model for type theory
wherein types were not mere sets, but groupoids. In the groupoid model, the UIP princi-
ple does not hold. The key idea is to treat equality as something that can have structure,
possibly something more complex that just being a proposition. In other words, it em-
braced a framework where different proofs of equality, or paths, between the same pair
of points were allowed to carry unique information and were thus not inherently indis-
tinguishable.

Building on this radical departure, a significant evolution occurred about a decade
later, instigated by the work of Awodey, Warren, and Voevodsky. In this approach, types
are viewed as homotopy types —objects possessing the higher-dimensional structure of
an ∞-groupoid [AW09]. This so-called homotopy interpretation of type theory positioned
types as analogous to spaces, terms as points within these spaces, and equalities as homo-
topies between points, mirroring path spaces in homotopy theory. This brought novel
theoretical frameworks like HoTT, with their core principles frequently grounded in
the notion of homotopy, as explained by Shulman in his view of a theory of homotopy
types [Shu11].

Initially, the apparent connection between homotopy theory and type theory may
strike one as surprising. However, this connection may not have been so unexpected
for Voevodsky. His interest in type theory could be considered a fortunate coincidence,
likely sparked by concerns about the practice and foundations of mathematics. Voevod-
sky became deeply engaged with type theory as a promising approach to improve the
way mathematics is conducted, aimed at producing better and more reliable proofs at a
high level of abstraction, thereby preventing errors in human reasoning.

Voevodsky’s substantial contributions to HoTT include key concepts like homotopy
equivalence (Definition 2.4) and the Univalence Axiom. This axiom is particularly note-
worthy as it harmonises two fundamental ideas in type theory: equivalence and iden-
tity [Voe10; ANS+21; Awo18].

The Univalence Axiom comes in the form of a term ua, acting as the inverse of the
function idToEquiv, which maps the identity type 𝐴 =U 𝐵 to an equivalence between 𝐴

18 Introduction

and 𝐵 for any types 𝐴 and 𝐵. Therefore, the Univalence Axiom extends the principle of
extensionality to the universe of types, affirming that equivalent types are equal. This
implies such types inherently share identical structures and properties.

This principle not only facilitates the transfer of constructions among equivalent types
but also enhances the creation of new constructions and proofs. Moreover, it optimises
the research development process by eliminating the need to prove identical results for
different equivalent formulations.

𝐴 =U 𝐵 ≃ 𝐴 ≃ 𝐵
idToEquiv

ua

Remark 1.11. In HoTT, the assumption of Univalence implies function extensionality¹.
This extensionality principle, not provable in MLTT (but introduced as an axiom), states
that two functions equal pointwise are indeed equal. This establishes the following equiv-
alence that we employ, often without explicit mention, in the forthcoming chapters.

𝑓 =∏(𝑥 ∶ 𝐴) 𝐵(𝑥) 𝑔 ≃ ∏(𝑥∶𝐴) 𝑓 (𝑥) =𝐵(𝑥) 𝑔(𝑥)
happly

funext

However, utilising the Univalence Axiom does present unique challenges. One such
challenge, which also drives ongoing research, is the apparent lack of computational con-
tent, as in the extraction of algorithms from proofs and statements involving Univalence.
Noteworthy efforts to tackle this issue include the development of Cubical type theo-
ries [BCH17; CCH+17; CHM18]. Almost in parallel, efforts have also been made to en-
hance proof assistants such as Agda, Lean, and Coq. These enhancements address the
need for better tools to interact with Univalence and explore its computational implica-
tions [VMA21].

We must conclude our brief journey here from the foundations of mathematics to the
specific type theory utilised in this document — a foundation that encompasses concepts
from both homotopy theory and type theory, as well as the various interpretations of
type as propositions, sets, and groupoids. We will now transition to more focused dis-
cussions pertinent to this thesis. However, for readers intrigued by the intricate details
of (homotopy) type theory, we highly recommend reviewing at least one of the following
works.

▷ Homotopy Type Theory: Univalent Foundations of Mathematics, referred here as The
HoTT book [Uni13],

¹See a proof in Agda that the Univalence Axiom implies function extensionality: https://gist.github.com/
jonaprieto/bf9c151d4d7ea4f30fcd598366802e8e.

 https://gist.github.com/jonaprieto/bf9c151d4d7ea4f30fcd598366802e8e
 https://gist.github.com/jonaprieto/bf9c151d4d7ea4f30fcd598366802e8e

1.2 Exploring graph theory in univalent mathematics 19

▷ An Introduction to Univalent Foundations For Mathematicians [Gra18],

▷ Introduction to Univalent Foundations of Mathematics with Agda [Esc19],

▷ Introduction to Homotopy Type Theory [Rij22], and

▷ The Symmetry Book [BBC+22].

Additionally, as the interest in HoTT continues to grow, we are fortunate to find a lot of
media resources and notes these days. Some notable examples include:

▷ Video lectures on the EPIT Summer School 2020 [20],

▷ the HoTTEST Summer School 2022 [22b], and

▷ various Schools and Workshops on Univalent Mathematics [22a].

Additional material can be found at https://homotopytypetheory.org/.

1.2 Exploring graph theory in univalent mathematics

As HoTT emerges as a foundational framework for mathematics, numerous domains
and innovative constructions have been investigated. This includes examining algebraic
structures as in Universal Algebra, delving into (synthetic) homotopy theory, topology,
(higher) category theory, and more. However, there is still much to be explored, and the
potential for new discoveries is vast, and combinatorics is one of these domains. Thus, in
this work, we integrate graph theory concepts to enrich examples in the combinatorics
expressed in HoTT.

In this section, we aim to provide intuition for a few related constructions to a proof-
relevant notion of planar graphs in HoTT. These constructions are derived from trans-
forming abstract topological concepts into their concrete (combinatorial) counterparts,
potentially illuminating subtle nuances of this process.

Our study of graphs adopts a distinctive approach where, for example, graph isomor-
phisms are directly promoted as equalities, compared to traditional graph theory formal-
isation, as seen in the literature [Nos15]. This uniqueness primarily stems from the adop-
tion of Voevodsky’s Univalence Axiom and the use of HoTT constructions, like proposi-
tional truncation, for expressing the existence of mathematical objects.

The forthcoming subsections are outlined as follows: We first discuss the structure
identity principle and its relevance to our study in Section 1.2.1. This is followed by
an exploration of the type of graphs, their symmetries, and the appropriate notion of
graph equivalence in Section 1.2.2. The topological concept of graph embeddings in sur-
faces is then examined to define the combinatorial notion of graph maps and faces in
Sections 1.2.3 and 1.2.4, respectively. Finally, a characterisation of planar drawings of
graphs is hinted at Section 1.2.5.

https://homotopytypetheory.org/

20 Introduction

1.2.1 Structure identity principle

Finding equalities in type theory as in mathematical practice is a common theme. Actu-
ally, one fundamental step in conducting mathematics in HoTT involves characterising
identity types for a structure, such as groups, rings, and other algebraic structures. This
goal relates to the question: “what does it mean for two objects to be equal?” Specifi-
cally, in HoTT, we require our identity types to adhere to the structure identity principle
(SIP). This principle states that equivalent structures are considered equal. As a result, a
unique canonical method exists to convert an equivalence between two structures into
an equality, which consequently implies that their structural properties remain invariant
under equivalence. In essence, SIP is a generalisation of two principles: the identity of
indiscernibles and the equivalence principle. The first suggests that objects with identical
properties are equal. The second, in broad terms, proposes that if two objects within a
domain are equivalent, they share all properties reciprocally [AN19].

However, defining the most suitable notion of equivalence for a specific structure in
HoTT is not always straightforward and may require careful consideration. In fact, this
task often presents itself as a common theme and yet rewarding challenge. So if a struc-
ture does not adhere to SIP, we likely have to reassess the definition of the structure or
redefine its concept of equivalence.

Choosing the right definition of equivalence strongly depends on both the context
and the symmetries that interest us, that is, how we perceive their sameness or similarity
depends on the characteristics we aim to preserve. These may include, for example, some
specific order or quantity of elements, or other attributes. In type theory, this translates
to the type in which we identify-of. Consequently, as we introduce more distinctions to
differentiate our objects, the definition of equivalence becomes more complex, breaking
more symmetries.

Example 1.12. Consider the type of cyclic orders, lists up to rotations —a concept in
combinatorics used later to define graph maps (Section 2.5 and Chapter 4). In a cyclic
order, the elements can be arranged in a circle with a defined notion of next and
previous. For example, in the cyclic order [1, 2, 3], the next of 1 is 2, and the previous
of 1 is 3, and so on.

1

2 3
≃

1 2

3
≃

1

2

3

In determining the appropriate equivalence for cyclic orders, we consider several
potential options. Consider the following alternative possible definitions of equiva-
lence of two cyclic orders.

1.2 Exploring graph theory in univalent mathematics 21

1. The cyclic orders yield identical sets of elements.

2. The lists that underpin these cyclic orders exhibit pointwise equality.

3. The list elements are merely cyclic permutations of a common list.

Unsurprisingly, the initial two options violate the Structure Identity Principle. The
first option neglects to recognise the cyclic order, focusing solely on elements without
considering their interrelations and possibly repetitions of elements in the list. On the
other hand, the second option is overly restrictive, expecting a static list of elements
and ignoring any cyclic permutation.

The critical data in a cyclic order is precisely the circular arrangement of elements,
a feature only captured by the last option. Therefore, despite presentation differences,
two cyclic orders are considered equal if they correspond to identical lists up to a
specific cyclic permutation of their elements. For instance, [1, 2, 3] and [2, 3, 1] are
equivalent cyclic orders, whereas [1, 2, 3] and [1, 3, 2] are not.

1.2.2 The type of graphs and their symmetries

Say a graph is a term of type Graph, consisting of a set of elements termed nodes. Each
node pair 𝑎 and 𝑏 is associated with a set whose elements, referred to as edges connect
𝑎 and 𝑏. So, the term graph here refers to directed multigraphs. One can define such a
type² in type theory as follows; N is a type of nodes, and a type family twice indexed by
N, represents the edges between two nodes.

Graph ∶≡ ∑
(N ∶ U)

(N → N → U).

What does it mean for two graphs to be equal? The notion of the equivalence be-
tween graphs is embodied by what is called graph isomorphism, a well-established con-
cept defined as such: two graphs are considered equivalent if and only if there is a bijec-
tion between their node sets that preserves adjacency. Denoting graph isomorphism, see
(3.2–1), we show it adheres to SIP (see Theorem 3.6). This enables to convert any graph
isomorphism into an equality inGraph. Given graphs 𝐺 and 𝐻 , we can define a canonical
function idtoiso from 𝐺 =Graph 𝐻 to 𝐺 ≅Graph 𝐻 and prove that it is an equivalence.

𝐺 = 𝐻 ≃ 𝐺 ≅ 𝐻
idtoiso

isotoeq

²The type of graphs in the rest of the document is the set-level version as defined in Definition 3.1.

22 Introduction

Remark 1.13. Under graph isomorphism, we can notice that all graphs in Figure 1.1 are
equivalent. This follows because our Graph type only encapsulates node connections,
disregarding node labels. If we aim to capture additional information like these labels or
shapes on nodes and edges, a more complex identity type needs to be considered.

We could, for instance, define as in (1.2–2), 𝐿-Graph as the type of labelled graphs
where each node is associated with a label of type 𝐿, and then, consider the labels part of
the equality. This would allow us to distinguish between graph (III) and the rest of the
graphs in Figure 1.1.

𝐿-Graph ∶≡ ∑
(N ∶ U)

(N → N → U) × (N → 𝐿). (1.2–2)

(I) (II) (III)

1

2 3

4 5

1

3 2

5 4

a

b c

d e

Figure 1.1: Drawing (I) represents the house graph, featuring its only symmetry line de-
picted in dark green. This graph consists of five nodes and six edges: (1, 2), (1, 3), (2, 3),
(2, 4), (3, 5), and (4, 5). Drawing (II) demonstrates the reflection of the graph (I) along its
symmetry, the vertical axis. And, in (III) we showcase a node relabelling of drawing (I).

The symmetries of a graph

The symmetries of a graph correspond to its identity type. Defined precisely by the ways
it mirrors itself, these exact symmetries are the graph’s isomorphisms to itself, also known
as automorphisms. While the identity symmetry is always present, the challenge lies in
discovering additional symmetries. The symmetries of an object forms precisely a group,
called the symmetry group of an object. If we continue this road we can define the sym-
metries of a graph as a group, where the identity automorphism serves as the group’s
identity element and the composition of isomorphisms acts as the group operation. Fre-
quently, visual representation of graphs facilitates the identification of these symmetries.
For example, consider the symmetries of regular polygon as shown in Figure 1.2. These
correspond to the dihedral group 𝐷𝑛 of order 2𝑛, where 𝑛 represents the number of poly-
gon sides. We list other similar examples in Section 3.8. Returning to our house graph
example, we identify two symmetries depicted in Figure 1.1. The identity symmetry be-

1.2 Exploring graph theory in univalent mathematics 23

ing the “do-nothing” action, while the other is a reflection along the vertical axis. As
we look for symmetries in these visual representations, akin to geometry, we search for
transformations that leave the object —in this case, the graph structure— invariant. Such
operations include reflections and rotations.

Figure 1.2: For regular polygons, symmetry lines identify the automorphisms of their
underlying graphs. Each line corresponds to a reflection, rotation, or both, forming the
dihedral group 𝐷𝑛 of order 2𝑛. Here, 𝑛 denotes the number of polygon sides. These
transformations can be represented as permutations of the nodes. Take a square, a 4-
sided polygon, as an example. It has 8 symmetries: 4 rotations and 4 reflections, which
constitute the elements of 𝐷4, a group of order 2 ∗ 4 = 8. A counterclockwise rotation of,
say, 90 degrees, is represented by the permutation (1 2 3 4), while a vertical axis reflection
is represented by (1 4)(2 3). The numbers 1, 2, 3, and 4 are the square’s nodes listed in
counterclockwise order.

1.2.3 Drawing graphs on surfaces

Graphs can be depicted on various surfaces, including a two-dimensional plane, the 2-
sphere, and the torus. Despite their visual appeal andwidespread use in science, our focus
is not on aesthetic elements such as edge lengths, angles, curvatures, or node placements.
Our primary interest lies in graph drawings on closed, orientable surfaces where edges do
not intersect and are equivalent under isotopy, that is, continuous deformation without
crossing edges. While several surfaces could serve this purpose, we will mainly focus on
the 2-sphere, which subsequently allows us to address the two-dimensional plane.

(IV) (V) (VI)

12 3

4 5 1

2 3

4 5

1

2 3

4 5

Figure 1.3: Different visual representations for the same graph map of the house graph
given in Example 1.14. Note how the cyclic order of edges around each node is preserved
consistently across all representations. The first two representations correspond to draw-
ings —the result of planar maps for the house graph, while the last representation does
not, as it features an edge crossing, so it is not an embedding.

24 Introduction

In our exploration of graph drawings on surfaces, we must concentrate on the crucial
data conveyed by their visual representations. Note that each node in a drawing, as illus-
trated in Example 1.14, displays a specific cyclic order of its connected edges. This order
for each node is encapsulated within a combinatorial data structure known as a rotation
system or graph map, widely employed in topological graph theory [GT87]. These graph
maps abstract the unnecessary visual aspects of drawings, focusing solely on the combi-
natorial structure. Consequently, we may depict the same graph in various ways, each
giving rise to a potentially non-unique graph map.

1.2.4 The notion of graph maps and faces

A graph map ℳ for a given graph 𝐺 is a mapping from the nodes of 𝐺 to their adjacent
edges, arranged in a specific cyclic order. These are lists up to rotation, each associated
with a node in 𝐺. Each order connects a node to its edges, as they appear on the surface.
This notion is defined in type theory as in Definition 4.8. It is important to note that a
graph map inherently defines a set of regions. As illustrated in Figure 1.4 for the case
of the 2-sphere, these regions, when glued together, reconstruct the original drawing
surface. Indeed, the surface’s nature is implicitly encoded within the graph map, from
which one can derive a property known as the surface’s genus, which is the number of
“holes” in the surface. For instance, the 2-sphere has a genus of 0, while the torus has a
genus of 1.

(a) (b) (c)

Figure 1.4: Figure (b) illustrates the plane-embedded graph from Figure (a), complete
with color-coded faces derived from its representation. In Figure (c), these same faces are
disassembled and used to construct the sphere. The part of the sphere not visible in (c) is
the back of the sphere with purple color.

Let us now consider two examples: a graph map yielding the surface of a plane in Ex-
ample 1.14, and another producing the surface of a torus in Example 1.15.

Example 1.14. Consider the house graph in Figure 1.1. The graph map assigns each
node a counterclockwise cycle of adjacent nodes. For instance, the graph map ℳ at
node 2, i.e.,ℳ(2) ∶≡ [1, 4, 3], signifies that edge (2, 1) is succeeded by edge (2, 4), and
then (2, 3).

1.2 Exploring graph theory in univalent mathematics 25

Node Adjacent Graph map
nodes

1 2, 3 [2, 3]
2 1, 3, 4 [1, 4, 3]
3 1, 2, 5 [1, 2, 5]
4 2, 5 [2, 5]
5 3, 4 [3, 4]

2

1 3

4ℳ(2)

Example 1.15. Consider the complete bipartite graph 𝐾3,3, a forbidden minor used
in Kuratowski’s planar graphs characterisation —embeddings of graphs in the plane.
This graph comprises two sets of three nodes each: 0, 1, 2 and 3, 4, 5. Each node in one
set connects to every other node in the opposing set. Drawing this graph on a plane
inevitably leads to edge crossings. However, these issues disappear when drawn on
a torus. We provide a graph map for 𝐾3,3 and its torus embedding below.

Node Adjacent Graph map
nodes

0 3, 4, 5 [3, 5, 4]
1 3, 4, 5 [3, 4, 5]
2 3, 4, 5 [4, 3, 5]
3 0, 1, 2 [2, 0, 1]
4 0, 1, 2 [1, 0, 2]
5 0, 1, 2 [1, 2, 0]

0

5

2

3

4

1

1.2.5 Planar drawings

A planar graph map, in essence, guides us how to draw a graph on a two-dimensional
plane such that there are no edge crossings. Graphs that allow for these drawings are
known as planar graphs. However, in our study of planar graphs, we circumvent any
explicit reference of the two-dimensional plane (i.e., R2), thus avoiding the complexities.
The complexities arise from working with real numbers and defining the edge-crossing
property in HoTT. Instead, we simply concentrate on characterising the type of drawing
that embeds graphs in the 2-sphere. Once the graph is embedded in the 2-sphere, the
edge-crossing property comes for free.

We use the idea of a 2-sphere here as it serves as a model for the plane. Recall that
the plane can be obtained by puncturing the 2-sphere at a point representing infinity.
Therefore, drawing a graph in the plane is equivalent to embedding this into the 2-sphere,
differentiated by the puncture point. Essential details, such as where to puncture the 2-

26 Introduction

sphere or the position of the infinity point, determine the distinguished face of the graph
map, called the outer face.

Remark 1.16. The term 2-sphere in this context does not allude to the (higher induc-
tive type), or the type of the 2-sphere in HoTT, it is consistently discussed within the
framework of a graph map, serving as a plane model and the graph map’s target. We do,
however, mention the possible future work using the 2-sphere in HoTT in Section 7.1.

We introduce spherical maps, characterising graph maps that embed graphs in the 2-
sphere, identified as the unique closed orientable simply connected surface. This requires
us to introduce the notion of face of a map in HoTT and a property of simple connected-
ness for graph maps via walk homotopy. The intuition behind type of faces is discussed
next, while detailed description of the latter topic is found in Chapter 5.

In the context of topology, a face is recognised as a region homeomorphic to the disk.
The faces of graph map are obtained by extracting the embedded graph from the surface
via the graph map. When all of its regions qualify as faces, the graph map is termed
as cellular. The notion of spherical maps can be seen then as cellular maps subject to
additional conditions.

Combinatorially, in HoTT, we characterise a face for a graph 𝐺 based on a graph map
ℳ. These faces are typically enclosed by edges, except by those representing unbounded
regions, such as the outer face in planar maps. This definition involves a cyclic graph
𝐴, and a graph homomorphism 𝑓 from 𝐴 to an undirected variant of 𝐺. The morphism
𝑓 cannot map distinct edges in 𝐴 to the same edge in 𝐺. Furthermore, two consecutive
edges in 𝐴 must map to two consecutive edges in 𝐺, adhering to the order stipulated by
the graph map ℳ. The exact definition of a face is provided in Definition 4.14.

We must pay attention to which type we characterise the identity type of a planar
map because we might get a different notion of equivalence of graph maps that do not
correspond to isotopy.

The data of a planar drawing of a fixed graph 𝐺 consists of the choosing of a map and
the outer face. Their respective type families are given by:

▷ Map ∶ Graph → 𝒰 and

▷ Face ∶ ∏(𝐺∶Graph) (Map(𝐺) → 𝒰).
Then, a planar drawing, denoted as the pair (𝑚, 𝑜), consists of a graph map 𝑚 for a

graph 𝐺, possessing certain additional properties, and a distinguished face 𝑜.
Remark 1.17. In the context of a fixed graph 𝐺, we consider two planar drawings, (𝑚1, 𝑜1)
and (𝑚2, 𝑜2). These can be compared using one of the following types.

1. The identity type (𝑚1, 𝑜1) = (𝑚2, 𝑜2) in the type

∑
(𝑥∶Map(𝐺))

Face(𝐺, 𝑥),

1.2 Exploring graph theory in univalent mathematics 27

which corresponds to having labelled the graph.

2. The identity type (𝐺, 𝑚1, 𝑜1) = (𝐺, 𝑚2, 𝑜2) in the type

∑
(𝐻∶Graph)

∑
(𝑥∶Map(𝐻))

Face(𝐻 , 𝑥), (1.2–3)

allowing us to disregard the labelling on 𝐺 for broader identification but fewer draw-
ings.

Example 1.18. Consider planar drawings (IV) and (V) of the house graph, denoted in
Figure 1.3 as 𝑝1 ∶≡ (𝑚, 𝑜2) and 𝑝2 ∶≡ (𝑚, 𝑜2). Despite sharing the same underlying
graph map as shown in Example 1.14, the outer faces differ; 𝑜1 is defined by edges
2-1, 1-3, 3-5, 5-4 and 4-2, whereas 𝑜2 is determined by edges 1-2, 2-3, and 3-5. Thus,
we deduce 𝑝1 ≠ 𝑝2 in ∑(𝑥∶Map(𝐺)) Face(𝐺, 𝑥).

Example 1.19. More subtle is the case of planar drawings (I) and (III) in Figure 1.1
given by graph maps 𝑚1 and 𝑚2. Initial observation may suggest they are equal,
however, as per Remark 1.17, our equivalence definition for planar drawings fixes the
graph for the graph map (Item 1), and thus differentiates outer faces; 𝑜1 ∶≡ 1-2-4-5-3
for (I), and 𝑜2 ∶≡ 𝑎-𝑏-𝑑-𝑒-𝑐 for (III).

If there were grounds to establish equivalence for these drawings, that is admitting
node relabelling, we would need to consider identity type in (1.2–3), as per Item 2
in Remark 1.17. This would allow us to show that (𝐺, 𝑚1, 𝑜1) = (𝐻 , 𝑚2, 𝑜2) under the
mapping 1 ↦ 𝑎, 2 ↦ 𝑏, 3 ↦ 𝑐, 4 ↦ 𝑑 , and 5 ↦ 𝑒.

N𝐺 𝑚1
1 [2, 3]
2 [1, 4, 3]
3 [1, 2, 5]
4 [2, 5]
5 [3, 4]

N𝐻 𝑚2
𝑎 [𝑏, 𝑐]
𝑏 [𝑎, 𝑐, 𝑑]
𝑐 [𝑎, 𝑒, 𝑏]
𝑑 [𝑏, 𝑒]
𝑒 [𝑐, 𝑑]

To summarise, our characterisation of planarity in HoTT is founded on several key
insights. Although planarity of graphs is typically defined as an inherent property of
graphs, we consider it as a structure within the category of graphs, providing a notion
of planar direct multigraph with an identity principle. This perspective stems from the
intuitive idea that a proof establishing a graph’s planarity should correspond to a witness
graph map that embeds the graph into the plane, including a designated outer face as
previously mentioned and illustrated in Section 1.2.5. Additionally, the equivalence of

28 Introduction

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

f1

f2

f3

(G,m, f1)

(G,m, f2)

(G,m, f3)

Figure 1.5: The house graph 𝐺 features six unique planar drawings, split evenly between
the two graph maps (I) and (II) as shown in Figure 1.1. We illustrate one of these graph
maps, 𝑚 of 𝐺, as in (I), also cited in Example 1.14. The three distinct planar drawings
(𝐺, 𝑚, 𝑓𝑖) for𝑚 are presented. Each drawing corresponds to an individually selected outer
face: 𝑓1, 𝑓2, and 𝑓3. These faces, enclosed by a pentagon, triangle, and rectangle respec-
tively, are differentiated by distinct shading. The unbounded region of the plane, repre-
sented as a splashed area, denotes the outer face in each planar drawing.

planar graph maps utilised in this context builds upon the concept of isotopy for graph
maps.

Nevertheless, in order to formulate a type of planar graph maps where the identity
type coincides with isotopy, careful consideration must be given to the definitions of
graph maps and planarity. The essential information required to differentiate between
drawings is found to be:

▷ The graph consisting of nodes and edges,

▷ the graph map (combinatorial map of the graph) into the sphere, and

▷ the outer face of the graph map.

This thesis comprehensively explores the construction of types for graphs, graph
maps, faces, and ultimately, planar maps. Before giving an overview of the thesis, we
discuss another aspect of this work, the formalisation of mathematics aided by computer
proof assistants.

1.3 Formalisation of mathematics

Dependently typed theories, such as HoTT, allow for the expression of mathematical
concepts with an appropriate level of abstraction. By utilising type theory in the formal-

1.3 Formalisation of mathematics 29

isation of mathematics, concepts can be articulated using a precise and detailed language
as in programming. In fact, MLTT is one foundation of many modern high-level general
purpose programming languages such as Agda [The23], Coq [The21], Idris [Bra13], and
the recent versions of Lean [dMKA+15].

This means, theories such as dependently type languages and higher other logics,
among other formalisms, can enable computers to mechanically verify the correctness
of the mathematical proofs more efficiently than traditional methods, where the correct-
ness of the proofs is validated by a group of experts. Same as on paper, these formal
developments are susceptible of errors in their theoretical formulation, and possible in
computer implementation.

A proof assistant can be employed to take advantage of the rigour provided by this
mathematical approach. In essence, a proof assistant is a computer system that offers
multiple modes of operation. These modes can be used to create programs that meet
specific requirements, streamline the proof-writing process within a formal type system,
and ensure the correctness of mathematical proofs.

The formalisation of mathematics, especially through computer proof assistants sup-
porting dependent types, presents numerous advantages compared to the traditional
method of writing proofs in natural language. Let us list some advantages of formal-
ising mathematics from our perspective without adhering to a specific order.

First, reliability. By formalising mathematics as discussed in Appendix A, we obtain
machine-checked proofs. The mathematical correctness of these proofs is guaranteed by
the formal system and the correctness of the proof-checker implementation. Traditional
written proofs are prone to errors, including unintentional mistakes such as typos and
omissions.

Second, accountability/reusability. Formal developments provide independently veri-
fied and highly accessible mathematical resources compared to documents in prose, mak-
ing it easier to share, modify, and extend the mathematical content.

Third, reproducibility. Formal developments as discussed here possess transparency
and reproducibility. To replicate the reasoning steps and the outcome, one requires access
to both the formalisation and the proof assistant’s software specifications.

Finally, employing proof assistants in mathematical writing not only provides a high
level of rigour and reliability but also fosters the discovery of new objects, including
enhanced proofs and theorems. The ability tomechanically verify the correctness of these
constructs increases the likelihood of revealing previously undiscovered relationships and
insights within the mathematical domain of interest [AH14].

30 Introduction

1.4 Formalisations of graph theory

In the context of formalising mathematics, there are numerous developments of graph
theory available in different type systems presented among the most popular proof as-
sistants are Agda, Coq, Isabelle/HOL, and Lean [dMKA+15]. The type system of Agda is
an extension of Martin-Löf’s intuitionistic type theory. On the other hand, both Coq and
Lean utilise the Calculus of Inductive Constructions for their type systems. Isabelle/HOL,
however, employs higher-order logic as its basis.

Notably, related to graph theory, significant projects and extensive libraries have been
developed in the proof assistants Coq [DP20] and Isabelle/HOL [Nos15]. Among these,
prominent projects are Gonthier’s well-known formal proof of the Four-Colour theo-
rem (FCT) in Coq [Gon23], Dufourd’s proof of the discrete form of the Jordan Curve
theorem also in Coq [DP00], and the proof of Kepler’s conjecture in HOL by Bauer et
al. [HAB+17]. More recently, several other libraries have emerged, including the Coq
Graph Library [24a], the Isabelle Graph Theory Library [Nos14], the LeanMathlib library,
the combinatorics section [24b], andmost recently, the Agda-UniMath library [RBPB+23].

Specifically to the formalisation of planarity of graphs different methods have been
proposed, each founded on mathematical foundations that differ from HoTT, leading to
the use of distinct mathematical objects than those discussed in this document. In this
work, we employ graph maps to define the concept of planarity. Alternative approaches
involve related constructions, including rooted maps defined in terms of permutations
by Dubois et al. [DGG16], and hypermaps used by Dufourd et al., and Gonthier [DP00;
Duf09; Gon08], among others. In particular, hypermaps are noteworthy to mention, as
the nature of their combinatorial structure, consisting of a finite set of darts and three per-
mutations encoding relationships between nodes, edges, and faces, generalises combina-
torial maps beyond what we consider in this work. These structures can represent both
orientable and non-orientable surfaces, though we restrict our attention to the orientable
case. This generalisation of combinatorial maps has proven instrumental in formalising
the Four Color Theorem (FCT) [Gon23; Doc21]. Moreover, Dufourd states and proves
Euler’s polyhedral formula and the Jordan Curve theorem using an inductive characteri-
sation of hypermaps [DP00; Duf09]. Doczkal, using a more conventional representation
of finite graphs, demonstrates that every (K3,3)-free graph and (K5)-free graph without
isolating nodes is planar. This is in accordance with his concept of a plane map, which
is founded on hypermaps. Doczkal’s result corresponds to one direction in the statement
of Wagner’s theorem [Doc21].

An alternative approach to address planarity in a type-theoretical way without com-
binatorial maps is through iterative procedures. For instance, Yamamoto et al. [YNH+95]
demonstrated that every finite and biconnected planar graph can be decomposed into a
finite collection of cycle graphs, with each face being the region enclosed by a closed

walk, also referred to as a circuit (Gross and Anderson 2018, §5.2, §7.3). This construc-
tion defines an inductive data type that begins with a cycle graph 𝐶𝑛 serving as the base
case, and by repeatedly merging new instances of cycle graphs, one gets the final planar
graph. Bauer formalises a similar construction of planar graphs from a set of faces in Is-
abelle/HOL [Bau05; BN02]. The approach described in Section 6.3 for handling planar
extension is related to this iterative procedure.

1.5 Short outline of this thesis

In this work, we propose a new approach to graph planarity in HoTT. Our method aligns
with abstract mathematical intuition, unlike traditional analytic or geometric methods
that use the two-dimensional plane (i.e., R2) to describe this concept.

In our quest to address this topic, we beginwith Chapter 2, laying out themathematical
foundation, terminology, notation, and basic constructions. Those familiar with HoTT
might opt to skip this chapter, except for Section 2.5, which explains cycle types.

Next, we delve into the univalent category of directed multigraphs in Chapter 3, ex-
ploring graph homomorphisms, properties, structures, and specific examples and families
of graphs. Later, we focus on graph maps and the notion of faces of a map in Chapter 4.

In Section 5.4, we introduce the types of walks and quasi-simple walks, presenting a
normal form for walks, a normalisation procedure, and the notion of walk homotopy. The
content here is significant because it serves as the foundation for our characterisation of
planarity. This characterisation employs spherical maps, and its definition can be refined
by using the normal form of walks in graphs with discrete node sets.

Finally, our characterisation of graph planarity in HoTT is presented in Chapter 6 built
on top of the aforementioned concepts. For constructing examples of planar graphs, we
present an inductive method for extending planar graphs in Section 6.3.

We summarise our findings and outline future work in Chapter 7, supplemented by
the constructions in Appendices B and C. Suggested reading order for this document can
be found in Figure 1.6.

Related publications

The work presented in this thesis is based on the following works.

[PG19] J. Prieto-Cubides and H. R. Gylterud, Planar graphs in HoTT, 25th International Con-
ference on Types for Proofs and Programs, TYPES, 2019, [Online]. Available: http:
//www.ii.uib.no/~bezem/abstracts/TYPES%5F2019%5Fpaper%5F37.

[PG24] J. Prieto-Cubides and H. R. Gylterud, On planarity of graphs in homotopy type the-
ory, Mathematical Structures in Computer Science, vol. 34, no. 4, pp. 281–321, 2024,
[Online]. Available: https://doi.org/10.1017/S0960129524000100.

http://www.ii.uib.no/~bezem/abstracts/TYPES%5F2019%5Fpaper%5F37
http://www.ii.uib.no/~bezem/abstracts/TYPES%5F2019%5Fpaper%5F37
https://doi.org/10.1017/S0960129524000100

Figure 1.6: The solid arrows indicate that the starting point is a prerequisite for the ending
point. The squiggly arrows indicate that the starting point influences the ending point.
Finally, the dashed arrows establish a relationship not formally established in the text.

Chapter 3
Graphs

Chapter 4
Graph Maps

Chapter 2
Mathematical
Foundation

Chapter 5
Walks and

Spherical Maps
Chapter 6

Planar Maps

Appendix B
On Trees and their

Topological Realisation

Appendix C
Yet another HIT

for Graphs

Appendix A
Computer
Verification

Chapter 7
Concluding Remarks

[Pri22] J. Prieto-Cubides, On homotopy of walks and spherical maps in homotopy type the-
ory, in Proceedings of the 11th ACM SIGPLAN International Conference on Certified
Programs and Proofs, 2022, pp. 338–351, [Online]. Available: https://doi.org/10.1145/
3497775.3503671.

Artefacts

The work presented in this thesis also includes a mechanised formalisation of some of
the concepts described in this document, see Appendix A.

[Pri24] J. Prieto-Cubides, Mechanised proofs in Agda for the manuscript, Investigations into
Graph-theoretical Constructions in Homotopy Type Theory, Zenodo, 2024, [Online].
Available: https://doi.org/10.5281/zenodo.11092174.

https://doi.org/10.1145/3497775.3503671
https://doi.org/10.1145/3497775.3503671
https://doi.org/10.5281/zenodo.11092174

“All animals are equal, but some animals are
more equal than others.”

George Orwell, Animal Farm.

2
Mathematical Foundations

In this thesis, we work with homotopy type theory, a Martin-Löf intensional intuition-
istic type theory extended with the Univalence Axiom [Uni13; Awo18; Esc18], proposed
originally by Voevodsky [Voe10], and some higher inductive types (HITs), such as propo-
sitional truncation. The presentation of our constructions is informal, in a similar style
as in the HoTT Book [Uni13].

HoTT emphasises the role of the identity type as a path type. The intended interpre-
tation is that elements, 𝑎, 𝑎′ ∶ 𝐴, are points and that a witness of an equality 𝑝 ∶ 𝑎 = 𝑎′ is
a path from 𝑎 to 𝑎′ in𝐴, as illustrated in Figure 2.1. Since the identity type is again a type,
we can iterate the process, which gives each type the structure of an∞-groupoid [Awo12].

𝑎
𝑎′

𝐴

𝑝

𝑞

Figure 2.1: This figure shows a representation of the homotopy between two paths 𝑝, 𝑞
of the identity type 𝑎 = 𝑎′ in a type 𝐴.

This may at first seem of little relevance when working with finite combinatorics, as
one would expect only types with trivial path types (sets) to show up in combinatorics.

34 Mathematical Foundations

However, we will see that types with nontrivial path types do arise naturally in combina-
torics, which should come as no surprise to anyone familiar with the role of groups and
groupoids in this field, such as Joyal’s work on combinatorial species [BHW08; Yor14]
—and that the paths in these types are often various forms of permutations.

2.1 Notation

An informal type theoretical notation derived from theHoTT book [Uni13] and the formal
system Agda [Nor07] is used throughout this paper. The following list summarises the
most important conventions and notations used in this paper.

▷ Definitions are introduced by (∶≡), while judgemental equalities use (≡).
▷ The type U is a univalent universe.

▷ The notation 𝐴 ∶ U indicates that 𝐴 is a type. A term 𝑎 of type 𝐴 is denoted by
𝑎 ∶ 𝐴 and 𝐴 is referred to as a type inhabited.

▷ The equality sign of the identity type of 𝐴 is denoted by (=𝐴). The constructor of
the identity type 𝑥 =𝐴 𝑥 is denoted by relf(𝑥) for 𝑥 ∶ 𝐴. If the type𝐴 can be inferred
from the context, we simply write (=). The equalities between 𝑥, 𝑦 ∶ 𝐴 are of type
𝑥 = 𝑦 .

▷ The type of non-dependent functions between 𝐴 and 𝐵 is denoted by 𝐴 → 𝐵.
▷ Type equivalences are denoted by (≃). The canonical map for types is the function
idToEquiv of type 𝐴 = 𝐵 → 𝐴 ≃ 𝐵 and its inverse function is called ua. Given the
equivalence 𝑒 ∶ 𝐴 ≃ 𝐵, the application, ua(𝑒) is denoted by 𝑒, while the underlying
function of the equivalence 𝑒 of type 𝐴 → 𝐵 can be also denoted by 𝑒. Moreover, the
coercion along a path 𝑝 ∶ 𝐴 = 𝐵 is the function denoted by coe(𝑝) of type 𝐴 → 𝐵.

▷ The point-wise equality for functions (also known as homotopy) is denoted by (∼).
The function happly is of type 𝑓 = 𝑔 → 𝑓 ∼ 𝑔 and its inverse function is called
funext.

▷ The coproduct of two types 𝐴 and 𝐵 is denoted by 𝐴 + 𝐵. The corresponding data
constructors are the functions inl ∶ 𝐴 → 𝐴 + 𝐵 and inr ∶ 𝐵 → 𝐴 + 𝐵.

▷ Dependent product types (Π-types) are denoted by Π𝑥∶𝐴𝐵(𝑥) for a type𝐴 and a type
family 𝐵 ∶ 𝐴 → U, while dependent sum types (Σ-types) are denoted by Σ𝑥∶𝐴𝐵(𝑥).
If 𝑥 ∶ 𝐴 and 𝑦 ∶ 𝐵(𝑥), then the pair (𝑥, 𝑦) is of type Σ𝑥∶𝐴𝐵(𝑥). The corresponding
projection functions for a pair are denoted by 𝜋1 and 𝜋2, so that 𝜋1(𝑥, 𝑦) ∶≡ 𝑥 and
𝜋2(𝑥, 𝑦) ∶≡ 𝑦 . If the type family 𝐵 over 𝐴 is constant, then we may denote the type
Σ𝑥∶𝐴𝐵(𝑥) by 𝐴 × 𝐵, and the Π𝑥∶𝐴𝐵(𝑥) by 𝐴 → 𝐵.

2.2 Homotopy levels 35

� ����
�
���� �����

������ ��

Figure 2.2: The figure shows the representation of two points, 𝑏, and tr𝐵(𝑝, 𝑏), in the fibres
of a type family 𝐵 over the points 𝑥, 𝑥′ in 𝐴 ∶ U, respectively, where tr𝐵(𝑝, 𝑏) denotes the
transport of 𝑏 along the path 𝑝 ∶ 𝑥 = 𝑥′.

▷ The empty type and the unit type are denoted by 0 and 1, respectively.

▷ The type 𝑥 ≠ 𝑦 denotes the function type (𝑥 = 𝑦) → 0.

▷ Natural numbers are of type N. 0 ∶ N. The successor of 𝑛 ∶ N is denoted by 𝑆(𝑛) or
𝑛 + 1. The variable 𝑛 is of type N, unless stated otherwise.

▷ Given 𝑛 ∶ N, the standard type with 𝑛 elements is denoted by J𝑛K.
▷ The universe U closed under the type formers considered above.

▷ The function transport is denoted by tr of type Π𝑢∶𝑥=𝑥′𝐵(𝑥) → 𝐵(𝑥′), where
𝑥, 𝑥′ ∶ 𝐴 and 𝐵 ∶ 𝐴 → U. Furthermore, we denote by tr2 the function of type
Π𝑝∶𝑎1=𝑎2 tr

𝐵(𝑝, 𝑏1) = 𝑏2 → 𝐶(𝑎1, 𝑏1) → 𝐶(𝑎2, 𝑏2), where the type family 𝐵 is in-
dexed by the type 𝐴, 𝑎1, 𝑎2 ∶ 𝐴, 𝑏1 ∶ 𝐵(𝑎1), 𝑏2 ∶ 𝐵(𝑎2), and the type 𝐶 is of type
Π𝑥∶𝐴 (𝐵(𝑥) → U).

In the next sections, wewill use variables𝐴, 𝐵 and𝑋 to denote types, unless stated oth-
erwise. To define some inductive types, we adopt a similar notation as in Agda, including
the keyword data and the curly braces for implicit arguments, for example, {𝑎 ∶ 𝐴} de-
notes 𝑎 is of type 𝐴, and it is an implicit variable. The type may be omitted in the former
notation, as they can usually be inferred from the context.

2.2 Homotopy levels

The following establishes a level hierarchy for types with respect to the nontrivial homo-
topy structure of the identity type.

36 Mathematical Foundations

Definition 2.1. Let 𝑛 be an integer such that 𝑛 ≥ −2. One states that a type 𝐴 is an 𝑛-type
and that it has homotopy level 𝑛 if the type is-level(𝑛, 𝐴) is inhabited.

is-level(−2, 𝐴) ∶≡ ∑
(𝑐 ∶ 𝐴)

∏
(𝑥 ∶ 𝐴)

(𝑐 = 𝑥).

is-level(𝑛 + 1, 𝐴) ∶≡ ∏
(𝑥,𝑦 ∶ 𝐴)

is-level(𝑛, 𝑥 = 𝑦).

For this document, the first four homotopy levels are enough to express the mathe-
matical objects we want to construct. They are referred to in order, starting from −2, as
contractible types, propositions, sets, and groupoids. For convenience, we use the fol-
lowing predicates:

▷ isContr(𝐴) ∶≡ is-level(−2, 𝐴),
▷ isProp(𝐴) ∶≡ is-level(−1, 𝐴),
▷ isSet(𝐴) ∶≡ is-level(0, 𝐴), and
▷ isGroupoid(𝐴) ∶≡ is-level(1, 𝐴).
Types that are propositions are of type hProp and similarly with the other levels. If

𝐴 is an inhabited proposition, then we say that 𝐴 holds. Additionally, it is possible to
have an 𝑛-type out of any type 𝐴 for 𝑛 ≥ −2. This can be done using the construction
of a higher inductive type called 𝑛-truncation [Uni13, §7.3] denoted by ‖𝐴‖𝑛. The case
for (−1)-truncation is called propositional truncation (or reflection), and is often simply
denoted by ‖𝐴‖.
Definition 2.2. Propositional truncation of a type 𝐴 denoted by ‖𝐴‖−1 is the universal so-
lution to the problem of mapping 𝐴 to a proposition 𝑃 . The elimination principle of this
construction gives rise to a map of type ‖𝐴‖ → 𝑃 , which requires a map 𝑓 ∶ 𝐴 → 𝑃 and a
proof that 𝑃 is a proposition.

Propositional truncation allows us to model the mere existence of inhabitants of type
𝐴. We state that 𝑥 is merely equal to 𝑦 when ‖𝑥 = 𝑦‖ for 𝑥, 𝑦 ∶ 𝐴. Then, we can express
in HoTT by means of propositional truncation:

▷ logical conjunction (𝑃 ∨ 𝑄) ∶≡ ‖𝑃 + 𝑄‖,
▷ logical disjunction (𝑃 ∧ 𝑄) ∶≡ ‖𝑃 × 𝑄‖,
▷ logical quantification (∀(𝑥 ∶ 𝐴)𝑃(𝑥)) ∶≡ ‖Π𝑥∶𝐴𝑃𝑥‖,
▷ logical existential (∃(𝑥 ∶ 𝐴)𝑃(𝑥)) ∶≡ ‖Σ𝑥∶𝐴𝑃𝑥‖, and
▷ unique existence (∃!(𝑥 ∶ 𝐴)𝑃(𝑥)) ∶≡ isContr(Σ𝑥∶𝐴𝑃(𝑥)).

2.3 Handy equivalences 37

For clarity, let us define some conventions and constructions that will be useful in
subsequent discussions. Let 𝐴 and 𝐵 be types. A type 𝐴 is referred to as inhabited if we
have a term 𝑎 of type 𝐴. If ‖𝐴‖ is inhabited, then we say that type 𝐴 is non-empty.

Lemma 2.3. If a type 𝐴 is a proposition and 𝐴 is inhabited, then 𝐴 is a contractible type. In
this case, we say that 𝐴 holds.

Definition 2.4. A function 𝑓 ∶ 𝐴 → 𝐵 is called an equivalence if all its fibres are con-
tractible, i.e.,

isEquiv(𝑓) ∶≡ ∏
(𝑥∶𝑏)

isContr(fib𝑓 (𝑏))

where
fib𝑓 (𝑏) ∶≡ ∑

(𝑥∶𝐴)
‖𝑓 (𝑥) = 𝑏‖.

Definition 2.5. A function 𝑓 ∶ 𝐴 → 𝐵 is called an embedding if the type isEmbedding(𝑓)
is inhabited,

isEmbedding(𝑓) ∶≡ ∏
(𝑥,𝑦∶𝐴)

isEquiv(ap𝑓 (𝑥, 𝑦))

where ap𝑓 (𝑥, 𝑦) (sometimes refers to as cong) is the function that maps 𝑥 = 𝑦 to 𝑓 (𝑥) = 𝑓 (𝑦)
for 𝑥, 𝑦 ∶ 𝐴.

Definition 2.6. Given 𝑥 ∶ 𝐴, the connected component of 𝑥 in 𝐴 is the type

∑
(𝑦∶𝐴)

‖𝑦 = 𝑥‖.

Definition 2.7. The type 𝐴 is called connected if ‖𝐴‖ holds and each 𝑥 ∶ 𝐴 belongs to the
same connected component.

Lemma 2.8. Let 𝑃 ∶ 𝐴 → hProp and 𝑥, 𝑦 ∶ 𝐴. If ‖𝑦 = 𝑥‖, then 𝑃(𝑥) ≃ 𝑃(𝑦). Thus, terms in
the same connected component share the same propositional properties.

2.3 Handy equivalences

In this section, we present several type equivalences that will be used throughout the
following chapters. These equivalences serve as key tools in various calculations and
proofs.

Let 𝐴 ∶ U, 𝐵 ∶ 1 → U.

∑
(𝑎∶1)

𝐵(𝑎) ≃ ∏
(𝑎∶1)

𝐵(𝑎) ≃ 𝐵(∗). (2.3–1)

38 Mathematical Foundations

∑
(𝑎∶𝐴)

(𝑎 = 𝑥) ≃ ∑
(𝑎∶𝐴)

(𝑥 = 𝑎) ≃ 1. (2.3–2a)

∑
(𝑎∶𝐴)

1 ≃ (𝐴 × 1) ≃ 𝐴. (2.3–2b)

∑
(𝑥∶0)

𝐴 ≃ (𝐴 × 0) ≃ 0. (2.3–2c)

∏
(𝑎∶𝐴)

1 ≃ ∏
(𝑥∶0)

𝐴 ≃ 1. (2.3–2d)

Let 𝐴 ∶ U, 𝐵, 𝐶 ∶ 𝐴 → U.

(∏
(𝑥∶𝐴)

𝐵(𝑥) ≃ 𝐶(𝑥)) → (∏
(𝑥∶𝐴)

𝐵(𝑥) ≃ ∏
(𝑦∶𝐴)

𝐶(𝑦)) . (2.3–3)

(∏
(𝑥∶𝐴)

𝐵(𝑥) ≃ 𝐶(𝑥)) → (∑
(𝑥∶𝐴)

𝐵(𝑥) ≃ ∑
(𝑦∶𝐴)

𝐶(𝑦)) . (2.3–4)

Let 𝐴, 𝐵 ∶ U, 𝐶 ∶ 𝐴 → U, 𝐷 ∶ 𝐵 → U.

∏
(𝑒∶𝐵≃𝐴)

(∑
(𝑥∶𝐴)

𝐶(𝑥) ≃ ∑
(𝑦∶𝐵)

𝐶(𝑒(𝑦))) . (2.3–5)

(∏
(𝑒∶𝐴≃𝐵)

∏
(𝑥∶𝐴)

𝐶(𝑥) ≃ 𝐷(𝑒(𝑥))) → (∑
(𝑥∶𝐴)

𝐶(𝑥) ≃ ∑
(𝑦∶𝐵)

𝐷(𝑦)) . (2.3–6)

Let 𝐴 ∶ U, 𝐵, 𝐶 ∶ 𝐴 → U, 𝐷 ∶ Σ(𝑎,𝑏)∶Σ𝑥∶𝐴𝐵(𝑥) 𝐶(𝑎) → U.

∑
((𝑎,𝑏)∶∑(𝑥∶𝐴) 𝐵(𝑥))

∑
(𝑐∶𝐶(𝑎))

𝐷((𝑎, 𝑏), 𝑐) ≃ ∑
((𝑎,𝑐)∶∑(𝑥∶𝐴) 𝐶(𝑥))

∑
(𝑏∶𝐵(𝑎))

𝐷(((𝑎, 𝑏), 𝑐)). (2.3–7)

(𝐴 → U) ≃ ∑
(𝑃∶U)

(𝑃 → 𝐴). (2.3–8)

Let 𝐴 ∶ U, 𝐵 ∶ 𝐴 → U, and 𝐶 ∶ (Σ𝑥∶𝐴𝐵(𝑥)) → U.

∑
(𝑎∶𝐴)

∑
(𝑏∶𝐵(𝑎))

𝐶((𝑎, 𝑏)) ≃ ∑
((𝑎,𝑏)∶∑(𝑥∶𝐴) 𝐵(𝑥))

𝐶((𝑎, 𝑏)). (2.3–9)

2.4 Finite types 39

∏
(𝑎∶𝐴)

∏
(𝑏∶𝐵(𝑎))

𝐶((𝑎, 𝑏)) ≃ ∏
((𝑎,𝑏)∶∑(𝑥∶𝐴) 𝐵(𝑥))

𝐶((𝑎, 𝑏)). (2.3–10)

∏
(𝑎∶𝐴)

∑
(𝑏∶𝐵(𝑎))

𝐶((𝑎, 𝑏)) ≃ ∑
(𝑓 ∶∏(𝑥∶𝐴) 𝐵(𝑥))

∏
(𝑎∶𝐴)

𝐶((𝑎, 𝑓 (𝑎))). (2.3–11)

Let 𝑃 ∶ N → U.

∑
(𝑛∶N)

𝑃(𝑛) ≃ 𝑃(0) + ∑
(𝑛∶N)

𝑃(𝑛 + 1). (2.3–12)

∏
(𝑛∶N)

𝑃(𝑛) ≃ 𝑃(0) × ∏
(𝑛∶N)

𝑃(𝑛 + 1). (2.3–13)

J𝑛 + 1K ≃ J𝑛K + 1. (2.3–14)

Let 𝐴 ∶ U, 𝐵, 𝐶 ∶ 𝐴 → U.

∑
(𝑥∶𝐴)

𝐵(𝑥) + 𝐶(𝑥) ≃ ∑
(𝑥∶𝐴)

𝐵(𝑥) + ∑
(𝑥∶𝐴)

𝐶(𝑥). (2.3–15)

Let 𝐴, 𝐵 ∶ U, 𝐶 ∶ 𝐴 + 𝐵 → U.

∑
(𝑥∶𝐴+𝐵)

𝐶(𝑥) ≃ (∑
(𝑥∶𝐴)

𝐶(inl(𝑥))) + (∑
(𝑥∶𝐵)

𝐶(inr(𝑥))) . (2.3–16)

∏
(𝑥∶𝐴+𝐵)

𝐶(𝑥) ≃ (∏
(𝑥∶𝐴)

𝐶(inl(𝑥))) × (∏
(𝑥∶𝐵)

𝐶(inr(𝑥))) . (2.3–17)

2.4 Finite types

In the following we make precise the intuition that a type is finite when it is equivalent
to J𝑛K for some 𝑛 ∶ N. The type J𝑛K is the standard type with 𝑛 elements, which can be
defined as the following Σ-type.

J𝑛K ∶≡ ∑
(𝑚 ∶N)

𝑚 < 𝑛, (2.4–18)

where the binary relation (<) can be defined by cases, that is, 0 < 𝑚 + 1 for all 𝑚 and for
all 𝑛 if 𝑚 < 𝑛 then 𝑚 + 1 < 𝑛 + 1.

Definition 2.9. A type 𝑋 is finite if the type isFinite(𝑋) in (2.4–19) is inhabited.

40 Mathematical Foundations

isFinite(𝑋) ∶≡ ∑
(𝑛 ∶ N)

‖𝑋 ≃ J𝑛K‖ . (2.4–19)

The finiteness of a type 𝐴 is the existence of a bijection between 𝐴 and the type J𝑛K for
some 𝑛 ∶ N. However, this description is not a structure on 𝐴, which provides it with a
specific equivalence 𝐴 ≃ J𝑛K, but rather a property, a mere proposition. This ensures that
the identity type on the total type of finite types is free to permute the elements, without
having to respect a chosen equivalence.
Lemma 2.10. The type isFinite(𝑋) is a proposition.
Proof. Let (𝑛, 𝑝), (𝑚, 𝑞) ∶ isFinite(𝑋), which we want to prove equal. Since 𝑝 and 𝑞 are
elements of a family of propositions, it is sufficient to show that 𝑛 = 𝑚. This equation is
a proposition, so we can apply the truncation-elimination principle to get 𝑋 ≃ J𝑛K and
𝑋 ≃ J𝑚K. Thus, from J𝑛K ≃ J𝑚K follows that 𝑛 = 𝑚 by a well-known result on finite
sets. □

A type 𝑋 is considered to be finite if the proposition isFinite(𝑋) holds. The natural
number 𝑛 is referred to as the cardinal number of 𝑋 , which is also denoted by #𝑋 . If 𝑋
and 𝑌 are finite and the identity type 𝑋 = 𝑌 is inhabited, then both types have the same
cardinal number and 𝑌 is a permutation of 𝑋 . Furthermore, Definition 2.9 is equivalent
to the type ∃𝑛∶N(𝑋 = J𝑛K). However, the former definition makes it easier to obtain the
cardinal number 𝑛 by projecting on the first coordinate. This is more practical for certain
proofs, such as Lemma 2.25. Additionally, any property of J𝑛K, like “being a set” and “being
discrete” can be transferred to any finite type.
Theorem 2.11 (Hedberg’s theorem). Any type𝐴with decidable equality, i.e., 𝑥 = 𝑦 + 𝑥 ≠ 𝑦
for all 𝑥, 𝑦 ∶ 𝐴, is a set. Types like 𝐴 are below referred to as discrete sets.

The following lemma is found in Rijke’s book, Theorem 16.3.6 item (iii) has proven to
be useful for the finiteness property of types appearing, for example, in Section 4.4.1. A
proof of this result can be found in the Agda-UniMath library.
Lemma 2.12. Let 𝐵 be a family of a type 𝐴. Consider the following propositions.
(a) 𝐴 is finite.

(b) 𝐵(𝑥) is finite for each 𝑥 ∶ 𝐴.
(c) Σ𝑥∶𝐴𝐵(𝑥) is finite.

The following holds:

1. If (𝑎) holds, then (𝑏) holds if and only if (𝑐) holds.
2. If (𝑏) and (𝑐), then (𝑎) holds if and only if 𝐴 is a set and Σ𝑥∶𝐴¬𝐵(𝑥) is finite.

https://unimath.github.io/agda-unimath/

2.4 Finite types 41

3. If (𝑏) and (𝑐) hold and there is a function of type Π𝑥∶𝐴𝐵(𝑥), then (𝑎) holds.
4. If (𝑎) and (𝑏) hold, then the type Π𝑥∶𝐴 𝐵(𝑥) is finite.

Lemma 2.13. Finite sets are closed under (co) products, type equivalences, Σ-types, and Π-
types.

The formal proof of Lemma 2.13 and other related lemmas can be found in the
Coq-HoTT library [BGL+17]. For example, one of these lemmas, used to demonstrate
Lemma 5.24, states that the cardinality of 𝑋 is less than or equal to the cardinality of 𝑌 if
there exists an embedding from 𝑋 to 𝑌 .
Lemma 2.14. If 𝐴 is finite, then ‖𝐴‖ is finite.
Proof. We start by assuming that 𝐴 is finite and determine if its cardinality 𝑛 equals zero.
Regardless of the outcome, we can obtain an equivalence, 𝐴 ≃ J𝑛K, from applying the
propositional truncation elimination to the proposition ‖𝐴‖ is finite. We therefore can
establish an equivalence between ‖𝐴‖ and either 0 or 1, depending on whether 𝑛 equals
zero. In both cases, these are finite types. Therefore, applying Lemma 2.13, we conclude
that ‖𝐴‖ is finite. □

As the very first examples of finite sets, we have the empty type, unit type, decid-
able propositions, and the family of standard finite types J𝑛K. To prove the finiteness of
other types, as in Theorem 5.26, we use Corollary 2.15, a direct consequence of Hedberg’s
theorem and the finiteness of the empty and unit type.
Corollary 2.15. If 𝐴 is a discrete set, then the identity type 𝑥 = 𝑦 is a finite set for all
𝑥, 𝑦 ∶ 𝐴.
Lemma 2.16. If 𝐴 is finite, then the identity type 𝑥 = 𝑦 is finite for all 𝑥, 𝑦 ∶ 𝐴.
Lemma 2.17. Let 𝑌 be a finite type, then the following type is finite.

∑
(𝑋 ∶ U)

(isFinite(𝑋) × ∑
(𝑓 ∶ 𝑋→𝑌)

isInjective(𝑓)) , (2.4–20)

where

isInjective(𝑓) ∶≡ ∏
(𝑥,𝑦 ∶ 𝑋)

𝑓 (𝑥) = 𝑓 (𝑦) → 𝑥 = 𝑦. (2.4–21)

Lemma 2.18. If there is an injective function from set 𝐴 to set 𝐵, and both 𝐴 and 𝐵 are finite,
then the number of elements in 𝐴 is less than or equal to the number of elements in 𝐵.
Corollary 2.19. Let 𝑛 ∶ N. The following type is finite.

∑
(𝑋 ∶ U)

∑
((#𝑋 ,!)∶isFinite(𝑋))

#𝑋 ≤ 𝑛. (2.4–22)

http://hott.github.io/HoTT/coqdoc-html/HoTT.Spaces.Finite.Finite.html

42 Mathematical Foundations

We will now introduce cyclic types, which will be used later to characterise graphs
embedded in a surface combinatorially in Definition 4.8.

2.5 Cyclic types

We want to define a notion of cyclic type to capture the idea of a finite type together
with a permutation within orbiting freely over the whole type. To do so, we use the pred
function which generates a cyclic subgroup (of order 𝑛) of the group of permutations onJ𝑛K. An equivalent cyclic subgroup can be defined by means of the suc function, where
the function suc is the inverse of pred.

Definition 2.20. Let pred be a function from J𝑛 + 1K to itself defined by induction on 𝑛 and
the following equations. If 𝑛 = 0, then pred is the trivial function. If 𝑛 > 0, then,

pred ∶ J𝑛 + 1K → J𝑛 + 1K.
pred((0, !)) ∶≡ (𝑛, 𝑝).
pred((𝑚 + 1, 𝑞)) ∶≡ (𝑚, 𝑟).

Where 𝑝 is a proof that 𝑛 < 𝑛 + 1 and 𝑟 is a proof that 𝑚 < 𝑛 + 1 using 𝑞, which is a proof
that 𝑚 + 1 < 𝑛 + 1.
Definition 2.21. Cyclic(𝐴) defines the type of cyclic structures on type 𝐴.

Cyclic(𝐴) ∶≡ ∑
(𝜑 ∶ 𝐴→𝐴)

∑
(𝑛 ∶ N)

‖ ∑
(𝑒 ∶ 𝐴≃ J𝑛K)(𝑒 ∘ 𝜑 = pred ∘ 𝑒) ‖ . (2.5–23)

Notice that the type Cyclic(𝐴) mirrors the structure of J𝑛K given by pred for any finite
type 𝐴 along with an endomap 𝜑 ∶ 𝐴 → 𝐴. This is reflected in (2.5–23) by establishing a
structure-preserving map between (𝐴, 𝜑) and (J𝑛K, pred). Therefore, a type 𝐴 with cyclic
structure is a triple such as ⟨𝐴, 𝑓 , 𝑛⟩ where (𝑓 , 𝑛, -) ∶ Cyclic(𝐴). Given such a triple, we
refer to 𝐴 as an 𝑛-cyclic type and 𝑓 as the corresponding cyclic function. As a notation, if
𝑝 ∶ Cyclic(𝐴) and 𝑥 ∶ 𝐴, then 𝑝(𝑥) is the image of 𝑥 under the cyclic function 𝑓 .
Lemma 2.22. Let 𝑃 be a family of propositions of type Π𝑋∶U(𝑋 → 𝑋) → hProp and an
𝑛-cyclic structure ⟨𝐴, 𝑓 , 𝑛⟩. If 𝑃(J𝑛K, pred), then 𝑃(𝐴, 𝑓).

Proof. It follows from Lemma 2.8. Note that being cyclic for a type is equivalent to saying
(𝐴, 𝑓) and (J𝑛K, pred) are connected in Σ𝑋∶U(𝑋 → 𝑋). □

Lemma 2.23. Let 𝑃 be a family of propositions of type U → hProp and an 𝑛-cyclic structure
⟨𝐴, 𝑓 , 𝑛⟩. If 𝑃(J𝑛K), then 𝑃(𝐴).

Proof. Given an 𝑛-cyclic structure ⟨𝐴, 𝑓 , 𝑛⟩, we have a certain 𝑝 such that

2.5 Cyclic types 43

𝑝 ∶ ‖ ∑
(𝑒∶𝐴≃J𝑛K)(𝑒 ∘ 𝑓 = pred ∘ 𝑒)‖ .

Our objective is to apply propositional truncation elimination on the proposition 𝑃(J𝑛K)
to derive 𝑃(𝐴). To achieve this, we need to construct a term of type 𝑃(𝐴) from a pair (𝑒, !),
where 𝑒 ∶ 𝐴 ≃ J𝑛K and ! ∶ 𝑒 ∘ 𝑓 = pred ∘ 𝑒. The conclusion follows from the fact that
equivalences preserve propositions (Lemma 2.13), applied to 𝑒 and using the predicate 𝑃
on J𝑛K. □

Lemma 2.24. Let 𝐴 be a type. If Cyclic(𝐴) is inhabited, then 𝐴 is a finite set.

Proof. This follows from Lemma 2.23 and the property that the standard finite type J𝑛K is
a finite set. □

In particular, given an 𝑛-cyclic type ⟨𝐴, 𝑓 , 𝑛⟩, one can search any element by iterating
the function 𝑓 on any other element at most 𝑛 times.
Lemma 2.25. If 𝐴 is an 𝑛-cyclic type, then for every 𝑎 and 𝑏 in 𝐴, there exists a unique
number 𝑘 with 𝑘 < 𝑛 such that pred𝑘𝐴(𝑎) = 𝑏.

The total type, Σ𝐴∶UCyclic(𝐴), is the classifying type [BBC+22, §4.6-7] of finite cyclic
groups. Let us now compute the identity type between two finite cyclic types that we
use, for example, in Example 4.32 to enumerate the maps of the bouquet graph 𝐵2.
Lemma 2.26. Given two cyclic types, A and B, defined by ⟨𝐴, 𝑓 , 𝑛⟩ and ⟨𝐵, 𝑔, 𝑚⟩, respectively,
the identity type between them is given by the following equivalence:

(A = B) ≃ ∑(𝛼 ∶ 𝐴 = 𝐵) (coe (𝛼) ∘ 𝑓 = 𝑔 ∘ coe (𝛼)).
𝐴 𝐵

𝐴 𝐵
𝑓

coe(𝛼)

𝑔

coe(𝛼)

Proof. We show the equivalence by Calculation (2.5–24). In Equivalence (2.5–24b), we ex-
pand the definition of the type of cycle for A and B. The numbers 𝑛 and 𝑚 are the cardi-
nalities of the types 𝐴 and 𝐵, respectively, and 𝑝 and 𝑞, are propositions of the truncation
appearing in the type in (2.5–23). Equivalence (2.5–24c) follows from the characterisa-
tion of the identity type between pairs in a Σ-type [Uni13, §3.7]. In Equivalence (2.5–24c),
we have the product of two propositions, the identity types, 𝑛 = 𝑚 and 𝑝 = 𝑞. These two
types are, in fact, contractible, therefore, equivalent to the one-point type. The numbers
𝑛 and 𝑚 are equal because 𝐴 and 𝐵 are finite and equal by 𝛼 , and 𝑝 and 𝑞 are equal be-
cause truncation of any type is also a proposition. We can then simplify the inner Σ-type
to its base in Equivalence (2.5–24d) to obtain by the equivalence Σ𝑥∶𝐴1 ≃ 𝐴, Equiva-
lence (2.5–24e).

44 Mathematical Foundations

(A = B) ≡ (2.5–24a)
((𝐴, (𝑓 , 𝑛, 𝑝)) = (𝐵, (𝑔, 𝑚, 𝑞))) ≃ (2.5–24b)

∑
(𝛼 ∶ 𝐴 = 𝐵)

∑
(𝛽 ∶ tr 𝜆𝑋 .𝑋→𝑋 (𝛼,𝑓) = 𝑔)

(𝑛 = 𝑚) × (𝑝 = 𝑞) ≃ (2.5–24c)

∑
(𝛼 ∶ 𝐴 = 𝐵)

∑
(𝛽 ∶ tr 𝜆𝑋 .𝑋→𝑋 (𝛼,𝑓) = 𝑔)

1 ≃ (2.5–24d)

∑
(𝛼 ∶ 𝐴 = 𝐵)

tr 𝜆𝑋 .𝑋→𝑋 (𝛼, 𝑓) = 𝑔 ≃ (2.5–24e)

∑
(𝛼 ∶ 𝐴 = 𝐵)

coe (𝛼) ∘ 𝑓 = 𝑔 ∘ coe (𝛼) . (2.5–24f)

Finally, Equivalence (2.5–24f) is a consequence of transporting functions along the equal-
ity 𝛼 . The conclusion is that the identity type A = B is equivalent to the type of equalities
between 𝐴 and 𝐵 along with a proof that the structure of 𝑓 is preserved in the structure
of 𝑔. □

Lemma 2.27. For any finite type 𝐴, Cyclic(𝐴) is a finite set.

Proof. We unfold the definition of Cyclic(𝐴) to obtain the type

∑
(𝜑 ∶ 𝐴→𝐴)

∑
(𝑛 ∶ N)

‖ 𝑃(𝐴, 𝑛) ‖

where
𝑃(𝐴, 𝑛) ∶≡ ∑

(𝑒∶𝐴≃ J𝑛K)(𝑒 ∘ 𝜑 = pred ∘ 𝑒).

Given the finiteness of type 𝐴, it follows that 𝐴 → 𝐴 is finite. We now aim to show
that Σ𝑛∶N‖𝑃(𝐴, 𝑛)‖ is finite. We can show this by establishing the equivalence

∑
(𝑛∶N)

‖𝑃(𝐴, 𝑛)‖ ≃ ‖𝑃(𝐴, #𝐴)‖ (2.5–25)

and demonstrating that the type 𝑃(𝐴, #𝐴) is finite. Once established, we can conclude
that the equivalence preserves the finiteness of the type ‖𝑃(𝐴, #𝐴)‖, by the closure prop-
erty of finite types under Σ-types and propositional truncation.

To establish the equivalence in (2.5–25), as both types are propositions, we only need to
construct two functions 𝑓 and 𝑔 as follows using the propositional truncation elimination
principle,

2.5 Cyclic types 45

𝑓 ∶ ∑(𝑛∶N) ‖𝑃(𝐴, 𝑛)‖ → ‖𝑃(𝐴, #𝐴)‖.
𝑓 ((𝑛, |𝑝|)) ∶≡ |𝑝|.
𝑔 ∶ ‖𝑃(𝐴, #𝐴)‖ → ∑(𝑛∶N) ‖𝑃(𝐴, 𝑛)‖.
𝑔(|𝑟 |) ∶≡ (#𝐴, |𝑟 |).

The Σ-type, 𝑃(𝐴, #𝐴), is finite given that the base type is an equivalence between two
finite types, 𝐴 and J#𝐴K, and each fibre is an identity type over a finite type, which is
finite. This leads us to conclude that the type Σ𝑛∶N‖𝑃(𝐴, 𝑛)‖ is finite, thereby implying
that Cyclic(𝐴) is finite. □

46 Mathematical Foundations

3
Graphs in Univalent Mathematics

���� ��
�

�� �

�

�

����

����

Graphs are a fundamental mathematical concept that has found widespread appli-
cations in various fields, including mathematics and computer science. They are used
to modelling relationships between objects or entities, making them a versatile tool for
analysing complex systems. However, the definition of a graph can vary depending on
the context in which it is used. The choice of a specific notion of a graph in a given con-
text depends on the application, such as power graphs in computational biology, quivers
in category theory, and networks in network theory. In some settings, graphs are undi-
rected, while in others, they are directed. Additionally, the inclusion of self-edges may be
allowed or prohibited. In this chapter, we define the notion of graphs in type theory that
we consider in this thesis. Additionally, we briefly present concepts such as the homo-
morphism between graphs, finite graphs, and cyclic graphs, among others. The following
chapters will use these concepts unless otherwise stated.

3.1 The type of graphs

The objective of this thesis is to present a thorough characterisation of graph planarity.
In pursuit of this objective, we employ a broader set-level concept of graphs that encom-
passes directed multigraphs, including those with self-edges, in contrast to the conven-

48 Graphs in Univalent Mathematics

tional practise of working solely with undirected graphs. The decision to adopt a set-level
structure for this type of graph is informed by the observation that the objects and re-
lations studied in the graph theory literature typically involve sets. Nevertheless, this
constraint can be readily relaxed for other applications, as seen in Appendix B.

Definition 3.1. A graph is an object of type Graph. The corresponding data of a graph is a
set 𝑁 , elements of which we call points/vertices/nodes. Additionally, for every pair of nodes
𝑎 and 𝑏, there is a family of sets 𝐸, each of which corresponds to the edges connecting 𝑎 and
𝑏. The elements of these sets are referred to as edges.

Graph ∶≡ ∑
(N ∶ U)

∑
(E ∶ N→N→U)

isSet(N) × ∏
(𝑥,𝑦 ∶ N)

isSet(E(𝑥, 𝑦)).

Given a graph 𝐺, for brevity, the set of nodes and the family of edges are denoted by
N𝐺 and E𝐺 , respectively. In this way, the graph 𝐺 is defined as (N𝐺 , E𝐺 , (𝑝𝐺 , 𝑞𝐺)) where
𝑝𝐺 ∶ isSet(N𝐺) and 𝑞𝐺 ∶ ∏𝑥,𝑦∶N𝐺 isSet(E𝐺(𝑥, 𝑦)). We may refer to 𝐺 only as the pair
(N𝐺 , E𝐺), unless we require showing the remaining data, the propositions 𝑝𝐺 and 𝑞𝐺 . For
example, we define the empty graph and the unit graph, respectively, as (0, 𝜆 𝑢 𝑣 .0) and
(1, 𝜆 𝑢 𝑣 .0). We will use variables 𝐺 and 𝐻 as graphs, and variables 𝑥 , 𝑦 , and 𝑧 as nodes in
𝐺, unless otherwise specified.

Definition 3.2. A graph homomorphism from 𝐺 to 𝐻 is a pair of functions (𝛼, 𝛽) such that
𝛼 ∶ N𝐺 → N𝐻 and 𝛽 ∶ ∏𝑥,𝑦∶N𝐺 E𝐺(𝑥, 𝑦) → E𝐻 (𝛼(𝑥), 𝛼(𝑦)). We denote by Hom(𝐺, 𝐻) the
type of these pairs.

���� ��
�

�� �

�

�

����

����
We denote by id𝐺 , for any graph 𝐺, the identity graph homomorphism where the

corresponding 𝛼 and 𝛽(𝑥, 𝑦) are the corresponding identity functions.

Lemma 3.3. The type Hom(𝐺, 𝐻) forms a set.

Proof. Since sets are closed under Π- and Σ-types, and given that both N𝐺 → N𝐻 and
∏𝑥,𝑦∶N𝐺 E𝐺(𝑥, 𝑦) → E𝐻 (𝛼(𝑥), 𝛼(𝑦)) are function types with set codomains, it follows
that Hom(𝐺, 𝐻), being comprised of these types, is a set. □

3.2 The category of graphs 49

3.2 The category of graphs

Graphs as objects and graph homomorphisms as the corresponding arrows form a small
pre-category. In fact, the type of graphs is a small univalent category in the sense of the
HoTT Book [Uni13, §9.1]. This fact follows from Theorem 3.6 and, morally, because the
Graph type is a set-level structure.

In a (pre-) category, an isomorphism is a morphism which has an inverse. In the
particular case of graphs, this can be formulated in terms of the underlying maps being
equivalences.
Lemma 3.4. Let ℎ be a graph homomorphism given by the pair-function (𝛼, 𝛽). The claim
ℎ is an isomorphism, denoted by isIso(ℎ), is a proposition equivalent to stating that the
functions 𝛼 and 𝛽(𝑥, 𝑦) for all 𝑥, 𝑦 ∶ N𝐺 , are all bijections.

isIso(ℎ) ∶≡ isEquiv(𝛼) × ∏
(𝑥,𝑦∶N𝐺)

isEquiv(𝛽(𝑥, 𝑦)).

The type of all isomorphisms between 𝐺 and 𝐻 is denoted by 𝐺 ≅ 𝐻 and defined as

𝐺 ≅ 𝐻 ∶≡ ∑
(ℎ∶Hom(𝐺,𝐻))

isIso(ℎ) (3.2–1)

or equivalently, as the following type,

∑
(𝛼∶N𝐺≃N𝐻)

∏
(𝑥,𝑦∶N𝐺)

E𝐺(𝑥, 𝑦) ≃ E𝐻 (𝛼(𝑥), 𝛼(𝑦)).

If the type 𝐺 ≅ 𝐻 is inhabited, it is said that 𝐺 and 𝐻 are isomorphic.
Lemma 3.5. The type 𝐺 ≅ 𝐻 forms a set.

Proof. Given 𝐺 ≅ 𝐻 as a subtype of Hom(𝐺, 𝐻), and by Lemma 3.3 asserting that
Hom(𝐺, 𝐻) is a set, it immediately follows from (3.2–1) that 𝐺 ≅ 𝐻 inherits the set struc-
ture. □

We define a type to compare the sameness in graphs in Lemma 3.4; the type of graph
isomorphisms. In HoTT, the identity type (=) serves the same purpose, and one expects
the two notions to coincide [CD13]. In Theorem 3.6, we prove that they are, in fact,
homotopy equivalent. The same correspondence for graphs also arises for many other
structures, for example, groups and topological spaces [AN19; ANST20].
Theorem 3.6 (Equivalence principle). The canonical map

idtoiso ∶ (𝐺 = 𝐻) → (𝐺 ≅ 𝐻)

50 Graphs in Univalent Mathematics

is an equivalence and its inverse function is denoted by isotoid.

Proof. It is sufficient to show that (𝐺 = 𝐻) ≃ (𝐺 ≅ 𝐻). Remember that being an equiva-
lence for a function constitutes a proposition. We consider the following type families to
shorten the presentation.

▷ 𝐹1(𝑋) ∶≡ 𝑋 → 𝑋 → U and

▷ 𝐹2(𝑋 , 𝑅) ∶≡ Π𝑥,𝑦∶𝑋 isSet(𝑅(𝑥, 𝑦)) where 𝑅 is of type 𝐹1(𝑋).

The required equivalence follows from Calculation (3.2–2).

(𝐺 = 𝐻) ≡ (3.2–2a)
((N𝐺 , E𝐺 , (𝑝𝐺 , 𝑞𝐺)) = (N𝐻 , E𝐻 , (𝑠𝐻 , 𝑡𝐻))) ≃ (3.2–2b)

∑
(𝛼∶N𝐺=N𝐻)

∑
(𝛽∶tr𝐹1(𝛼,E𝐺)=E𝐻)

(trisSet(𝛼, 𝑝𝐺) = 𝑠𝐻) × (tr2𝐹2(𝛼, 𝛽, 𝑞𝐺) = 𝑡𝐻) ≃ (3.2–2c)

∑
(𝛼∶N𝐺=N𝐻)

∑
(𝛽∶tr𝐹1(𝛼,E𝐺)=E𝐻)

1 × 1 ≃ (3.2–2d)

∑
(𝛼∶N𝐺=N𝐻)

tr𝐹1(𝛼, E𝐺) = E𝐻 ≃ (3.2–2e)

∑
(𝛼∶N𝐺=N𝐻)

∏
(𝑥,𝑦∶N𝐺)

E𝐺(𝑥, 𝑦) = E𝐻 (coe(𝛼)(𝑥), coe(𝛼)(𝑦)) ≃ (3.2–2f)

∑
(𝛼∶N𝐺≃N𝐻)

∏
(𝑥,𝑦∶N𝐺)

E𝐺(𝑥, 𝑦) ≃ E𝐻 (𝛼(𝑥), 𝛼(𝑦)) ≃ (3.2–2g)

(𝐺 ≅ 𝐻). (3.2–2h)

We first unfold definitions in (3.2–2b). The equivalence in (3.2–2c) follows from the char-
acterisation of the identity type between pairs in a Σ-type (Lemma 3.7 in HoTT book).
The equivalence in (3.2–2d) stems from the fact that being a set is a mere proposition
and, thus, equations between proofs of such are contractible, similarly as in (2.26). To
get (3.2–2f), we apply function extensionality twice in the inner equality in (3.2–2e). By
the Univalence axiom, we replace in (3.2–2g) equalities by equivalences. Finally, (3.2–2h)
follows from (3.4) completing the calculation from which the conclusion follows. □

Lemma 3.7. The type of graphs is a groupoid.

Proof. Consider graphs 𝐺 and 𝐻 . We want to show that the identity type 𝐺 = 𝐻 is a set,
for which we apply Theorem 3.6. This yields an equivalence between the type 𝐺 = 𝐻
and the set of isomorphisms 𝐺 ≅ 𝐻 (refer to Lemma 3.5). Since equivalences preserve set
structures, it follows that 𝐺 = 𝐻 is indeed a set. □

3.3 Subtypes and structures on graphs 51

3.3 Subtypes and structures on graphs

In graph theory, graphs are often classified according to their structure in different graph
classes. This can be mirrored in type theory by considering type families over the type
Graph. These type families result in a subtype of graphs if they are propositions; other-
wise, they might provide a structure on graphs.

A notable example of such a structure is our characterisation of planar graphs. We
define a type family Planar over Graph and establish that Planar(𝐺) is a set, not a propo-
sition, for any graph 𝐺. More details can be found in Chapter 6.

Here are some informal examples of graph subtypes that one can define in type theory.

▷ Simple graphs: The edge relation is propositional.

▷ Undirected graphs: The edge relation is symmetric.

▷ Connected graphs: A walk exists between any two nodes.

▷ Complete graphs: Each node is connected to every other node by an edge.

▷ Trees: These are connected graphs without cycles (refer to Appendix B).

▷ Regular graphs: Each node has the same number of connected edges.

▷ Bipartite graphs: Nodes can be split into two disjoint sets with all edges connecting
a node in one set to a node in the other.

Now, since any construction in HoTT respects the structure of its constituents, graph
subtypes are invariant under graph isomorphisms. Specifically, given a graph isomor-
phism, we can transport any property on graphs along the equality obtained by Theo-
rem 3.6. Equivalence induction, a related principle, is discussed in [Esc19, §3.15].
Lemma 3.8 (Leibniz principle). Isomorphic graphs hold the same properties.

Lemma 3.9 (Equivalence induction). Given a graph 𝐺 and a family of properties 𝑃 of type
Σ𝐻∶Graph(𝐺 ≅ 𝐻) → hProp, if the property 𝑃(𝐺, id𝐺) holds then the property also holds for
any graph 𝐻 isomorphic to 𝐺, i.e., 𝑃(𝐻 , 𝜑) holds for all 𝜑 ∶ 𝐺 ≅ 𝐻 .

Lastly, of importance for this work is the subtype of connected finite graphs. We will
assume any graph in the remaining of this document, as connected and finite, unless
stated otherwise.

3.4 Finite graphs

A graph is finite if its node set and each edge set are finite sets, as stated in Definition 3.10.
Like finite types, a finite graph has an associated cardinal number for the count of nodes
and edges. Hence, we can demonstrate that equality is decidable on both the node set
and each edge set for finite graphs.

52 Graphs in Univalent Mathematics

Definition 3.10. Agraph𝐺 is said to be finitewhen the following proposition isFiniteGraph(𝐺)
holds.

isFiniteGraph(𝐺) ∶≡ isFinite(N𝐺) × isFinite(∑
(𝑥,𝑦 ∶ N𝐺)

E𝐺(𝑥, 𝑦)) .

For a finite graph 𝐺, the cardinality of the node set and edge set are represented as #N𝐺 and
#E𝐺 respectively.

3.5 Walks and strongly connected graphs

A graph 𝐺 is considered to be strongly connected or (connected for short) when for any
pair of nodes 𝑥 and 𝑦 , there is a walk from 𝑥 to 𝑦 in 𝐺. Intuitively, a walk in a graph is a
sequence of edges that forms a chain; of the type stated in Definition 3.11.

Definition 3.11. A walk in 𝐺 from 𝑥 to 𝑦 is a sequence of connected edges that we construct
using the following inductive data type:

data W ∶ N𝐺 → N𝐺 → U

⟨_⟩ ∶ (𝑥 ∶ N𝐺) → W𝐺(𝑥, 𝑥)
(_⊙_) ∶ Π {𝑥 𝑦 𝑧 ∶ N𝐺} . (𝑒 ∶ E𝐺(𝑥, 𝑦))

→ (𝑤 ∶ W𝐺(𝑦 , 𝑧))
→ W𝐺(𝑥, 𝑧)

Let 𝑤 be a walk from 𝑥 to 𝑦 , i.e., of typeW𝐺(𝑥, 𝑦). We will denote by 𝑥 the head of 𝑤 and
by 𝑦 the end of 𝑤 . If 𝑤 is ⟨𝑥⟩ then we refer to 𝑤 as trivial or one-point walk. If 𝑤 is of the
form (𝑒 ⊙ ⟨𝑥⟩), then 𝑤 is the one-edge walk 𝑒. Non-trivial walks are of the form, (𝑒 ⊙𝑤) and
a loop is a walk with the same head and end. An equivalent notion of walk is path, which
we hinted in Section 3.6.

Definition 3.12. A graph 𝐺 is said to be connected when the proposition Connected(𝐺)
holds.

Connected(𝐺) ∶≡ ∏
(𝑥,𝑦 ∶ N𝐺)

‖𝑊𝐺(𝑥, 𝑦)‖.

3.6 Graph families

Let us define a few graph families indexed by the type of natural numbers.

Definition 3.13. The path graph with 𝑛 nodes is the non-connected graph 𝑃𝑛, defined as

𝑃𝑛 ∶≡ (J𝑛K, 𝜆 𝑢 𝑣 .toNat(𝑢) + 1 = toNat(𝑣)),

3.6 Graph families 53

where
toNat ∶ J𝑛K → N.
toNat(𝑘, !) ∶≡ 𝑘.

The length of path graph 𝑃𝑛 is defined as the number of edges in 𝑃𝑛. Graphs 𝑃0 and 𝑃1 have
zero length, 𝑃2 has one edge. Hence, for 𝑛 > 0, 𝑃𝑛 has length 𝑛 − 1.

𝑃0 ∶ ∅

𝑃1 ∶ •

𝑃2 ∶ • •

𝑃3 ∶ • • •

𝑃𝑛+1 ∶ • • ⋯ •
Figure 3.1: The path graph 𝑃𝑛 for 𝑛 = 0, 1, ⋯ ,

Remark 3.14. The path graph definition allows us to alternatively define graph walks.
Specifically, a walk in a connected graph 𝐺 of length 𝑛 between nodes 𝑎 and 𝑏 can be
defined as a graph homomorphism from 𝑃𝑛+1 to 𝐺 for 𝑛 ≥ 0. This homomorphism maps
node 0 to 𝑎 and 𝑛 to 𝑏. A trivial walk is a graph homomorphism from 𝑃1 to 𝐺, selecting
only one node 𝑎 in 𝐺. If 𝑎 equals 𝑏, the walk is closed. Closed walks, also known as cycles,
are introduced using an alternative definition in Definition 3.18 that reflects cyclic types.

Definition 3.15. An 𝑛-cycle graph denoted by 𝐶𝑛 is a graph with 𝑛 edges defined as

𝐶𝑛 ∶≡ (J𝑛K, 𝜆 𝑢 𝑣 .𝑢 = pred(𝑣)),

when 𝑛 ≥ 1. Otherwise, 𝐶0 is the one-point graph without edges. The function pred is defined
in Definition 2.20. Similar to path graphs, the length of an 𝑛-cycle graph is 𝑛.

C1 C2 C3 C4 C5C0

Figure 3.2: The 𝑛-cycle graph 𝐶𝑛 for 𝑛 = 0,⋯ , 5.

54 Graphs in Univalent Mathematics

In the treatment of embeddings of graphs on surfaces, we found that bouquet graphs,
besides their simple structure, have nontrivial embeddings, see Section 4.5.

Definition 3.16. The family of bouquet graphs 𝐵𝑛, given by

𝐵𝑛 ∶≡ (1, 𝜆 𝑢 𝑣 .J𝑛K),
consists of graphs obtained by considering a single point with 𝑛 self-loops.

B2 B3 B4 B5B1

Figure 3.3: The bouquet graph 𝐵𝑛 for 𝑛 = 1,⋯ , 5.

Definition 3.17. A graph of 𝑛 nodes is called complete when every pair of distinct nodes is
joined by an edge. The complete standard graph with node set J𝑛K is denoted by 𝐾𝑛.

𝐾𝑛 ∶≡ (J𝑛K, 𝜆 𝑢 𝑣 .𝑢 ≠ 𝑣).

K3 K4 K5K2K1

Figure 3.4: The complete graph 𝐾𝑛 for 𝑛 = 1,⋯ , 5.

For brevity, we will use a double arrow in the pictures from now on to denote a pair
of edges of opposite directions.

3.7 Cyclic graphs

Similarly, as for cyclic types, we introduce a type of graphs with a cyclic structure. A
graph is cyclic when it is in the connected component of an 𝑛-cycle graph in the Graph
type.

𝑛 − 1 0 1

𝑖 𝑖 − 1
rot𝑛−𝑖−1

rot rot

rot

rot𝑖−2

3.8 The identity type on graphs 55

Let us consider the homomorphism rot ∶ Hom(𝐶𝑛, 𝐶𝑛) that acts similarly as the func-
tion pred in Definition 2.21. The homomorphism rot is an isomorphism on 𝐶𝑛, and then
we can iterate it 𝑘 times to obtain the isomorphism denoted by rot𝑘 . Any of these iso-
morphisms can be used to define what it means for a graph to be cyclic.

In particular, the cyclic structure for graphs can be defined as the property of pre-
serving the structure in 𝐶𝑛 induced by the morphism rot. We will make use of the same
notation as for cyclic sets to refer to cyclic graphs.

Definition 3.18. A graph 𝐺 is considered to be cyclic if the type

CyclicGraph(𝐺) ∶≡ ∑
(𝜑 ∶ Hom(𝐺,𝐺))

∑
(𝑛 ∶ N)

isCyclic(𝐺, 𝜑, 𝑛),

is inhabited, where
isCyclic(𝐺, 𝜑, 𝑛) ∶≡ ‖(𝐺, 𝜑) = (𝐶𝑛, rot)‖.

3.8 The identity type on graphs

For any element, 𝑥 of a groupoid type, 𝑋 , the type Aut𝑋 (𝑥) ∶≡ (𝑥 = 𝑥) has a group
structure given by reflexivity, symmetry, and path composition. Applying this definition
to the groupoid of graphs, the equivalence principle of Theorem 3.6 gives that for any
graph 𝐺, we identify Aut(𝐺) with its automorphisms, 𝐺 ≅ 𝐺. This allows us to compute
Aut(𝐺) ∶≡ 𝐺 ≅ 𝐺 in the examples which follow.

1. Aut(𝐵2) is the group of two elements. With only two edges in 𝐵2 and one node, we
can only have, besides the identity function, the function that swaps the two edges.
In general, the identity type 𝐵𝑛 = 𝐵𝑛 is equivalent to the group 𝑆𝑛, the group which
contains the permutations of 𝑛 elements.

2. Any isomorphism inAut(𝐶𝑛) is completely determined by how it acts on a fixed node
in 𝐶𝑛, stated in the following lemma.

Lemma 3.19. Let 𝑛 ∶ N. If 𝑛 > 0, then there exists an equivalence between the type Aut(𝐶𝑛)
and the type J𝑛K.
Proof. The result follows from considering the isomorphism rot as introduced in Defini-
tion 3.18 and the isomorphisms rot𝑘 for 𝑘 < 𝑛. The equivalence between the type J𝑛K and
the collection of isomorphisms 𝐶𝑛 ≅ 𝐶𝑛 is then given by the following function 𝑓 and its
inverse 𝑔.

𝑓 ∶ J𝑛K → (𝐶𝑛 ≅ 𝐶𝑛). 𝑔 ∶ (𝐶𝑛 ≅ 𝐶𝑛) → J𝑛K.
𝑓 ((𝑘, !)) ∶≡ (rot𝑘 , 𝑝). 𝑔((ℎ, !)) ∶≡ (𝑟 , 𝑠).

56 Graphs in Univalent Mathematics

The term 𝑝 used to define 𝑓 is the proof that rot𝑘 is an isomorphism. The term 𝑟 is the
solution to the equation rot𝑟 = ℎ, and 𝑠 is the proof that 𝑟 < 𝑛. Now, since J𝑛K is a set, we
obtain a homotopy 𝑔 ∘ 𝑓 ∼ idJ𝑛K. The other homotopy condition, that is, 𝑓 ∘ 𝑔 ∼ id(𝐶𝑛≅𝐶𝑛),
can be derived from the intermediate result stating that if rot𝑝 = rot𝑞 and 𝑝, 𝑞 < 𝑛, then
𝑝 = 𝑞. The elaboration of this proof is given in Example A.2. □

From the previous lemma, we could also show that as a group, Aut(𝐶𝑛) is isomorphic
to the cyclic group of order 𝑛. However, this is not used in this work.

The family of graphs 𝐶𝑛 is presented intentionally, serving as a crucial component
in defining a combinatorial map’s face, referenced in Section 4.4. The previous lemma
contributes to the proof that any graph’s combinatorial map face type is a set, further
detailed in Lemma 4.18.

4
Graph Maps

��
� �

In this chapter, we explore the use of graph maps as an alternative approach to directly
working with surfaces on which graphs are embedded. Our aim is to characterise graphs
with no edge-crossing in the two-dimensional plane without needing to represent the
surface explicitly. This is motivated by the fact that the concept of surface is not well-
defined in HoTT, and working with the real numbers can be laborious.

To avoid the complexities associated with the explicit notion of the surface in type
theory, we focus on representing the drawings of graphs in a more abstract way, which
is defining the type of graph maps, also called cellular embeddings, using their combina-
torial characterisation [Sta78]. By leveraging the power of combinatorial representation
of graph maps, we provide a more comprehensive framework for analysing graph pla-
narity, rather than focusing exclusively on the geometric properties and how two-edges
cross in the plane, which can be more challenging to study.

4.1 Symmetrisation of graphs

Here we introduce the symmetrisation construction which allows us to establish two
key concepts related to graph maps, stars, and faces. The symmetrisation of a graph 𝐺,
denoted by Sym(𝐺), is one solution used here to encode how the edges are oriented in a
graph map. This construction is similar to the concept of half-edges for signed rotation

58 Graph Maps

maps in the literature of embedded undirected graphs [EM13, §1.1.8].

Definition 4.1. The symmetrisation of a graph 𝐺 is the graph Sym(𝐺) defined as follows.

Sym ∶ Graph → Graph.
Sym (𝐺) ∶≡ (N𝐺 , 𝜆𝑥𝑦.E𝐺(𝑥, 𝑦) + E𝐺(𝑦 , 𝑥), 𝑝𝐺 , 𝑟 (𝑞𝐺)),

where 𝑟 is a proof that the coproduct E𝐺(𝑥, 𝑦) + E𝐺(𝑦 , 𝑥) is a set using 𝑞𝐺 as a proof that
E𝐺(𝑥, 𝑦) is a set for all 𝑥, 𝑦 ∶ N𝐺 .

Every edge 𝑎 ∶ E𝐺(𝑥, 𝑦) in 𝐺 induces two edges in Sym(𝐺). The first is inl(𝑎) keeping
the same direction as 𝑎. This edge is denoted by ⃖⃖𝑎 for short. The second is inr(𝑎), which
goes in the opposite direction of 𝑎. This edge is denoted by ⃖⃗𝑎 for short. Since the nodes
of Sym(𝐺) are the same as the nodes of 𝐺, we will use the same notation for the nodes of
both graphs. The following is an immediate consequence of the induced edges in Sym(𝐺)
by the edges in 𝐺.
Lemma 4.2. Consider a graph 𝐺. For every walk 𝑤 in 𝐺, we can induce a corresponding walk
in the symmetrisation Sym(𝐺), denoted by sym(𝑤).
Proof. The function sym generates the induced walk in Sym(𝐺) from a walk 𝑤 in 𝐺.

sym ∶ ∏
(𝑥,𝑦∶N𝐺)

W𝐺(𝑥, 𝑦) → WSym(𝐺)(𝑥, 𝑦).

sym(𝑥, _, ⟨𝑥⟩) ∶≡ ⟨𝑥⟩.
sym(𝑥, 𝑦 , 𝑒 ⊙ 𝑤) ∶≡ inl(𝑒) ⊙ sym(_, 𝑦 , 𝑤). □

Lemma 4.3. The Sym operation on a graph 𝐺 preserves the following properties:

▷ connectedness of 𝐺 and

▷ finiteness of 𝐺.
Proof. Let us begin by proving the first property. Assume that 𝐺 is connected, and our
objective is to show that Sym(𝐺) is also connected. This can be established by showing
the existence of a function of type

‖ ∏
(𝑥,𝑦∶N𝐺)

W𝐺(𝑥, 𝑦)‖ → ‖ ∏
(𝑥,𝑦∶NSym(𝐺))

WSym(𝐺)(𝑥, 𝑦)‖ .

Since the fact that 𝐺 is connected is a proposition, we can construct such a function
using the elimination rule for propositional truncation and the function sym defined in
Lemma 4.2 when applied to a walk in 𝐺. In general, for 𝐴 and 𝐵 types, a function of type
𝐴 → 𝐵 can be lifted ‖𝐴‖ → ‖𝐵‖ by similar reasoning.

4.2 Stars and locally finite graphs 59

On the other hand, to prove that Sym(𝐺) is finite when 𝐺 is finite, we only need to
consider the family of edges in Sym(𝐺). This family consists of finite coproducts, as it is
the coproduct of two finite sets. Furthermore, the set of nodes in Sym(𝐺) is identical to
the set of nodes in 𝐺, which is finite by assumption. □

G

x

a

b Sym(G)

←−a

←−
b

−→a

−→
b

y

z

x

y

z

Figure 4.1: On the left we show a part of a graph 𝐺 with two distinguished edges, 𝑎 and
𝑏. On the right we show the corresponding symmetrisation, Sym(𝐺), including the two
edges, ⃖⃖𝑎 and ⃖⃗𝑎 induced by 𝑎, and similarly, ⃖⃖𝑏 and ⃖⃗𝑏 induced by 𝑏. For brevity, we will only
draw a segment representing related edges in the symmetrisation, as in Figure 4.2 (b).

4.2 Stars and locally finite graphs

Definition 4.4. The star at a node 𝑥 in a graph 𝐺 is the type Star𝐺(𝑥).

Star𝐺(𝑥) ∶≡ ∑
(𝑦 ∶ N𝐺)

ESym(𝐺)(𝑥, 𝑦). (4.2–1)

Let 𝑦 be a node in 𝐺. If 𝑒 ∶ E𝐺(𝑥, 𝑦), then the pair (𝑦 , inl(𝑒)) is referred to as an outgoing
edge in the start at 𝑥 . Similarly, if 𝑒 ∶ E𝐺(𝑦 , 𝑥), then the pair (𝑦 , inr(𝑒)) is referred to as
an incoming edge in the start at 𝑥 . An incident edge of 𝑥 is either an outgoing or an
incoming edge in the star at 𝑥 . The cardinality of the set of incident edges at 𝑥 is known
as the valency of 𝑥 .
Example 4.5. The graph 𝐶𝑛 is a basic example of a planar graph and a building block
to construct more complex planar graphs. To enable this construction, we need to
characterise the stars at any node in 𝐶𝑛 for 𝑛 > 0. The case when 𝑛 is zero is trivial,
as the star at any node in the empty graph is empty.

As 𝐶𝑛 is a graph consisting of 𝑛 nodes in J𝑛K arranged in a polygon/cycle, one can
associate the previous and the next node in the cycle, pred(𝑥) and suc(𝑥), for each
node 𝑥 in 𝐶𝑛, respectively. We will prove that the valency of any node in 𝐶𝑛 is 2 by
proving that there exists an equivalence 𝑓𝑥 from Star𝐶𝑛(𝑥) to J2K for every node 𝑥 in
𝐶𝑛. The candidate to be the inverse of 𝑓𝑥 is the function 𝑔𝑥 defined below.

60 Graph Maps

𝑓𝑥 ∶ Star𝐶𝑛(𝑥) → J2K. 𝑔𝑥 ∶ J2K → Star𝐶𝑛(𝑥).
𝑓𝑥 ((𝑦 , inl(𝑝))) ∶≡ (0, !). 𝑔𝑥 ((0, !)) ∶≡ (suc(𝑥), inl(𝑎+)).
𝑓𝑥 ((𝑦 , inr(𝑝))) ∶≡ (1, !). 𝑔𝑥 ((1, !)) ∶≡ (pred(𝑥), inr(𝑎)).

(4.2–2)

One can easily prove that both E𝐶𝑛(pred(𝑥), 𝑥) and E𝐶𝑛(𝑥, suc(𝑥)) are contractible
types. Therefore, without loss of generality, we write 𝑎+ to denote the edge from 𝑥
to suc(𝑥) and 𝑎 to denote the edge from pred(𝑥) to 𝑥 in 𝐶𝑛.

To complete the proof that 𝑓𝑥 is an equivalence, we need to show that 𝑓𝑥 ∘ 𝑔𝑥 ∼
idJ2K and 𝑔𝑥 ∘ 𝑓𝑥 ∼ idStar𝐶𝑛 (𝑥). The first is immediate by case analysis. For example,
(𝑓𝑥 ∘ 𝑔𝑥)((0, !)) ≡ 𝑓𝑥(𝑔𝑥((0, !))) ≡ 𝑓𝑥(suc(𝑥), inl(𝑝)) ≡ (0, !), and one can similarly
show that 𝑓𝑥 ∘ 𝑔𝑥((1, !)) = (1, !).

To prove the second part, we show that 𝑔𝑥 ∘ 𝑓𝑥 ∼ idStar𝐶𝑛(𝑥) by performing a
case analysis on the second component of a term (𝑦 , 𝑧) ∶ Star𝐶𝑛(𝑥). Specifically,
we consider whether 𝑧 is either inl(𝑢) or inr(𝑣). For the first case, we need to prove
that 𝑔𝑥(𝑓𝑥((𝑦 , inl(𝑢)))) = (𝑦, inl(𝑢)). Evaluating the expression of the composite, we
obtain an equality with the question mark below, which we need to show one can
inhabit.

𝑔𝑥(𝑓𝑥((𝑦 , inl(𝑢)))) ≡ 𝑔𝑥((0, !)) ≡ (suc(𝑥), inl(𝑎+)) ?= (𝑦, inl(𝑢)).

However, we can establish the required equality by noting that E𝐶𝑛(𝑥, suc(𝑥)) is
contractible. This implies that ESym(𝐶𝑛)(𝑥, suc(𝑥)) is a proposition, which in turn
implies that 𝑎+ = 𝑢 and that we have 𝑦 = suc(𝑥). Similarly, we can show that
𝑔𝑥(𝑓𝑥((𝑦 , inr(𝑣)))) = (𝑦, inr(𝑣)). This completes the proof that 𝑓𝑥 is an equivalence
and shows that Star𝐶𝑛(𝑥) has only two elements.

Lemma 4.6. If 𝐺 is a (finite) graph, then the type Star𝐺(𝑥) is (finite) set.

Proof. The conclusion follows since the base type in Definition 4.4 is the set of edges in
the graph, and each of the fibres of the Σ-type is a set since they are coproducts of sets.
In particular, if the graph is finite, then all the types appearing in the type Star𝐺(𝑥) are
finite sets, and then our conclusion follows. □

Definition 4.7. A graph 𝐺 is locally finite if the set of incident edges at the star at any node
𝑥 in 𝐺, is a finite set.

4.3 The type of combinatorial maps 61

a

d

x

b

i

y

g

h

f

e

(a) Graph 𝐺.

�� �� ����
� � �

���
���

��
���

(b) Embedded graph Sym(𝐺).

�
�
� �

(c) Rotation system at 𝑎.
Figure 4.2: We show in (a) the drawing of a graph 𝐺 with edge crossings. A representation
of the graph 𝐺 embedded in the sphere is shown in (b). The corresponding faces of the
graph embedding shaded in (b) are named 𝐹𝑖 for 𝑖 from 1 to 6. It is shown in (c) with
fuchsia colour the incident edges at the node 𝑎 in Sym(𝐺). The rotation system at 𝑎,
that is, the cyclic set denoted by (𝑏𝑎 𝑎𝑑 𝑎𝑥), is shown in green colour. The dashed lines
represent edges not visible to the view.

4.3 The type of combinatorial maps

A combinatorial map is a specific type of data structure that is used to represent a graph
that is embedded in a surface. This data structure offers a powerful substitute to tradi-
tional analytic/geometric techniques for representing such embeddings. Unlike geomet-
ric methods, combinatorial maps allow us to represent the combinatorial structure of the
topological embedding without the need to explicitly work with the surface in which the
graph is embedded.

In this work, we focus on defining the type of combinatorial maps in type theory;
see Definition 4.8. We then turn our attention to a particular kind of embedding, cel-
lular embeddings. The reason for this focus is that all graph embeddings in the two-
dimensional plane are cellular embeddings. Therefore, drawing graphs in the plane with-
out edge crossings can be represented by cellular embeddings.

Cellular embeddings are particularly interesting because they can be characterised
combinatorially up to isotopy by the cyclic order they induce in the set of nodes around
each node in the graph [GT87], as illustrated in Figure 4.2 (b). This characterisation is
minimal as no additional information is required beyond the cyclic orders.

One observation is that not all finite graphs can be drawn in the plane, but all finite
graphs can be drawn on some orientable surface [Sta78]. The literature in graph theory
has proven that a graph cannot have a cellular embedding on any surface if it has at
least one node of infinite valency [Moh88, Proposition §3.2]. As our focus is on cellular
embeddings, we will only examine locally finite graphs throughout the document.

Definition 4.8. Map(𝐺) is the type of combinatorial maps (maps for short) for a graph 𝐺

62 Graph Maps

defined as follows:

Map(𝐺) ∶≡ ∏
(𝑥 ∶N𝐺)

Cyclic(Star𝐺(𝑥)).

Lemma 4.9. If the typeMap(𝐺) is inhabited, then the graph 𝐺 is locally finite.

Lemma 4.10. The type of maps for a (finite) graph forms a (finite) set.

Proof. The type Map(𝐺) is a set using the closure property of Π-types under (finite) sets.
The type Cyclic(Star𝐺(𝑥)) is a finite set by Lemma 2.27. □

For brevity, we use from now the variable M to denote a map of the graph 𝐺.

Example 4.11. The possible maps for the cycle 𝐶𝑛 for 𝑛 > 0 can be listed considering
the cyclic structures of the two-point type. These correspond to the cyclic structures
of the stars of 𝐶𝑛, see the correspondence exhibited in Example 4.5. The two candi-
dates for maps are given by the following functions.

▷ 𝑐1 ∶≡ ⟨J2K, pred, 2⟩ and
▷ 𝑐2 ∶≡ ⟨J2K, suc, 2⟩.

However, one can prove that these two maps are equal up to isomorphism, as shown
in Example 4.30. In other words, the cycle 𝐶𝑛 has only one map for 𝑛 > 0.

4.4 The type of faces

In the context of cellular embeddings, faces correspond to regions homeomorphic to the
open disk. Combinatorially, a face associated to a graph map consists of a cyclic walk
in the embedded graph where no edges are inside the cycle, and no node occurs twice.
Definition 4.14 is our attempt to make this intuition formal.

The first component of a face, as in Definition 4.14, captures the concept that its edges
form a cyclic walk in the embedded graph. While working with such walks would typ-
ically necessitate a fixed starting point, as illustrated in Figure 4.3, this point does not
contribute to the face’s combinatorial structure. Hence, we can employ a cyclic graph to
represent all such cyclic walks, thereby obviating the need for any distinguished starting
point in such walks.

The second component, the map-compatibility property, explicitly defines the “no
edges on the inside” criterion for a face. This criterion is captured by the fact that each
pair of consecutive edges on the face is a successor-predecessor pair in the cyclic order of
the edges around their common node. In other words, when we move along the edges
of the face either clockwise or counterclockwise, we will never come across an edge that

4.4 The type of faces 63

Figure 4.3: Example of cyclic walks on a face with different starting points.

goes through the inside of the face. As our graphs are directed, we must traverse the
edges in the symmetrisation of the graph rather than the graph itself.

The following two definitions are used in the definition of the type of faces.

Definition 4.12. A graph homomorphism ℎ from 𝐺 to 𝐻 given by (𝛼, 𝛽) is edge-injective,
denoted by isEdgeInj(ℎ), if the function 𝑓 defined below is an embedding.

𝑓 ∶ ∑
(𝑥,𝑦 ∶ N𝐺)

E𝐺(𝑥, 𝑦) → ∑
(𝑥,𝑦 ∶ N𝐻)

E𝐻 (𝑥, 𝑦).

𝑓 ((𝑥, 𝑦 , 𝑒)) ∶≡ (𝛼(𝑥), 𝛼(𝑦), 𝛽(𝑥, 𝑦 , 𝑒)).

Definition 4.13. The function flip swaps the direction of an edge in Sym(𝐺).

flip ∶ ∏
(𝑥,𝑦 ∶N𝐺)

ESym(𝐺)(𝑥, 𝑦) → ESym(𝐺)(𝑦 , 𝑥).

flip ((𝑥, 𝑦 , inl(𝑒))) ∶≡ inr(𝑒).
flip ((𝑥, 𝑦 , inr(𝑒))) ∶≡ inl(𝑒).

(4.4–3)

Since the first two arguments of the function flip are inferrable from the third argument, we
will omit them below.

Definition 4.14. The type Face(𝐺,M) is the type of faces of a combinatorial map M of a
graph 𝐺. A face of type Face(𝐺,M) consists of:
1. a cyclic graph 𝐴,
2. a graph homomorphism ℎ given by (𝛼, 𝛽) of type Hom(𝐴, Sym(𝐺)), such that

(a) ℎ is edge-injective,
(b) ℎ ismap-compatible, denoted by isMapComp(ℎ), meaning that ℎ is star-compatible

and corner-preserving, properties defined below, respectively.

▷ ℎ is star-compatible, if the condition in (4.4–4) holds for every 𝑥 ∶ N𝐴,

isStarComp(ℎ)(𝑥) ∶≡ ‖Star𝐺(𝛼(𝑥))‖ → ‖Star𝐴(𝑥)‖. (4.4–4)

▷ ℎ is corner-compatible, if there is evidence that ℎ is compatible with the edge-
ordering given by the map M at the node 𝛼(𝑥) and the edge ordering coming

64 Graph Maps

from the star at that node 𝑥 in 𝐴. To state this property, let us consider the
following notation.
– The previous edge at 𝑥 is the edge 𝑎 ∶ EN𝐴(pred(𝑥), 𝑥),
– the edge after 𝑎𝑥 is the edge denoted by 𝑎+𝑥
of type EN𝐴(𝑥, suc(𝑥)), as illustrated in Figure 4.4, and

– since M(𝛼(𝑥)) is a triple like ⟨𝑓 , 𝑚, !⟩ of type

Cyclic(Star𝐺(𝛼(𝑥)))

for some function 𝑓 ∶ Star𝐺(𝛼(𝑥)) → Star𝐺(𝛼(𝑥)) and some number 𝑚
(the cardinality of the star at 𝛼(𝑥)), we abuse notation and use M(𝛼(𝑥)) to
denote the function 𝑓 . See more on the cyclic type in Definition 2.21.

isCornerComp(ℎ)(𝑥) ∶≡M(𝛼(𝑥))((𝛼(pred(𝑥)), flip(𝛽(pred(𝑥), 𝑥, 𝑎))))
=Star𝐺(𝛼(𝑥)) (𝛼(suc(𝑥)) , 𝛽(𝑥, suc(𝑥), 𝑎+)).

(4.4–5)

It should be noted that the truncation in (4.4–4) is intentional. By incorporating this,
we aim to emphasise that if graph 𝐺 has at least one edge at a given node, then a face
covering that node, represented by the cyclic graph 𝐴, must have at least one edge at the
corresponding node as well. Without this condition, the type of faces could be inhabited
with empty faces using𝐴 as the cyclic graph without edges (𝐶0) at every node of the graph
𝐺. In Figure 4.4, we illustrate a portion of the required data to define a face 𝐹1 for the map
of graph 𝐺 given in Figure 4.2 (b).

a

x

suc(x)

pred(x)
A Sym(G)

α(suc(x))

α(pred(x))

α(x)

a+

β(a)

β(a+)
(α, β)

F
h

Figure 4.4: On the right side, we shade the face 𝐹 of the graph 𝐺 embedded in the sphere
given in Figure 4.2. We have the cycle graph 𝐶3 and ℎ ∶ Hom(𝐶3, Sym(𝐺)) given by (𝛼, 𝛽)
on the left side. 𝐶3 and ℎ can be used to define the face 𝐹 using 𝐶3 as the graph 𝐴 in
Definition 4.14.

Lemma 4.15. For a graph homomorphism, being edge-injective is a proposition.

Proof. Edge-injectivity is a proposition by iteratively applying the closure of Π-types to

4.4 The type of faces 65

propositions. Ultimately, we need to show that for any two terms (𝑥, 𝑦 , 𝑒1) and (𝑥′, 𝑦 ′, 𝑒2)
in Σ𝑥,𝑦 ∶ N𝐺E𝐺(𝑥, 𝑦), the identity type (𝑥, 𝑦 , 𝑒1) = (𝑥′, 𝑦 ′, 𝑒2) is a proposition. This is true
because the Σ-type in question is a set, and sets are closed under Σ-types, given that both
N𝐺 and E𝐺(𝑥, 𝑦) are sets. □

Lemma 4.16. For a graph homomorphism, being map-compatible is a proposition.

Proof. For a graph homomorphism ℎ, map-compatibility decomposes into star-compatibility
and corner-compatibility. We must show each type in this product is a proposition. Star-
compatibility is a proposition as it involves a function type with a propositional codomain
—the propositional truncation of a set. Corner-compatibility is also a proposition, being
a function type whose codomain is the identity type on Star𝐺(𝛼(𝑥)) at 𝛼(𝑥). This identity
type is a proposition since stars are sets, as established in Lemma 4.6. □

We devote the rest of this section to proving that the type of faces forms a set in
Lemma 4.18. This claim rests on the fact that (i) the type of cyclic graphs forms a set,
(ii) the type of graph homomorphisms forms a set, and (iii) the conditions, edge-injective
andmap-compatible in, Definition 4.14 are propositions. Onemight suspect that this type
forms a groupoid from the previous facts. However, the edge-injectivity property of the
underlying graph homomorphism of each face suffices to show that the type of faces is a
set.
Lemma 4.17. Let 𝑓 and 𝑔 be edge-injective graph homomorphisms from 𝐶𝑛 to a graph 𝐺 and
𝑛 > 0. Then the type Σ𝑒∶𝐶𝑛=𝐶𝑛 (tr𝜆𝑋 .Hom(𝑋 ,𝐺)(𝑒, 𝑓) = 𝑔) is a proposition.

𝐶𝑛 𝐶𝑛

𝐺
𝑓

𝑒

𝑔

Proof. The result follows from the proof that the Σ-type in question is equivalent to a
proposition. The corresponding equivalence is given by Calculation (4.4–6), in which we
use some known results about Univalence and Lemma 3.19, as in the very last step.

∑
(𝑒 ∶ 𝐶𝑛 = 𝐶𝑛)

(tr𝜆𝑋 .Hom(𝑋 ,𝐺)(𝑒, 𝑓) = 𝑔) ≃ (4.4–6a)

∑
(𝑒 ∶ 𝐶𝑛 = 𝐶𝑛)

(𝑓 = 𝑔 ∘ coe (𝑒)) ≃ (4.4–6b)

∑
(𝑒 ∶ 𝐶𝑛 ≃ 𝐶𝑛)

(𝑓 = 𝑔 ∘ 𝑒) ≃ (4.4–6c)

∑
(𝑘 ∶ J𝑛K)(𝑓 = 𝑔 ∘ rot𝑘). (4.4–6d)

66 Graph Maps

It remains to show that the last equivalent type is a proposition. Let (𝑘1, 𝑝1), and
(𝑘2, 𝑝2) be of type Σ𝑘∶J𝑛K(𝑓 = 𝑔 ∘ rot𝑘). We must show that (𝑘1, 𝑝1) is equal to (𝑘2, 𝑝2).
Since Hom(𝐶𝑛, 𝐺) is a set, we only need to prove that 𝑘1 is equal to 𝑘2. To show that,
Lemma 3.19 is used in the proof. By computing the identity type of graph isomorphisms,
we obtain that 𝑝−11 ⋅ 𝑝2 of type 𝑔 ∘ rot𝑘1 = 𝑔 ∘ rot𝑘2 is equivalent to having two equalities,

▷ 𝑝 ∶ 𝜋1(𝑔 ∘ rot𝑘1) = 𝜋1(𝑔 ∘ rot𝑘2) and
▷ 𝑞 ∶ tr

𝜆𝑒.∏𝑥,𝑦 ∶ N𝐶𝑛 E𝐶𝑛 (𝑥,𝑦)→E𝐺(𝑒(𝑥),𝑒(𝑦))(𝑝, 𝜋2(𝑔 ∘ rot𝑘1)) = 𝜋2(𝑔 ∘ rot𝑘2).
By characterising the identity of the Σ-types and with the previous equalities, 𝑝 and

𝑞, one can get another equality 𝑟 of the type in (4.4–7) for 𝑥, 𝑦 ∶ N𝐶𝑛 and 𝑒 ∶ E𝐶𝑛(𝑥, 𝑦).

((𝜋1(𝑔 ∘ rot𝑘𝑖))(𝑥), (𝜋1(𝑔 ∘ rot𝑘𝑖))(𝑦), (𝜋2(𝑔 ∘ rot𝑘𝑖))(𝑥, 𝑦 , 𝑒)) =
((((𝜋1(𝑔))(𝜋1(rot𝑘𝑖)))(𝑥)), (((𝜋1(𝑔))(𝜋1(rot𝑘𝑖)))(𝑦)), (((𝜋2(𝑔))(𝜋2(rot𝑘𝑖)))(𝑥, 𝑦 , 𝑒))).

(4.4–7)

Now since the graph homomorphism 𝑔 is edge-injective, applying Definition 4.12 to the
equality 𝑟 , one gets an equality 𝑟 ′ of the type below in (4.4–8). By applying Lemma 3.19
to 𝑟 ′, we conclude that 𝑘1 is equal to 𝑘2 from which the required conclusion follows.

((𝜋1(rot𝑘1))(𝑥), (𝜋1(rot𝑘1))(𝑦), (𝜋2(rot𝑘1))(𝑥, 𝑦 , 𝑒)) =
((𝜋1(rot𝑘2))(𝑥), (𝜋1(rot𝑘2))(𝑦), (𝜋2(rot𝑘2))(𝑥, 𝑦 , 𝑒)). □

(4.4–8)

Lemma 4.18. The type of faces for a graph map forms a set.

Proof. Let 𝐹1 and 𝐹2 be two faces of a map M. We will show that the type 𝐹1 = 𝐹2 is a
proposition in Calculation (4.4–9), with the following conventions.

▷ A is the cyclic graph related to the face 𝐹1,

A ∶≡ (𝐴, (𝜑𝐴, 𝑛, isCyclic(𝐴, 𝜑𝐴, 𝑛))).

▷ B is the cyclic graph related to the face 𝐹2,

B ∶≡ (𝐵, (𝜑𝐵, 𝑚, isCyclic(𝐵, 𝜑𝐵, 𝑚))).

We first unfold the definitions of 𝐹1 and 𝐹2 in (4.4–9a), and simplify the propositions in
Equivalence (4.4–9b), namely isEdgeInj, isMapComp, and isCyclic. Then, by expanding
the definitions of A and B in (4.4–9c), and simplifying the propositions in terms such as
being a cyclic graph, one gets Equivalence (4.4–9d). Next, we reorder in Equivalence (4.4–
9d) the tuple equalities to create an opportunity for path induction towards the applica-

4.4 The type of faces 67

tion of Lemma 4.17. Now, since we want to prove that the type of faces is a set, and that
itself is a proposition, the truncation elimination principle is applied to the propositions
isCyclic(𝐴, 𝜑𝐴, 𝑛) and isCyclic(𝐴, 𝜑𝐴, 𝑛). Then, the graphs 𝐴 and 𝐵 become, respectively,
𝐶𝑛 and 𝐶𝑚 in Equivalence (4.4–9e). Equivalence (4.4–9f) follows from the characterisation
of the identity type between tuples in a nested Σ-type.

(𝐹1 = 𝐹2) ≡
((A, 𝑓 , isEdgeInj(𝑓), isMapComp(𝑓)) = (B, 𝑔, isEdgeInj(𝑔), isMapComp(𝑔))) ≃

(4.4–9a)

((A, 𝑓) = (B, 𝑔)) ≡ (4.4–9b)
((𝐴, (𝜑𝐴, 𝑛, isCyclic(𝐴, 𝜑𝐴, 𝑛))), 𝑓) = ((𝐵, (𝜑𝐵, 𝑚, isCyclic(𝐵, 𝜑𝐵, 𝑚))), 𝑔) ≃ (4.4–9c)
((𝐴, (𝜑𝐴, 𝑛)), 𝑓) = ((𝐵, (𝜑𝐵, 𝑚)), 𝑔) ≃ (4.4–9d)
((𝑛, ((𝐶𝑛, 𝑓), 𝜑𝐶𝑛)) = (𝑚, ((𝐶𝑚, 𝑔), 𝜑𝐶𝑚))) ≃ (4.4–9e)

∑
(𝑝∶𝑛=𝑚)

∑
((𝑒′,−)∶∑(𝑒∶𝐶𝑛=𝐶𝑚) tr𝜆𝑋 .Hom(𝑋 ,Sym(𝐺))(𝑒,𝑓)=𝑔)

tr𝜆𝑋 .Hom(𝑋 ,𝑋)(𝑒′, 𝜑𝐶𝑛) = 𝜑𝐶𝑚 . (4.4–9f)

It only remains to show that Equivalence (4.4–9f) is a proposition. We show this by
proving that each type in Equivalence (4.4–9f) is a proposition. First, we unfold the cyclic
graph definition for 𝐶𝑛 and 𝐶𝑚, using Definition 3.18. Second, a case analysis on 𝑛 and
𝑚 is performed. This approach creates four cases where 𝑛 and 𝑚 can be zero or positive.
However, we only keep the cases where 𝑛 and 𝑚 are structurally equal. One can show
that the other cases are imposible with an equality between 𝑛 and 𝑚.

1. If 𝑛 and 𝑚 are zero, then, by definition, 𝐶𝑛 and 𝐶𝑚 are the one-point graph. In this
case, the conclusion follows easily. The base type 𝑛 = 𝑚 of the total space in Equiv-
alence (4.4–9f) is a proposition because N is a set. The type 𝐶0 = 𝐶0 is a proposition,
since it is contractible. The identity graph homomorphism is the unique automor-
phism of 𝐶0. Lastly, because Hom(𝐶𝑛, 𝐶𝑛) is a set, the remaining type of the Σ-type
is a proposition, completing the proof obligations.

2. If 𝑛 and 𝑚 are positive, we reason similarly. The type 𝑛 = 𝑚 is a proposition. By
path induction on 𝑝 ∶ 𝑛 = 𝑚, the second base type of the Σ-type becomes the type
in (4.4–10)

∑
(𝑒 ∶ 𝐶𝑛=𝐶𝑛)

(tr𝜆𝑋 .Hom(𝑋 ,Sym(𝐺))(𝑒, 𝑓) = 𝑔), (4.4–10)

which is a proposition by Lemma 4.17. The remaining type of the Σ-type is a propo-
sition, because Hom(𝐶𝑛, 𝐶𝑛) is a set. Therefore, the Σ-type in Equivalence (4.4–9f) is

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.isSet.html#860
https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.isSet.html#2790

68 Graph Maps

a proposition as required. □

4.4.1 The finiteness property

In the previous section, we showed that the type of faces for any graphwith amap forms a
set; see Lemma 4.18. The type of faces for any finite graph forms a finite set. Surprisingly,
our proof for this fact is somewhat technical and involves repeatedly applying finiteness
results and finding some convenient equivalences. Therefore, we have split the result
into several lemmas below to ease the length of the proof. In short, the following lemmas
primarily focus on massaging the inner types in the type of faces to find opportunities to
apply results such as Lemmas 2.12 and 2.13.

Here and below, let 𝐺 be a finite graph and M be a graph map for 𝐺. The number of
nodes and edges of 𝐺 are denoted by 𝑛 and 𝑚, respectively. The type of faces of 𝐺 given
by M has been spelled out in (4.4–11). The names of the variables in the type are chosen
to match the names used in Definition 4.14.

Face(𝐺,M) ∶≡

∑
⎛
⎜
⎜
⎜
⎝

(𝐴,(𝑝,(ℎ,!)))∶ ∑
(𝐴∶Graph)

(CyclicGraph(𝐴) × ∑
(ℎ∶Hom(𝐴,Sym(𝐺)))

isEdgeInj(ℎ))
⏟⏟⏟

𝐶

⎞
⎟
⎟
⎟
⎠

𝐵((𝐴,(𝑝,(ℎ,!))))
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∏
(𝑥∶N𝐴)

isMapComp(ℎ)(𝑥).

(4.4–11)

The notion of faces of graph maps yields an alternate approach to proving results
concerning graphs, such as the formulation of Euler’s characteristic number for finite
graphs, see Section 6.3. Here, we prove the finiteness of the type of faces for any finite
graph, from where one, in principle, can compute its cardinality, and therefore the Euler
characteristic number associated to the graph.

Lemma 4.19. Suppose 𝐴 is a cyclic graph according to the definition provided in Defini-
tion 3.18. Then, 𝐴 is a finite graph and the set of nodes and the family of edges are finite sets
of the same cardinality.

Lemma 4.20. Let 𝑚 ∶ N and 𝐴 be a finite graph of at most 𝑚 nodes. Then, CyclicGraph(𝐴)
is a finite type.

Proof. Unfolding the main definition for cyclic graphs and considering that the set of
nodes of 𝐴 is upper bounded by 𝑚, one obtains an equivalent nested Σ-type as illustrated
in (4.4–12).

4.4 The type of faces 69

CyclicGraph(𝐴) ≃ (4.4–12)
∑

((𝑛,!)∶J𝑚K) ∑
(𝜑∶Hom(𝐴,𝐴))

‖ (𝐶𝑛, rot) = (𝐴, 𝜑) ‖ ≃ (4.4–13)

∑
((𝑛,!)∶J𝑚K) ∑

(𝜑∶Hom(𝐴,𝐴))
‖ ∑
(𝛼∶𝐶𝑛≅𝐴)

tr 𝜆𝑋 .Hom(𝑋 ,𝑋)(𝛼, rot) = 𝜑 ‖ . (4.4–14)

The two base types in the Σ-types above are clearly finite, namely, the 𝑚 point type and
the set of graph endo homomorphisms on 𝐴. However, less obvious is the finiteness of
the type truncated. To see that, we unfold the type inside the truncation, which is a
subtype of the finite type of isomorphisms between 𝐶𝑛 and 𝐴. There are only finitely
many isomorphisms between 𝐶𝑛 and 𝐴, one for each node in 𝐴. Therefore, the type
truncated in (4.4–14) is finite. □

Lemma 4.21. Let 𝐺 and 𝐴 be two finite graphs, then the type of edge injective homomor-
phisms in (4.4–15) is finite.

∑
(ℎ ∶ Hom(𝐴, Sym(𝐺)))

isEdgeInj(ℎ). (4.4–15)

Proof. The set of graph homomorphisms between the finite graph 𝐴 and Sym(𝐺) is fi-
nite by Lemma 3.3. The functor Sym preserves the finiteness of 𝐺, then Sym(𝐺) is also
finite. On the other hand, to see that each proposition isEdgeInj(ℎ) is finite, we should
unfold its definition to check every inner type is finite. Let ℎ be the pair (𝛼, 𝛽) of type
Hom(𝐴, Sym(𝐺)).

isEdgeInj((𝛼, 𝛽)) ∶≡ ∏
(𝑥,𝑦 ,�̂� , ̂𝑦 ∶𝑁𝐴)

∏
(𝑒 ∶ E𝐴(𝑥,𝑦))

∏
(̂𝑒 ∶ E𝐴(�̂� , ̂𝑦))

((𝛼(𝑥), 𝛼(𝑦), 𝛽(𝑥, 𝑦 , 𝑒)) = ∑
(𝑥,𝑦∶N𝐺)

ESym(𝐺)(𝑥, 𝑦)(𝛼(�̂�), 𝛼(̂𝑦), ̂𝑒))

→ ((𝑥, 𝑦 , 𝑒) = ∑
(𝑥,𝑦∶N𝐺)

E𝐴(𝑥, 𝑦)(�̂� , ̂𝑦 , ̂𝑒)).

(4.4–16)

Since 𝐺 is a finite graph, the type N𝐺 is finite, and moreover, the type E𝐺(𝑥, 𝑦) is finite
for any pair of nodes 𝑥, 𝑦 . Similarly, we consider the nodes and edges of the graph𝐴. The
other types in (4.4–16) are finite since they are decidable equalities on the naturals and
Π-types preserve finiteness. □

Lemma 4.22. Let 𝐴 be a cyclic graph, 𝐵 be a finite graph with 𝑛 nodes and 𝑚 edges, and ℎ be

70 Graph Maps

an edge-injective graph homomorphism from 𝐴 to 𝐵. Then, the following type is inhabited.

∑
(((#N𝐴,!),(#E𝐴,!))∶isFiniteGraph(𝐴))

(#N𝐴 ≤ 𝑛) × (#E𝐴 ≤ 𝑚).

Consider the following types for the remainder of this section. The type 𝐶 as intro-
duced in (4.4–11) and the type family 𝐷 over 𝐶 are defined below in (4.4–18).

𝐶 ∶≡ ∑
(𝐴∶Graph)

(CyclicGraph(𝐴) × ∑
(ℎ∶Hom(𝐴,Sym(𝐺)))

isEdgeInj(ℎ)) . (4.4–17)

𝐷((𝐴, -)) ∶≡ ∑
(((#N𝐴,!),(#E𝐴,!))∶isFiniteGraph(𝐴))

#N𝐴 ≤ 𝑚 × #E𝐴 ≤ 𝑚, (4.4–18)

where #N𝐴, #E𝐴 denotes the cardinality of the sets of nodes and edges in 𝐴 and 𝑚 is the
number of edges in 𝐺.

Lemma 4.23. The total space Σ𝑥∶𝐶 𝐷(𝑥) with 𝐷 as in (4.4–18) is finite.

Proof. The type Σ𝑥∶𝐶𝐷(𝑥) is equivalent to the type given in (4.4–19), which is obtained
by a convenient rearrangement of the inner types in Σ𝑥∶𝐶𝐷(𝑥).

∑
((𝐴,-) ∶ 𝑃)

∑
(ℎ ∶ Hom(𝐴,Sym(𝐺)))

isEdgeInj(ℎ). (4.4–19)

Where

𝑃 ∶≡ ∑
((𝐴,−) ∶𝑄)

CyclicGraph(𝐴) (4.4–20)

and

𝑄 ∶≡ ∑
(𝐴∶Graph)

𝐷((𝐴, −)). (4.4–21)

We must break down the proof into three parts and apply previous lemmas. First, we
prove that the type 𝑄 is finite. Second, the type 𝑃 is finite. Finally, we show that the
remaining type in (4.4–19) is finite, completing the proof, which follows from the closure
of Σ-types under finite types.

4.4 The type of faces 71

(i) The type 𝑄 is equivalent to the type

∑
(((𝑉𝐴,!),(𝐸𝐴,!))∶(∑

(𝑉𝐴 ∶ U)
∑

((#𝑉𝐴,!)∶isFinite(𝑉𝐴))
#𝑉𝐴≤𝑚)×(∑

(𝐸𝐴 ∶ U)
∑

((#𝐸𝐴,!)∶isFinite(𝐸𝐴))
#𝐸𝐴≤𝑚))

(𝐸𝐴 → 𝑉𝐴) × (𝐸𝐴 → 𝑉𝐴), (4.4–22)

considering the equivalence in (4.4–23) which allows us to replace the type Graph
(visible as the base type in (4.4–21)) by the type of set-level displayed graphs.

Graph ≃ ∑
(𝑉 ,𝐸∶𝒰)

(𝐸 → 𝑉) × (𝐸 → 𝑉) × isSet(𝑉) × isSet(𝐸). (4.4–23)

The resulting Σ-type in (4.4–22) has as its basis the product of two types, which are
finite types by Corollary 2.19. The remainder type, (𝐸𝐴 → 𝑉𝐴) × (𝐸𝐴 → 𝑉𝐴), is finite
since 𝑉𝐴 and 𝐸𝐴 are finite sets. We conclude that the type 𝑄 is finite.

(ii) The type 𝑃 can be seen as the type of all cyclic graphs with a number of edges
bounded by 𝑚. Since the Σ-types are closed under finite types, the type 𝑃 is finite
because 𝑄 is finite and CyclicGraph(𝐴) is a finite type by Lemma 4.20.

(iii) The remainder type to be shown is finite of Σ𝑥∶𝐶𝐷(𝑥) is

∑
((𝐴,-) ∶ 𝑃)

∑
(ℎ ∶ Hom(𝐴,Sym(𝐺)))

isEdgeInj(ℎ) (4.4–24)

which is finite by Lemma 4.21. □

Lemma 4.24. The type 𝐶 in (4.4–17) is finite.

Proof. The finiteness of 𝐶 can be shown by applying Lemma 2.12-(𝑖𝑣) using as the input
the type 𝐶 and the type family 𝐷 over 𝐶 defined below in (4.4–18). The type 𝐶 is then
finite if we show that the following three conditions are satisfied:

(i) the type family 𝐷 over 𝐶 is a family of finite types,

(ii) the type Σ𝑥∶𝐶 𝐷(𝑥) is finite, and
(iii) there exists a section of type Π𝑥∶𝐶 𝐷(𝑥).

To show (i), let (𝐴, −) be of type 𝐶 . Then, 𝐴 is a cyclic graph and so the type
isFiniteGraph(𝐴) is contractible by Lemma 4.19. Therefore, each type in (4.4–18) is a
decidable proposition, including the two inequalities related to the cardinality of the sets
N𝐴 and E𝐴. By closure of the Σ-types into finite types, the type 𝐷((𝐴, −)) is a finite type.

To show (𝑖𝑖) and (𝑖𝑖𝑖), refer to Lemmas 4.22 and 4.23, respectively. □

72 Graph Maps

Lemma 4.25. The type family 𝐵 over 𝐶 is a type family of finite types.

𝐵((𝐴, (𝑝, (ℎ, !)))) ∶≡ ∏
(𝑥∶N𝐴)

isMapComp(ℎ)(𝑥).

Proof. Let (𝐴, (𝑝, (ℎ, !))) be of type 𝐶 . Then, the graph 𝐴 is finite because is cyclic, and
so is the set of nodes 𝑁𝐴. It remains to show that each proposition isMapComp(ℎ)(𝑥) is
finite. However, such propositions are precisely the product of the two following finite
types:

(i) isStarComp(ℎ)(𝑥) ∶≡ ‖ Star𝐺(𝛼(𝑥))‖ → ‖Star𝐴(𝑥) ‖, and
(ii) isCornerComp(ℎ)(𝑥) as defined in (4.4–5).

Since, both graphs, 𝐺 and 𝐴, are locally finite, then, each star in 𝐺 and 𝐴, is finite. Then,
the type (i) is finite because Π-types are closed by finite types and because ‖𝑋 ‖ is finite
if 𝑋 is finite. Lastly, the type (ii) is finite as it is a decidable equality between edges in a
finite type —the star at 𝑥 in 𝐴. □

Theorem 4.26. The type of faces of a finite graph forms a finite set.

Proof. All the components of the Σ-type in the type (4.4–11) are finite types:

1. The base type 𝐶 is finite by Lemma 4.24.

2. The type family 𝐵 is a family of finite types according to Lemma 4.25. □

4.4.2 The boundary of a face

Each face F of a map M consisting of a cyclic graph 𝐴, a homomorphism ℎ and some
extra data as described in Definition 4.14 induces a closed walk that follows the edges of
its defining polygon, which we refer to as its boundary.

Definition 4.27. LetF be a face for amap of the graph 𝐺, the boundary of 𝜕F is the subgraph
of the image of the associated function, ℎ, given in the definition of the type of F.

𝜕F ≡ 𝜕((𝐴, (ℎ, −))) ∶≡ Img(ℎ).

Here, Img(ℎ) is the subgraph of 𝐺 defined by the image of ℎ. More specifically, it is defined
as:

Img(ℎ) ∶≡ (Σ𝑥∶N𝐴 , (𝜋1(ℎ))(𝑥), 𝜆𝑥.𝜆𝑦.𝜆𝑒.(𝜋2(ℎ))(𝑥, 𝑦 , 𝑒)).
The degree of a face F is the length of 𝜕F, which is the number of nodes in 𝐴. The

boundary 𝜕F can be walked in two directions with respect to the orientation given by its
map.

4.4 The type of faces 73

𝑥

𝑦
𝐹

cwℱ (𝑥, 𝑦)Sym(𝐺)

ccwℱ (𝑥, 𝑦)

Figure 4.5: It is shown a face F given by ⟨𝐴, 𝑓 ⟩ for the graph embedding Sym(𝐺) given in
Figure 4.2. Two quasi-simple walks exist in the underlying cyclic graph 𝐴 between two
different nodes 𝑥 and 𝑦 . Such walks are clockwise and counterclockwise closed walks in
Sym(𝐺), denoted by cwF(𝑥, 𝑦) and ccwF(𝑥, 𝑦), respectively.

As illustrated by Figure 4.5, given two different nodes 𝑥 and 𝑦 in 𝜕F, we can connect 𝑥
to 𝑦 using the walk in the clockwise direction, cwF(𝑥, 𝑦). Similarly, one can connect 𝑥 to
𝑦 using the walk in the counterclockwise direction, ccwF(𝑥, 𝑦). Such walks are induced
by the walks in the cyclic graph 𝐴, see Lemma 4.29.

Lemma 4.28. Supposing 𝑥, 𝑦 ∶ N𝐶𝑛 , the following claims hold for the cycle graph 𝐶𝑛.

1. The type E𝐶𝑛(𝑥, 𝑦) is a proposition.

2. For 𝑛 > 0, there exists an edge of type E𝐶𝑛(pred(𝑥), 𝑥) and an edge of type E𝐶𝑛(𝑥, suc(𝑥)).

3. For 𝑛 > 0, there exists a walk going in the clockwise direction denoted by cw𝐶𝑛(𝑥, 𝑦)
from 𝑥 to 𝑦 .

Lemma 4.29. Supposing 𝑥, 𝑦 ∶ N𝐶𝑛 , the following claims hold for the graph Sym(𝐶𝑛).

1. If 𝑛 > 1, then the type ESym(𝐶𝑛)(𝑥, 𝑦) is a proposition.

2. There exists an edge of type ESym(𝐶𝑛)(pred(𝑥), 𝑥) and of type ESym(𝐶𝑛)(𝑥, suc(𝑥)).

3. There exist two walks from 𝑥 to 𝑦 in Sym(𝐶𝑛), denoted by cwSym(𝐶𝑛)(𝑥, 𝑦) and
ccwSym(𝐶𝑛)(𝑥, 𝑦), respectively.

(a) The walk cwSym(𝐶𝑛)(𝑥, 𝑦) represents the walk in the clockwise direction from 𝑥 to
𝑦 .

(b) On the other hand, the walk ccwSym(𝐶𝑛)(𝑥, 𝑦) represents the walk in the counter-
clockwise direction from 𝑥 to 𝑦 . In case 𝑥 = 𝑦 , the walk ccwSym(𝐶𝑛)(𝑥, 𝑦) corre-
sponds to the trivial walk ⟨𝑥⟩.

74 Graph Maps

4.5 Examples of graph maps

Similarly to the discussion in Section 1.2, we will explore some examples of graph maps
in this section to enhance our understanding of their structure and visual representation.
Occasionally, we may deviate from type theory to provide a more comprehensible expla-
nation of these instances. For instance, we will analyse various cases using Mathematica
to enumerate different graph maps for some of these examples.

Example 4.30. For cycle graphs 𝐶𝑛, only one combinatorial map exists. Cyclic struc-
tures of two-point type 𝑐1 and 𝑐2, defined in Example 4.5, precisely induce the maps
of 𝐶𝑛. In other words, one can obtain a map M can be obtained using 𝑐1 by (4.5–25)
and

(pred, 2, |(ideqv, reflpred)|) ∶ Cyclic(J2K).
Moreover, using function extensionality, Lemma 2.26 implies that the map induced
by 𝑐2 and the map M are equal.

Map(𝐶𝑛) ≡ ∏
(𝑥∶J𝑛K)Cyclic(Star𝐶𝑛(𝑥))

≃ ∏
(𝑥∶J𝑛K)Cyclic(J2K). (4.5–25)

4.5.1 Generating graph maps

In this section, the experiments were conducted using Mathematica v13 and the third-
party package IGraph v0.6.5. A graph map is represented in Mathematica as associations
(also known as dictionaries), where keys are associated with the graph’s nodes and values
consist of lists of nodes that form the star edges for the corresponding node (regardless
of direction).

It is crucial to mention that while the illustrations display directed graphs, we have
streamlined the analysis and map generation process by focusing on connected undi-
rected graphs without loops or multiple edges in the outputs. We employ the allMaps

function to generate graph maps, which returns a list of all possible maps for a given
graph. Although the allMaps function can be extended to include simple directed graphs,
the resulting output might be more difficult to interpret, and we do not put it here. Never-
theless, we provide a small example of a directed multigraph with loops in Example 4.32
to give a sense of how the allMaps function should be modified to include such graphs.

allMaps[graph_] With[
{emb = getInitialMap[graph]},
Map[
Function[comb,
Association[

4.5 Examples of graph maps 75

Table[i -> combi,
{i, 1, Length@VertexList@graph}] ,

Distribute[
Table[
#1, 1 & /@ Union@Map[

Cycles[{#}] &,
Permutations@emb[v,

{v, VertexList@graph}], List]]
];

getInitialMap[graph_] With[{
ledges = EdgeList[graph], nodes = VertexList@graph},
Association@Map[
Function[node,
node ->
Select[
Flatten[Select[
Map[Union[{#1, #2}] &,
ledges], #1 node || #2 node &], 1],

node &, nodes]
];

For a given graph 𝐺, it is possible to determine the number of maps for 𝐺 without using
the function allMaps on 𝐺 and then calculating the length of the resulting list. Instead, we
can directly compute that number by using the formula in (4.5–26), which utilises the
valencies for all nodes in 𝐺 and takes into account the possible cyclic orderings. The
valency of a node refers to the number of edges present at its star.

∏
(𝑥∶N𝐺)

(valency(𝑥) − 1)!. (4.5–26)

Example 4.31. House graph. We previously examined the house graph in Section 1.2
and made a number of observations related to its maps and drawings, as showcased
in Figure 1.3. We now use Mathematica to generate all the maps.

HouseGraph = Graph[{

1 -> 2,

1 -> 3,

2 -> 3,

2 -> 4,

3 -> 5,

4 -> 5

}];

Figure 4.6: On the left, we define the house graph. On the right, there are two pictures
depicting two possible drawings of this graph in the two-dimensional plane with the
same combinatorial map.

In allMaps[HouseGraph]
Out {
 1 -> {2, 3}, 2 -> {1, 3, 4}, 3 -> {1, 2, 5},

76 Graph Maps

4 -> {2, 5}, 5 -> {3, 4} , (* (a) *)
 1 -> {2, 3}, 2 -> {1, 3, 4}, 3 -> {1, 5, 2},

4 -> {2, 5}, 5 -> {3, 4} , (* (b) *)
 1 -> {2, 3}, 2 -> {1, 4, 3}, 3 -> {1, 2, 5},

4 -> {2, 5}, 5 -> {3, 4} , (* (c) *)
 1 -> {2, 3}, 2 -> {1, 4, 3}, 3 -> {1, 5, 2},

4 -> {2, 5}, 5 -> {3, 4} } (* (d) *)

The total number for the house graph is 4, calculated as (2!/2) ⋅ (3!/3) ⋅ (3!/3) ⋅
(2!/2). We find four embeddings: two non-planar and two planar, drawings (a) and
(d), and (b) and (c), respectively, in Figure 4.7. The two planar maps correspond to
the following combinatorial maps.

In Select[allMaps[HouseGraph], IGPlanarQ]
Out {
 1 -> {2, 3}, 2 -> {1, 3, 4}, 3 -> {1, 5, 2},

4 -> {2, 5}, 5 -> {3, 4},
 1 -> {2, 3}, 2 -> {1, 4, 3}, 3 -> {1, 2, 5},

4 -> {2, 5}, 5 -> {3, 4} }

(a) (b) (c) (d)

1

2

4

3

5

Figure 4.7: From top to bottom, we demonstrate a step-by-step approach to visualise
graphmaps for the house graph. We use the initial embedding at the top as a skeleton,
and in each step, we consider adding new edges to complete the drawing.

Example 4.32. Bouquet 𝐵2. A graph consisting of a single node and 𝑛 loop edges is
referred to as an 𝑛-bouquet, denoted by 𝐵𝑛. To enumerate the maps of 𝐵2, we can label

4.5 Examples of graph maps 77

the edges of its sole star as (xin, xout, yin, yout). It is important to note that reflection
is not treated as symmetry here. Consequently, we identify six distinct combinatorial
maps for 𝐵2, as depicted in Figure 4.8.

x y x y x
y

(a)

(d)

(b) (c)

(f)

x x
y

(e)

x

yy

Figure 4.8: The six possible maps of the bouquet 𝐵2.

For the 4-element set (xin, xout, yin, yout), each distinct cyclic permutation gen-
erates a map. Therefore, we should employ the Cycles function in Mathematica to
explicitly indicate that all these permutations are cyclic.

CP = Union[Cycles[{#}] & /@ Permutations@Range[4;

The six distinct cyclic permutations corresponding to the illustrations in Figure 4.8
are presented below.

{ Cycles[{{xin, xout, yin, yout}}], (* (a) *)

Cycles[{{xin, xout, yout, yin}}], (* (b) *)

Cycles[{{xin, yin, xout, yout}}], (* (c) *)

Cycles[{{xin, yin, yout, xout}}], (* (d) *)

Cycles[{{xin, yout, xout, yin}}], (* (e) *)

Cycles[{{xin, yout, yin, xout}}]} (* (f) *)

Example 4.33. 2-Grid graph. The grid graph is usually presented as an undirected
graph with 𝑛 nodes arranged in a regular 𝑛-gon, with each node connected to its two
neighbours. Here, we consider the directed grid graph with 𝑛 nodes arranged in a
regular 𝑛-gon, as illustrated for 𝑛 = 6 in Figure 4.9. The following Mathematica code
generates all the maps associated with this graph.

In[] grid2 = Graph[{

1 -> 2, 2 -> 3, 3 -> 6

1 -> 4, 4 -> 5, 5 -> 6,

4 -> 3

}

];

78 Graph Maps

Figure 4.9: The grid graph with 6 nodes and 7 edges.

In[] allMaps[grid2]

Out[] {1 -> {2, 4}, 2 -> {1, 3}, 3 -> {2, 4, 6},

4 -> {1, 3, 5}, 5 -> {4, 6}, 6 -> {3, 5},

1 -> {2, 4}, 2 -> {1, 3}, 3 -> {2, 4, 6},

4 -> {1, 5, 3}, 5 -> {4, 6}, 6 -> {3, 5},

1 -> {2, 4}, 2 -> {1, 3}, 3 -> {2, 6, 4},

4 -> {1, 3, 5}, 5 -> {4, 6}, 6 -> {3, 5},

1 -> {2, 4}, 2 -> {1, 3}, 3 -> {2, 6, 4},

4 -> {1, 5, 3}, 5 -> {4, 6}, 6 -> {3, 5}}

5
Walks and Spherical Maps

In Chapter 4, we work with combinatorial maps to represent graph embeddings in sur-
faces up to isotopy. The surface in which the graph is embedded remains implicit in this
approach, eliminating the need for explicit specification in HoTT. This chapter presents
a refinement of one characterisation of graph maps in the sphere, called spherical maps,
for connected and directed multigraphs with discrete node sets. A combinatorial notion
of homotopy for walks and the normal form of walks under a reduction relation are intro-
duced. The first characterisation of spherical maps states that a graph can be embedded
in the sphere if any pair of walks with the same endpoints are merely walk-homotopic.
The refinement of this definition filters out any walk with inner cycles. As we prove in
one of the lemmas, if a spherical map is given for a graph with a discrete node set, then
any walk in the graph is merely walk homotopic to a normal form.

5.1 The type of walks

The notion of walks, as introduced in Definition 3.11, plays an essential role in graph
theory. Many algorithms using graph data structures are based on this concept. This
section provides the necessary tools to develop two normalisation algorithms forwalks, as
seen in Theorems 5.38 and 5.48. These algorithms are used, for example, in Corollary 5.49.

80 Walks and Spherical Maps

5.1.1 Structural induction for walks

By structural induction or pattern matching on a walk, we will refer to the elimination
principle of the inductive type in Definition 3.11. An induction principle allows us to de-
fine outgoing functions from a type to a type family. For example, if wewant to use the in-
duction principle to inhabit a predicate on the type of walks, 𝑃 ∶ Π{𝑥 𝑦 ∶ N𝐺}.W𝐺(𝑥, 𝑦) →
U, one can inhabit (5.1–1). Given a walk 𝑤 ∶ W𝐺(𝑥, 𝑦), to construct a term of type 𝑃(𝑤),
the base case must first be constructed, i.e., give a term of type 𝑃(⟨𝑥⟩), for every 𝑥 ∶ N𝐺 .
Subsequently, we must prove the case for composite walks, i.e., 𝑃(𝑒 ⊙ 𝑤). To show this,
𝑃(𝑤) is assumed for any walk 𝑤 , and we construct a term of type 𝑃(𝑒 ⊙ 𝑤) from this as-
sumption. Thus, one gets 𝑃(𝑤) for any walk 𝑤 . Another induction principle for walks is
stated in Theorem 5.4.

∏
(𝑥∶N𝐺)

𝑃(⟨𝑥⟩) × ∏
(𝑥,𝑦 ,𝑧∶N𝐺)

∏
(𝑒∶E𝐺(𝑥,𝑦))

∏
(𝑤∶W𝐺(𝑦 ,𝑧))

𝑃(𝑤) → 𝑃(𝑒 ⊙ 𝑤)

→ ∏
(𝑥,𝑦∶N𝐺)

∏
(𝑤∶W𝐺(𝑥,𝑦))

𝑃(𝑤).
(5.1–1)

The composition, also called concatenation, of walks is an associative binary operation
on walks defined by structural induction on its left argument. Given walks 𝑝 ∶ W𝐺(𝑥, 𝑦)
and 𝑞 ∶ W𝐺(𝑦 , 𝑧), we refer to their composition as the composite denoted by 𝑝 ⋅ 𝑞. The
node 𝑦 is called the joint of the composition. The length of the walk 𝑤 is denoted by
length(𝑤) and represents the number of edges used to construct 𝑤 . A trivial walk has
length zero, whilst a walk (𝑒 ⊙ 𝑤) has one more length than 𝑤 . We display a point to
represent trivial walks and with a normal arrow to represent positive length walks, as
illustrated in Figure 5.1.

Lemma 5.1 (). The type of walks forms a set.

Proof. One can show that the typeW(𝑥, 𝑦) is equivalent to Σ𝑛∶N �̂� (𝑛, 𝑥, 𝑦)with �̂� defined
as follows.

�̂� ∶ N → N𝐺 → N𝐺 → U (5.1–2a)
�̂� (0, 𝑥, 𝑦) ∶≡ (𝑥 = 𝑦), (5.1–2b)
�̂� (𝑆(𝑛), 𝑥, 𝑦) ∶≡ ∑

(𝑘∶N𝐺)
E𝐺(𝑥, 𝑘) × �̂� (𝑛, 𝑘, 𝑦). (5.1–2c)

It suffices to show that the type �̂� (𝑛, 𝑥, 𝑦) forms a set for 𝑛 ∶ N, whichwill be proven by
induction on 𝑛. If 𝑛 = 0, one obtains the proposition 𝑥 = 𝑦 which is a set. Consequently,
we must now show that the type in (5.1–2c) is a set. By the graph definition, the base
type N𝐺 and E𝐺 are both sets. Thus, one only requires that �̂� (𝑛, 𝑘, 𝑦) forms a set, which

https://jonaprieto.github.io/synthetic-graph-theory/CPP2022-paper.html#1201
https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-walks.Walk.SigmaWalks.html

5.1 The type of walks 81

is precisely the induction hypothesis. □

Although it is not included in the formalisation of thiswork, one can show that the type
of walks forms a category. IfGraph is the category of graphs using Definition 3.1 and C is
the category of small categories, there is a functor 𝑅 ∶ Graph → C mapping every graph
𝐺 to its free pre-category. The object set of 𝑅(𝐺) is N𝐺 , and the morphisms correspond
to the collection of all possible walks in 𝐺. By Lemma 5.1, it follows that 𝑅(𝐺) is a small
category. Let 𝐿 be the forgetful functor from C to Graph. Then, 𝐿 is the left adjoint of 𝑅.
The graph of walks of 𝐺 is generated by using the endofunctor 𝑊 ∶ Graph → Graph, the
monad from the composite 𝐿 ∘ 𝑅.

5.1.2 A well-founded order for walks

Structural induction is a particular case of a more general induction principle to define
recursive programs called well-founded or Noetherian induction. Note that, for the struc-
tural induction principle, one must always guarantee that every argument in a recursive
call in the program is strictly smaller than its arguments. However, there is no reason to
believe that this will always be the case.

In constructive mathematics, a binary relation 𝑅 on a set 𝐴 is well-founded if every
element of 𝐴 is accessible. An element 𝑎 ∶ 𝐴 is accessible by 𝑅, if 𝑏 ∶ 𝐴 is accessible for
every 𝑏𝑅𝑎 [Nor88; Uni13, §10.3]. Then, if 𝑎 has the property that there is no 𝑏 such that
𝑏𝑅𝑎, then 𝑎 is vacuously accessible. If (≤) represents the less or equal than relation on the
natural numbers, then the number zero is vacuously accessible by ≤ on N.

Let us define a well-founded order for walks in a graph by considering their lengths,
from where the well-founded induction for walks follows, see Theorem 5.4.

Definition 5.2. Given 𝑝, 𝑞 ∶ W𝐺(𝑥, 𝑦) for 𝑥, 𝑦 ∶ N𝐺 , the relation (≼) states that 𝑝 ≼ 𝑞 when
length(𝑝) ≤ length(𝑞).
Lemma 5.3. The relation (≼) on Σ𝑥,𝑦∶N𝐺W𝐺(𝑥, 𝑦) is well–founded.

Proof. It follows from the fact that the poset (N, ≤) is well-founded. □

We refer to the following lemma as the well-founded induction principle for walks in-
duced by Definition 5.2.
Theorem 5.4. Suppose the following is given,

1. a predicate 𝑃 of type Σ𝑥,𝑦∶N𝐺W𝐺(𝑥, 𝑦) → U such that,

2. given (𝑎, 𝑏, 𝑞) of type Σ𝑥,𝑦∶N𝐺W𝐺(𝑥, 𝑦), if 𝑃(𝑝) for each walk 𝑝 ∶ W𝐺(𝑥′, 𝑦 ′) with
𝑥′, 𝑦 ′ ∶ N𝐺 and 𝑝 ≼ 𝑞, then 𝑃(𝑎, 𝑏, 𝑞).

Then, given any walk 𝑤 ∶ W𝐺(𝑥, 𝑦) and 𝑥, 𝑦 ∶ N𝐺 , we have 𝑃(𝑥, 𝑦 , 𝑤).

https://jonaprieto.github.io/synthetic-graph-theory/CPP2022-paper.html#1298

82 Walks and Spherical Maps

Remark 5.5. The induction principle stated in Theorem 5.4 using Lemma 5.3 is equivalent
to performing strong induction on the length of the walk.

Theorems 5.38 and 5.48 define algorithms for which many of their recursive calls are
on subwalks of the input walk. A subwalk of a walk 𝑤 is a contiguous subsequence of
edges in 𝑤 . Subwalks are not structurally smaller than their corresponding walk unless
one takes, for example, the subwalk 𝑤 or 𝑒 for the composite walk (𝑒 ⊙ 𝑤). Excluding the
previous case, to deal with other subwalk cases, we can use the well-founded induction
principle given in Theorem 5.4.

5.1.3 Walk splitting

In this subsection, a function to split/divide a walk 𝑤 from 𝑥 to 𝑧 into subwalks, 𝑤1 and
𝑤2, is given. Such a division of 𝑤 , of (5.1–3), is handy e.g., for proving statements where
the induction is not on the structure but on the length of the walk.

Let 𝑥, 𝑦 , 𝑧 be variables for nodes in 𝐺 and let 𝑤 be a walk from 𝑥 to 𝑧, unless stated
otherwise. We refer to the walk 𝑤1 in (5.1–3) as a prefix of 𝑤 and 𝑤2 as the corresponding
suffix given 𝑤1.

∑
(𝑦∶N𝐺)

∑
(𝑤1∶W𝐺(𝑥,𝑦))

∑
(𝑤2∶W𝐺(𝑦 ,𝑧))

(𝑤 = 𝑤1 ⋅ 𝑤2). (5.1–3)

Definition 5.6. Given two walks 𝑝 and 𝑞 with the same head, one says that 𝑝 is a prefix of
𝑞 if the type Prefix(𝑝, 𝑞) is inhabited.

data Prefix ∶ Π {𝑥, 𝑦 , 𝑧} .W𝐺(𝑥, 𝑦) → W𝐺(𝑥, 𝑧) → U

by-head ∶ Π {𝑥 𝑦} . Π {𝑤 ∶ W𝐺(𝑥, 𝑦)} .Prefix(⟨𝑥⟩, 𝑤)
by-edge ∶ Π {𝑥 𝑦 𝑧 𝑘} . Π {𝑒 ∶ E𝐺(𝑥, 𝑦)}. Π {𝑝 ∶ W𝐺(𝑦 , 𝑧)} . Π {𝑞 ∶ W𝐺(𝑦 , 𝑘)}.

Prefix(𝑝, 𝑞) → Prefix(𝑒 ⊙ 𝑝, 𝑒 ⊙ 𝑞)

Lemma 5.7. Given a prefix 𝑤1 for a walk 𝑤 , we can prove that there is a term of (5.1–4)
named suffix(𝑤1, 𝑤 , 𝑡), referring to as the suffix of 𝑤 given 𝑤1, where 𝑡 ∶ 𝑤 = 𝑤1 ⋅ 𝑤2.

∑
(𝑤2∶W𝐺(𝑦 ,𝑧))

(𝑤 = 𝑤1 ⋅ 𝑤2). (5.1–4)

Proof. For brevity, we skip the trivial cases for 𝑤1 and 𝑤 . The remaining cases are proved
by induction; first, on 𝑤1, and second, on 𝑤 . The resulting non-trivial case occurs when
𝑤1 = 𝑒 ⊙ 𝑝, 𝑤 = 𝑒 ⊙ 𝑞 and 𝑡 ∶ Prefix(𝑝, 𝑞) for two walks 𝑝 and 𝑞. By the induction
hypothesis applied to 𝑝, 𝑞, and 𝑡 , the term suffix(𝑝, 𝑞, 𝑡) is obtained, from which one gets

5.2 The type of quasi-simple walks 83

the suffix walk 𝑤2 along with a proof 𝑖 ∶ 𝑞 = 𝑝 ⋅ 𝑤2. Thus, the required term is the pair
(𝑤2, ap(𝑒 ⊙ -, 𝑖)). □

We now encode the case where the walk 𝑤 is divided at the first occurrence of the
node 𝑦 , using the type family SplitAt(𝑤, 𝑦) defined in Definition 5.8. The corresponding
method to inhabit the type SplitAt(𝑤, 𝑦) is the function given in Lemma 5.9, assuming
the node set in the graph is discrete. This walk-splitting encoding is implicitly used in
several parts of the proof of Theorem 5.48.

Definition 5.8 (). The type SplitAt(𝑤, 𝑦) is the inductive type defined as:

data SplitAt {𝑥 𝑧}(𝑤 ∶ W𝐺(𝑥, 𝑧)) (𝑦 ∶ N𝐺) ∶ U

nothing ∶ Π {𝑥 𝑦} . Π {𝑤 ∶ W𝐺(𝑥, 𝑦)} . (𝑦 ∉ 𝑤) → SplitAt(𝑤, 𝑦)
just ∶ Π {𝑥 𝑦} . Π {𝑤 ∶ W𝐺(𝑥, 𝑦)} . (𝑝 ∶ W𝐺(𝑥, 𝑦))

→ Prefix(𝑝, 𝑤) → (𝑦 ∉ 𝑝) → SplitAt(𝑤, 𝑦)

Lemma 5.9. The type SplitAt(𝑤, 𝑦) is inhabited if the node set of the graph is discrete.

Proof. By induction on the structure of the walk.

1. If the walk is trivial, then the required term is nothing(id), as by definition, 𝑦 ∉ 0.

2. If the walk is the composite (𝑒 ⊙ 𝑤) with 𝑒 ∶ E𝐺(𝑥, 𝑦 ′) and 𝑤 ∶ W𝐺(𝑦 ′, 𝑧), we ask
whether 𝑦 is equal to 𝑥 or not.

(a) If 𝑦 = 𝑥 , then the required term is just(⟨𝑦⟩, head, id).
(b) If 𝑦 ≠ 𝑥 , then, by the induction hypothesis on 𝑤 and 𝑦 , the following cases need

to be considered.

i. If the case is nothing, then there is enough evidence that 𝑦 ∉ 𝑤 and we use
for the required term the nothing constructor.

ii. Otherwise, there is a prefix 𝑤1 for 𝑤 and a proof 𝑟 ∶ 𝑦 ∉ 𝑤1. Using 𝑟 and
the fact 𝑥 ≠ 𝑦 , we can construct 𝑟 ′ ∶ 𝑦 ∉ (𝑒 ⊙ 𝑤1). Then, the term that
we are looking for is just(𝑒 ⊙ 𝑤1, by-edge(𝑝), 𝑟 ′) of type SplitAt(𝑒 ⊙ 𝑤, 𝑦), as
required in the conclusion. □

5.2 The type of quasi-simple walks

In this subsection, we characterise walks with shapes as in Figure 5.1 and refer to such as
quasi-simple walks in Definition 5.12.

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-walks.Walk.QuasiSimple.html#9019

84 Walks and Spherical Maps

•𝑥 •𝑥 •𝑦 •𝑥 •𝑥 •𝑦𝑤1

𝑤2
𝑤3

𝑤4

Figure 5.1: The arrows in the picture can represent edges or walks of a positive length.
In the sense of Definition 5.12, a quasi-simple walk can only be one of these kinds: i)
one-point walk ii) path iii) loop without inner node repetitions, or iv) composite walk
between a path and a quasi-simple walk of kind iii. The walks 𝑤3 and 𝑤4 only share the
occurrence of 𝑦 that is explicitly shown.

•𝑥

𝑤1

𝑤2 •𝑥 •𝑦

𝑤3
𝑤4

•𝑥 •𝑦 •𝑧𝑤5

𝑤6
𝑤7

Figure 5.2: These are three examples of walks that are not quasi-simple in the sense of
Definition 5.12. The walks 𝑤1 and 𝑤2 only share the node 𝑥 , and the same happens with
the walks 𝑤3 and 𝑤4. The walks 𝑤5, 𝑤6 and 𝑤7 only share the node 𝑦 . The walks 𝑤𝑖 for 𝑖
from 1 to 7 are nontrivial walks.

The notion of a quasi-simple walk will be used to introduce a reduction relation on
the set of walks to remove their inner loops; see Definition 5.29. A notion related to the
definition of a quasi-simple walk is that of a path [Die12]. The usual graph-theoretical
notion of a (simple) path is a walk without repeated nodes. Here, quasi-simple walks are
introduced, since paths are not suitable in our description of graph maps in Section 5.5.
There, the totality of walks is considered, which includes closed walks, also called loops.
For graph maps in the sphere, we found out that the type of quasi-simple walks can
replace the type of walks under certain conditions. Quasi-walks are conveniently defined
in a way that permits their end to appear at most twice in the walk.

To define quasi-simpleness for walks, we introduce an unconventional relation, de-
noted by (𝑥 ∈ 𝑤), meaning that 𝑥 appears as the source of some edge in 𝑤 , which may
also be the last vertex of 𝑤 in the case that the walk ends in a loop, see Definition 5.10.
(𝑥 ∈ 𝑤) is a proposition, and decidable if the walks belong to graphs with a discrete node
set. Consequently, Lemma 5.17 shows that being quasi-simple is also a decidable propo-
sition on such graphs. Quasi-simple walks play an important role in this work. They
are required to give an alternative definition of graph maps in the sphere, as stated in
Definition 5.44.

Definition 5.10. Let 𝑥, 𝑦 , 𝑧 ∶ N𝐺 and 𝑤 ∶ W𝐺(𝑥, 𝑧). The relation (∈) on a walk 𝑤 for a node
𝑦 is defined as the node 𝑦 that is not 𝑧 but belongs to 𝑤 , that is, whenever the type (𝑦 ∈ 𝑤)
is inhabited.

5.2 The type of quasi-simple walks 85

1. 𝑦 ∈ ⟨𝑧⟩ ∶≡ 0.

2. 𝑦 ∈ (𝑒 ⊙ 𝑤) ∶≡ (𝑦 = source(𝑒)) + (𝑦 ∈ 𝑤).

Lemma 5.11. If the node set of the graph 𝐺 is discrete, then the type (𝑥 ∈ 𝑤) is a decidable
proposition for any node 𝑥 and walk 𝑤 in 𝐺.
Definition 5.12. Given 𝑥, 𝑦 ∶ N𝐺 , a walk in 𝐺 from 𝑥 to 𝑦 is quasi-simple if isQuasi(𝑤)
holds.

isQuasi(𝑤) ∶≡ ∏
(𝑧∶N𝐺)

isProp(𝑧 ∈ 𝑤). (5.2–5)

Lemma 5.13. Being quasi-simple is a proposition.

Proof. It follows since isProp(𝑧 ∈ 𝑤) is a proposition. □

Thus, Definition 5.12 presents a quasi-simple walk as a path where the end could only
be present at most twice. Examples of walks that are not quasi-simple are illustrated in
Figure 5.2.
Lemma 5.14. Given 𝑥, 𝑦 , 𝑧 ∶ N𝐺 , 𝑒 ∶ E𝐺(𝑥, 𝑦) and a quasi-simple walk 𝑤 ∶ W𝐺(𝑦 , 𝑧), if
𝑥 ∉ 𝑤 then the walk (𝑒 ⊙ 𝑤) is quasi-simple.

Proof. Given a node 𝑟 , we must show that 𝑟 ∈ (𝑒 ⊙ 𝑤) is a proposition. That is equivalent
to showing that the type (𝑟 = 𝑥) + (𝑟 ∈ 𝑤) is a proposition. The coproduct of mutually
exclusive propositions is a proposition. Then, remember that 𝑟 = 𝑥 is a given proposition
and that the type (𝑟 ∈ 𝑤) is also a proposition, since the walk 𝑤 is quasi-simple by
hypothesis. Thus, it remains to show that there is no term (𝑝, 𝑞) where 𝑝 ∶ (𝑟 = 𝑥) and
𝑞 ∶ (𝑟 ∈ 𝑤). A contradiction arises, since by hypothesis 𝑥 ∉ 𝑤 but from tr𝜆𝑧→𝑧∈𝑤 (𝑝)(𝑞) ∶
𝑥 ∈ 𝑤 . □

Lemma 5.15. Given 𝑥, 𝑦 , 𝑧 ∶ N𝐺 , 𝑒 ∶ E𝐺(𝑥, 𝑦), and a walk 𝑤 ∶ W𝐺(𝑦 , 𝑧), if the walk (𝑒 ⊙ 𝑤)
is a quasi-simple walk then 𝑤 is also a quasi-simple walk.

Proof. Given any node 𝑢 ∶ N𝐺 and two proofs 𝑝, 𝑞 ∶ 𝑢 ∈ 𝑤 , we must show that 𝑝 = 𝑞.
By definition, inr(𝑝) and inr(𝑞) are proofs of that 𝑢 ∈ (𝑒 ⊙ 𝑤). Because (𝑒 ⊙ 𝑤) is a
quasi-simple walk, the equality inr(𝑝) = inr(𝑞) holds. The constructor inr is an injective
function, and one therefore obtains 𝑝 = 𝑞 as required. □

Corollary 5.16. Trivial and one-edge walks are quasi-simple walks.

Lemma 5.17. If the node set of the graph is discrete, then being quasi-simple for a walk is a
decidable proposition.

Proof. Let 𝑥, 𝑧 ∶ N𝐺 and 𝑤 ∶ W𝐺(𝑥, 𝑧), we want to show that isQuasi(𝑤) is decidable.
The proof is by induction on the structure of 𝑤 .

86 Walks and Spherical Maps

1. If 𝑤 is trivial then, by Corollary 5.16, the walk 𝑤 is quasi-simple.

2. If 𝑤 is the composite walk (𝑒⊙𝑤 ′) for 𝑒 ∶ E𝐺(𝑥, 𝑦) and 𝑤 ′ ∶ W𝐺(𝑦 , 𝑧), we recursively
ask whether the walk 𝑤 ′ is quasi-simple or not.

(a) If 𝑤 ′ is not quasi-simple, then 𝑤 is not quasi-simple by the contrapositive of
Lemma 5.15.

(b) If 𝑤 ′ is quasi-simple, then we ask if 𝑥 ∈ 𝑤 ′. If so, then 𝑤 is not quasi-simple.
Otherwise, that would contradict the definition of quasi-simpleness, as the node
𝑥 would appear twice in 𝑤 . Now, if 𝑥 ∉ 𝑤 ′, one obtains that 𝑤 is quasi-simple
by Lemma 5.14. □

5.2.1 The finiteness property

This subsection presents a proof that the collection of quasi-simple walks in a finite graph
𝐺 constitutes a finite set (Theorem 5.26). The proof hinges on demonstrating the finite-
ness of an equivalent type to (5.2–6).

For clarity, we define the standard type with 𝑛 elements, denoted by J𝑛K, inductively
as follows:

▷ J0K ∶≡ 0,

▷ J1K ∶≡ 1, and

▷ J𝑛 + 1K ∶≡ J𝑛K + 1.

To establish the desired equivalence (Lemma 5.25), it is necessary first to derive some
intermediate results.

∑
(𝑤∶W𝐺(𝑥,𝑦))

isQuasi(𝑤). (5.2–6)

Lemma 5.18. Given any walk 𝑤 ∶ W𝐺(𝑥, 𝑧) of length 𝑛, then

J𝑛K ≃ ∑
(𝑦∶N𝐺)

(𝑦 ∈ 𝑤). (5.2–7)

Proof. By induction on the structure of 𝑤 .

1. If the walk is trivial, the required equivalence follows from the type equivalence
between 0 and Σ𝑧∶N𝐺0.

2. If the walk is (𝑒⊙𝑤) for 𝑒 ∶ E𝐺(𝑥, 𝑦) and 𝑤 ∶ W𝐺(𝑦 , 𝑧), the equivalence is established
by the following calculation. Let 𝑛 be the length of 𝑤 .

5.2 The type of quasi-simple walks 87

∑
(𝑦∶N𝐺)

(𝑦 ∈ (𝑒 ⊙ 𝑤)) ≡ ∑
(𝑦∶N𝐺)

(𝑦 = 𝑥) + (𝑦 ∈ 𝑤) (5.2–8a)

≃ ∑
(𝑦∶N𝐺)

(𝑦 = 𝑥) + ∑
(𝑦∶N𝐺)

(𝑦 ∈ 𝑤) (5.2–8b)

≃ 1 + ∑
(𝑦∶N𝐺)

(𝑦 ∈ 𝑤) (5.2–8c)

≃ 1 + J𝑛K (5.2–8d)
≡ J𝑛 + 1K. (5.2–8e)

Equivalence (5.2–8a) is accomplished by Definition 5.10. Σ-type distributes coprod-
ucts as in Equivalence (5.2–8b). We can simplify in Equivalence (5.2–8c) because the
type Σ𝑦∶N𝐺 (𝑦 = 𝑥) is contractible. Note that the inner path is fixed, and it is then
equivalent to the unit type. Equivalence (5.2–8d) is by the induction hypothesis ap-
plied to 𝑤 . Equivalence (5.2–8e) is accomplished by the definition of J𝑛K using the
coproduct definition. □

Lemma 5.19. Given 𝑥, 𝑦 , 𝑧 ∶ N𝐺 , and 𝑤 ∶ W𝐺(𝑥, 𝑦) the type (𝑧 ∈ 𝑤) is a finite set if the
node set of 𝐺 is discrete.

Proof. By induction on the structure of 𝑤 : in case the walk is trivial, the type in question is
finite as it is equal to the empty type by definition. In the composite walk case, 𝑧 ∈ (𝑒⊙𝑤),
we must prove that the type (𝑧 = 𝑥) + (𝑧 ∈ 𝑤) is finite. Note that the former is finite
by Corollary 2.15. By the induction hypothesis, the type 𝑧 ∈ 𝑤 is finite. The required
conclusion then follows, since finite sets are closed under coproducts. □

We can now prove that for finite graphs, there exists a finiteness property for the
collection of all quasi-simple walks, derived from the finiteness of the set of quasi-simple
walks of a fixed length 𝑛 for 𝑛 ∶ N.

Definition 5.20. Given 𝑥, 𝑦 ∶ N𝐺 and 𝑛 ∶ N, the type qswalk collects all quasi-simple walks
of a fixed length 𝑛.

qswalk(𝑛, 𝑥, 𝑦) ∶≡ ∑
(𝑤∶W𝐺(𝑥,𝑦))

isQuasi(𝑤) × (length(𝑤) = 𝑛).

Lemma 5.21. Given a graph 𝐺, 𝑛 ∶ N, and 𝑥, 𝑧 ∶ N𝐺 , the following equivalence holds.

qswalk(𝑆(𝑛), 𝑥, 𝑧) ≃∑
(𝑦∶N𝐺)

∑
(𝑒∶E𝐺(𝑥,𝑦))

∑
(𝑤∶qswalk(𝑛,𝑦 ,𝑧))

(𝑥 ∉ 𝑤). (5.2–9)

88 Walks and Spherical Maps

Proof. The back-and-forth functions are extensions of the functions derived from Lem-
mas 5.14 and 5.15. □

Lemma 5.22. Given a finite graph 𝐺, 𝑥, 𝑦 ∶ N𝐺 and 𝑛 ∶ N, the type qswalk(𝑛, 𝑥, 𝑦) in
Definition 5.20 is a finite set.

Proof. It suffices to show that the type qswalk(𝑛, 𝑥, 𝑦) is finite. The proof is made by
induction on 𝑛.

1. If 𝑛 = 0, the type defined by qswalk(0, 𝑥, 𝑧) is equivalent to the identity type 𝑥 = 𝑦 ,
as the only walks of length zero are the trivial walks. Given that the set of nodes is
discrete, the path space 𝑥 = 𝑦 is finite by Corollary 2.15.

2. Otherwise, given 𝑥, 𝑧 ∶ N𝐺 , we must prove that the type

qswalk(𝑆(𝑛), 𝑥, 𝑧)

is finite, for 𝑛 ∶ N, assuming that qswalk(𝑛, 𝑥, 𝑧) is finite. This is equivalent to show-
ing that the equivalent type given by Equivalence (5.2–9) is finite. The required
conclusion follows by Lemma 2.13, as each type of the Σ-type in the right-hand side
of the equivalence in Equivalence (5.2–9) is finite. The set N𝐺 and the sets by E𝐺
are each finite, as 𝐺 is a finite graph. The type qswalk(𝑛, 𝑦 , 𝑧) is finite by induction
hypothesis. Lastly, any decidable proposition is finite i.e., (𝑥 ∉ 𝑤 ′) is finite. □

Lemmas 5.24 and 5.25 prove the factmentioned earlier on the node repetition condition
in a quasi-simple walk. A node can only appear once in a quasi-simple walk, unless the
node is the end of the walk. From now on, unless otherwise stated, we will refer to 𝑛 as
the cardinality ofN𝐺 whenever the node set of the graph 𝐺 is finite. The number of nodes
in any quasi-simple walk is bounded by 𝑛 + 1.
Lemma 5.23. Let 𝐺 be a finite graph. Then (5.2–10) is a finite set.

∑
(𝑥,𝑦∶N𝐺)

∑
(𝑚∶J𝑛+1K) qswalk(𝑚, 𝑥, 𝑦). (5.2–10)

Proof. The conclusion follows since finite sets are closed under Σ-types. N𝐺 is finite, since
𝐺 is a finite graph. J𝑛 + 1K is finite. The type qswalk(𝑚, 𝑥, 𝑦) is finite by Lemma 5.22. □

Lemma 5.24. Given a graph 𝐺 with finite node set of cardinality 𝑛, 𝑥, 𝑦 ∶ N𝐺 and a quasi-
simple walk 𝑤 ∶ W𝐺(𝑥, 𝑦) of length 𝑚, then it holds that 𝑚 ≤ 𝑛.

Proof. It suffices to generate an embedding between the finite set J𝑚K and the finite node
set in 𝐺. Such an embedding is the projection function 𝜋1 ∶ Σ𝑥∶N𝐺 (𝑥 ∈ 𝑤) → N𝐺 . Note
that the domain of the function 𝜋1 is equivalent to J𝑚K by Lemma 5.18. □

5.3 Normal forms for walks 89

Now, evenwhen the type of walks forms an infinite set, thanks to Lemma 5.24 and The-
orem 5.26, we will be able to prove that for any nodes 𝑥 and 𝑦 , the collection of quasi-
simple walks from 𝑥 to 𝑦 forms a finite set as long as the graph is finite.
Lemma 5.25. Given a graph 𝐺 with a finite node set of cardinality 𝑛 and 𝑥, 𝑦 ∶ N𝐺 , the
following equivalence holds.

∑
(𝑤∶W𝐺(𝑥,𝑦))

isQuasi(𝑤) ≃ ∑
(𝑚∶J𝑛+1K) qswalk(𝑚, 𝑥, 𝑦). (5.2–11)

Proof. Apply Lemma 5.24. □

It is not immediately clear that quasi-simple walks forms a finite set, even when the
graph is finite. A quasi-simple walk can contain a loop at its terminal node. One might
think there are infinitely many walks if each walk loops at its terminal nodes. However,
by constraining walks to be quasi-simple, we obtain the finiteness property.
Theorem 5.26. The quasi-simple walks of a finite graph 𝐺 forms a finite set. In other words,
the following type is inhabited.

isFinite(∑
(𝑥,𝑦∶N𝐺)

∑
(𝑤∶W(𝑥,𝑦))

isQuasi(𝑤)) . (5.2–12)

Proof. The conclusion clearly follows from Lemmas 5.23 and 5.25, since finite sets are
closed under type equivalences and Σ-types by Lemma 2.13. □

5.3 Normal forms for walks

In this subsection, a reduction relation in Definition 5.29 is established on the set of walks
of equal endpoints. Some cases considered by such a relation are illustrated in Figure 5.3.
This relation provides a way to remove loops from walks in a graph with a discrete set of
nodes. The notion of normal form for walks presented in this work is based on the loop
reduction relation in Definition 5.34.

The following definitions establish a few type families to encode walks of a certain
basic structure. For example, nontrivial walks and loops which are necessary for the
formalisation.

Definition 5.27. Let 𝑥, 𝑦 ∶ N𝐺 and 𝑤 ∶ W𝐺(𝑥, 𝑦).
1. The walk 𝑤 is a loop whenever the head is equal to the end, i.e., Loop(𝑤).

data Loop ∶ Π {𝑥, 𝑦} .W𝐺(𝑥, 𝑦) → U

is-loop ∶ Π{𝑥 𝑦}. Π{𝑤 ∶ W𝐺(𝑥, 𝑦)} . 𝑥 = 𝑦 → Loop(𝑤)

90 Walks and Spherical Maps

•𝑥 •𝑥

•𝑥 •𝑦 •𝑧 •𝑥 •𝑦 •𝑧

•𝑥 •𝑧 •𝑥 •𝑧

𝑝

𝜉1

𝑒 𝑝
𝜉2

𝑒 𝑞

𝑞 𝜉3 𝑞

Figure 5.3: The rules 𝜉1, 𝜉2, and 𝜉3 of the loop-reduction relation in (5.3–13). The rule 𝜉1
is that a nontrivial loop reduces to the trivial walk of its endpoint. The rule 𝜉2 is that the
relation is right compatible with edge concatenation. The rule 𝜉3 is the relation removes
left attached loops. Note that in the type constructor for 𝜉3, the edge 𝑒 goes from 𝑥 to 𝑦 ,
and the walk 𝑝 is a walk from 𝑦 to 𝑥 , and 𝑞 is a walk from 𝑦 to 𝑧. However, since the walk
𝑒 ⊙ 𝑝 is a loop, 𝑥 and 𝑦 are the same node, and the constructor 𝜉3 is applied to remove the
loop.

2. The walk 𝑤 is trivial if its length is zero, i.e., Trivial(𝑤).

data Trivial ∶ Π {𝑥, 𝑦} .W𝐺(𝑥, 𝑦) → U

is-trivial ∶ Π{𝑥 𝑦}. Π{𝑤 ∶ W𝐺(𝑥, 𝑦)} . length(𝑤) = 0 → Trivial(𝑤)

3. A walk 𝑤 is not trivial, if it has at least one edge, i.e., NonTrivial(𝑤).

data NonTrivial ∶ Π {𝑥, 𝑦} .W𝐺(𝑥, 𝑦) → U

has-edge ∶ Π{𝑥 𝑦 𝑧}. Π{𝑤 ∶ W𝐺(𝑦 , 𝑧)} . (𝑒 ∶ E𝐺(𝑥, 𝑦))
→ NonTrivial(𝑒 ⊙ 𝑤)

4. A walk 𝑤 does not reduce if we can construct a term of type NoReduce(𝑤), meaning
that 𝑤 is either a trivial walk, or a one-edge walk with different endpoints.

data NoReduce ∶ Π {𝑥, 𝑦} .W𝐺(𝑥, 𝑦) → U

is-dot ∶ Π{𝑥} .NoReduce(⟨𝑥⟩)
is-edge ∶ Π{𝑥 𝑦}. Π {𝑒 ∶ E𝐺(𝑥, 𝑦)} . (𝑥 ≠ 𝑦) → NoReduce(𝑒 ⊙ ⟨𝑦⟩)

5. A walk 𝑤 is not a trivial loop if we can construct a walk that goes from its endpoint
to itself that is not trivial, that is, the loop is constructed using a non-trivial walk, i.e.,
NonTrivialLoop(𝑤).

5.3 Normal forms for walks 91

data NonTrivialLoop ∶ Π {𝑥, 𝑦} .W𝐺(𝑥, 𝑦) → U

is-loop ∶ Π{𝑥 𝑦 𝑧} .{𝑒 ∶ E𝐺(𝑥, 𝑦)} . (𝑝 ∶ 𝑥 = 𝑧) → (𝑤 ∶ W𝐺(𝑦 , 𝑧))
→ NonTrivialLoop(𝑒 ⊙ 𝑤)

Lemma 5.28. Given 𝑥, 𝑦 ∶ N𝐺 and 𝑢 ∶ W𝐺(𝑥, 𝑦), the following claims hold.

1. If 𝑥 ≠ 𝑦 then NonTrivial(𝑢).

2. If NonTrivial(𝑢) then 𝑥 ∈ 𝑢.

3. Given 𝑧 ∶ N𝐺 , if NonTrivial(𝑢) and 𝑣 ∶ W𝐺(𝑦 , 𝑧) then NonTrivial(𝑢 ⋅ 𝑣).

Remember that a reduction relation 𝑅 on a set 𝑀 is an irreflexive binary relation on 𝑀 . If
𝑅 is a reduction relation, we use 𝑥𝑅𝑦 to refer to the pair (𝑥, 𝑦) in 𝑅. If 𝑥𝑅𝑦 then one says
that 𝑥 reduces to 𝑦 or simply 𝑥 reduces.

Definition 5.29. The loop-reduction relation (⇝) on walks is (5.3–13). It is illustrated in
Figure 5.3.

data (⇝) ∶ Π {𝑥, 𝑦 ∶ N𝐺}.W𝐺(𝑥, 𝑦) → W𝐺(𝑥, 𝑦) → U

𝜉1 ∶ Π {𝑥 𝑦} . (𝑝 ∶ W𝐺(𝑥, 𝑦)) (𝑞 ∶ W𝐺(𝑥, 𝑦))
→ NonTrivialLoop(𝑝) → Trivial(𝑞)
→ 𝑝 ⇝ 𝑞

𝜉2 ∶ Π {𝑥 𝑦 𝑧} . (𝑒 ∶ E𝐺(𝑥, 𝑦)) (𝑝, 𝑞 ∶ W𝐺(𝑦 , 𝑧))
→ ¬ Loop(𝑒 ⊙ 𝑝) → 𝑥 ≠ 𝑦
→ (𝑝 ⇝ 𝑞) → (𝑒 ⊙ 𝑝) ⇝ (𝑒 ⊙ 𝑞)

𝜉3 ∶ Π {𝑥 𝑦 𝑧} . (𝑒 ∶ E𝐺(𝑥, 𝑦)) (𝑝 ∶ W𝐺(𝑦 , 𝑥))
→ (𝑞 ∶ W𝐺(𝑥, 𝑧))
→ ¬ Loop((𝑒 ⊙ 𝑝) ⋅ 𝑞) → Loop(𝑒 ⊙ 𝑝)
→ NonTrivial(𝑞)
→ (𝑤 ∶ W𝐺(𝑥, 𝑧)) → 𝑤 = (𝑒 ⊙ 𝑝) ⋅ 𝑞
→ 𝑤 ⇝ 𝑞

(5.3–13)

The following provides hints about the intuition behind each of the data constructors
above.

1. The rule 𝜉1 is “a nontrivial loop reduces to the trivial walk of its endpoint”.

2. The rule 𝜉2 is “the relation (⇝) is right compatible with edge concatenation”.

3. The rule 𝜉3 is “the relation (⇝) removes left attached loops”.

https://jonaprieto.github.io/synthetic-graph-theory/CPP2022-paper.html#2358

92 Walks and Spherical Maps

Remark 5.30. The data constructors in (5.3–13) follow a design principle to avoid certain
unification problems occurring in dependently-typed programs [McB; KSW20].

Definition 5.31. The relation (⇝∗) is the reflexive and transitive closure of the relation (⇝)
in Definition 5.29.

Lemma 5.32. Given 𝑥, 𝑦 ∶ N𝐺 and 𝑝, 𝑞 ∶ W𝐺(𝑥, 𝑦), the following claims hold:

1. If 𝑥 ∈ 𝑞 and 𝑝 ⇝∗ 𝑞 then 𝑥 ∈ 𝑝.
2. If 𝑝 ⇝ 𝑞 then length(𝑞) < length(𝑝).
One can prove that our reduction relation in Definition 5.29 satisfies the progress prop-

erty, similarly as proved for simply-typed lambda calculus in Agda [KSW20, §2]. Evidence
that a walk reduces is encoded using the following predicate.

Definition 5.33. Given a walk 𝑝 ∶ W𝐺(𝑥, 𝑦),

Reduce(𝑝) ∶≡ ∑
(𝑞∶W𝐺(𝑥,𝑦))

(𝑝 ⇝ 𝑞).

The predicate Normal defined in Definition 5.34 is the evidence that a walk is a quasi-
simple walk that can no longer reduce.

Definition 5.34. Given a walk 𝑝, one states that 𝑝 is in normal form ifNormal(𝑝). If 𝑝 ⇝ 𝑞
and the walk 𝑞 is in normal form; we refer to 𝑞 as the normal form of 𝑝.

Normal(𝑝) ∶≡ isQuasi(𝑝) × ¬Reduce(𝑝).

Lemma 5.35. Being in normal form for a walk is a proposition.

Proof. It follows from Lemmas 2.13 and 5.17. □

Example 5.36. The very basic normal forms forwalks are the trivial ones, and the one-
edge walks with different endpoints. Given a walk 𝑤 and a term ofNoReduce(𝑤), one
can easily show that the walk 𝑤 is in normal form.

Definition 5.37. Given nodes 𝑥 and 𝑦 in a graph 𝐺, we encode the fact a walk can reduce or
not by using the inductive data type Progress.

data Progress {𝑥 𝑦} (𝑝 ∶ W𝐺(𝑥, 𝑦)) ∶ U

step ∶ Reduce(𝑝) → Progress(𝑝)
done ∶ Normal(𝑝) → Progress(𝑝)

5.4 The notion of walk homotopy 93

Theorem 5.38. Given a graph 𝐺 with a discrete node set, there exists a reduction for each
walk to one of its normal forms, i.e., (5.3–14) is inhabited for all 𝑤 ∶ W𝐺(𝑥, 𝑦).

∑
(𝑣∶W𝐺(𝑥,𝑧))

(𝑤 ⇝∗ 𝑣) × Normal(𝑣). (5.3–14)

Remark 5.39. The reduction relation (⇝) has the termination property. There is no
infinite sequence of walks reducing, since the length of each walk in a chain, like
𝑤1 ⇝ 𝑤2 ⇝ 𝑤3 ⇝ ⋯, decreases at each reduction step. See also Lemma 5.3.

Corollary 5.40. Given a graph 𝐺 with a discrete node set, and a walk 𝑤 of type W𝐺(𝑥, 𝑦)
for two 𝑥, 𝑦 ∶ N𝐺 , the following claims hold.

1. The type Reduce(𝑤) is decidable.

2. The proposition Normal(𝑤) is decidable.

3. The walk 𝑤 progresses in the sense of Definition 5.37.

For simplicity, the proofs of Theorem 5.38 and Corollary 5.40 are omitted. Neither of
them requires the law of excluded middle. However, if we want to construct the normal
form for a walk, the node set of the graph has to be discrete. In the case of Theorem 5.38,
its proof can use the same reasoning given for the proof of Theorem 5.48.

5.4 The notion of walk homotopy

In this subsection, we introduce a binary relation, denoted by (∼M), on the set of walks
between fixed endpoints in a graph. This relation is designed to capture the behaviour of
walks in an embedded graph in a surface such as the two-dimensional plane, where all
the walks can be deformed one into another along the faces of the graph map in use.

Definition 5.41. Let 𝑤1, 𝑤2 be two walks from 𝑥 to 𝑦 in Sym(𝐺). The expression 𝑤1 ∼M 𝑤2
denotes that one can deform 𝑤1 into 𝑤2 along the faces of M, as illustrated in Figure 5.4. We
acknowledge evidence of this deformation as a walk homotopy between 𝑤1 and 𝑤2, of type
𝑤1 ∼M 𝑤2.

The relation (∼M) has four constructors, as follows. The first three constructors are func-
tions to indicate that homotopy for walks is an equivalence relation; they are hrefl, hsym,
and htrans. Let 𝑥, 𝑦 ∶ N𝐺 .

94 Walks and Spherical Maps

hrefl ∶ ∏
(𝑤1∶WSym(𝐺)(𝑥,𝑦))

𝑤1 ∼M 𝑤1.

hsym ∶ ∏
(𝑤1,𝑤2∶WSym(𝐺)(𝑥,𝑦))

𝑤1 ∼M 𝑤2 → 𝑤2 ∼M 𝑤1.

htrans ∶ ∏
(𝑤1,𝑤2,𝑤3∶WSym(𝐺)(𝑥,𝑦))

𝑤1 ∼M 𝑤2 → 𝑤2 ∼M 𝑤3 → 𝑤1 ∼M 𝑤3.

(5.4–15)

The fourth constructor, illustrated in Figure 5.5, is the hcollapse function that establishes
the walk homotopy:

(𝑤1 ⋅ cwF(𝑎, 𝑏) ⋅ 𝑤2) ∼M (𝑤1 ⋅ ccwF(𝑎, 𝑏) ⋅ 𝑤2),
supposing one has the following,

(i) a face F given by ⟨𝐴, 𝑓 ⟩ of the map M,

(ii) a walk 𝑤1 of type WSym(𝐺)(𝑥, 𝑓 (𝑎)) for a node 𝑥 in 𝐺 with a node 𝑎 in 𝐴, and

(iii) a walk 𝑤2 of type WSym(𝐺)(𝑓 (𝑏), 𝑦) for a node 𝑏 in 𝐴 with a node 𝑦 in 𝐺.

w1

w2

⇐

⇐

y

x
⇐

Figure 5.4: It is shown that three homotopies between twowalks from 𝑥 to 𝑦 in an embed-
ded graph in the sphere. In each case, the arrow (⇓) indicates the face and the direction in
which the correspondingwalk deformation is performed. We obtain a homotopy between
the two highlighted walks, 𝑤1 and 𝑤2, by composing, from left to right, the homotopies
from each figure.

•𝑥 •𝑓 (𝑎) •𝑓 (𝑏) •𝑦𝑤1

ccwF(𝑎,𝑏)

𝑤2

cwF(𝑎,𝑏)

Figure 5.5: Given a face F of a map M, we illustrate here hcollapse, one of the four con-
structors of the homotopy relation on walks in Definition 5.41. The arrow (⇓) represents
a homotopy of walks.

5.5 The type of spherical maps 95

One consequence of Definition 5.41 is that, in each face F, there is a walk-homotopy
between ccwF(𝑥, 𝑦) and cwF(𝑥, 𝑦) using the constructor hcollapse.

The following lemma shows how to compose walk homotopies horizontally and
whiskering. We consider a map M for a graph 𝐺 and distinguishable nodes, 𝑥, 𝑦 , and
𝑧 where 𝑤 , 𝑤1, and 𝑤2 are walks from 𝑥 to 𝑦 .
Lemma 5.42.

1. (Right whiskering) Let 𝑤3 be a walk of type WSym(𝐺)(𝑦 , 𝑧). If 𝑤1 ∼M 𝑤2 then (𝑤1 ⋅
𝑤3) ∼M (𝑤2 ⋅ 𝑤3).

•𝑥 •𝑦 •𝑧 → •𝑥 •𝑧
𝑤1

𝑤2

𝑤3
𝑤1⋅𝑤3

𝑤2⋅𝑤3

2. (Left whiskering) Let 𝑝1, 𝑝2 be walks of type WSym(𝐺)(𝑦 , 𝑧). If 𝑝1 ∼M 𝑝2 then (𝑤 ⋅
𝑝1) ∼M (𝑤 ⋅ 𝑝2).

•𝑥 •𝑦 •𝑧 → •𝑥 •𝑧𝑤
𝑝1 𝑤⋅𝑝1

𝑤⋅𝑝2𝑝2

3. (Horizontal composition) Let 𝑝1, 𝑝2 be walks of type WSym(𝐺)(𝑦 , 𝑧). If 𝑤1 ∼M 𝑤2 and
𝑝1 ∼M 𝑝2, then (𝑤1 ⋅ 𝑝1) ∼M (𝑤2 ⋅ 𝑝2).

•𝑥 •𝑦 •𝑧 → •𝑥 •𝑧
𝑤1

𝑤2

𝑝1

𝑝2

𝑤1⋅𝑝1

𝑤2⋅𝑝2

5.5 The type of spherical maps

In topology, the sphere’s property of being simply connected states that one can freely
deform/contract any walk on the sphere into another whenever they share the same end-
points. This property of the sphere leads to the predicate in Definition 5.43, which sets
the criteria for a graph to be embeddable in the 2-sphere. An alternative definition of
this criteria for graphs with discrete nodes is provided in Definition 5.44. We use spheri-
cal maps to develop basic planarity criteria for graphs, which were initially described in
[PG24].

Definition 5.43. Given a graph 𝐺, a map M for 𝐺 is said to be spherical if the type in (5.5–16)
is inhabited.

∏
(𝑥,𝑦∶NSym(𝐺))

∏
(𝑤1,𝑤2∶WSym(𝐺)(𝑥,𝑦))

∥ 𝑤1 ∼M 𝑤2 ∥ . (5.5–16)

96 Walks and Spherical Maps

To prove a given map is spherical following Definition 5.43, one must consider the set
of all possible walk-pairs for each node-pair. This is not easy unless the set of walks fol-
lows a certain property, since the type of walks forms an infinite set. Therefore, it is pro-
posed an alternative formulation for spherical maps based on Definition 5.29. Anywalk is
homotopic to its normal form, and only quasi-simple walks can be in normal form. By re-
moving such a “redundancy” created by loops in the graph, a more convenient definition
is obtained for spherical maps for graphs with discrete node set, see Definition 5.44. Fur-
thermore, using Theorem 5.48, we show that both definitions are equivalent for graphs
with discrete node set in Corollary 5.49.

Definition 5.44. Given a graph 𝐺, a map M for 𝐺 is considered to be spherical if the type
in (5.5–17) is inhabited.

∏
(𝑥,𝑦∶N𝐺)

∏
(𝑤1,𝑤2∶WSym(𝐺)(𝑥,𝑦))

isQuasi(𝑤1) × isQuasi(𝑤2) → ∥ 𝑤1 ∼M 𝑤2 ∥ . (5.5–17)

Lemma 5.45. Being spherical for a map is a proposition. Furthermore, if the graph of the
map is finite, such a proposition is decidable.

Proof. The first part follows straightforwardly. To show the second part, let ℳ be a map
for a finite graph. Then, the conclusion will follow if for any pair of quasi-simple walks,
𝑝 and 𝑞, sharing endpoints, one can always determine whether a walk homotopy exists
or not between them. To check if 𝑝 ∼ℳ 𝑞, let us assume, without loss of generality, that
𝑝 and 𝑞 are different walks without a prefix or suffix walk in common. Otherwise, using
left/right whiskering as in Lemma 5.42, one could reconstruct a walk homotopy from a
walk homotopy between 𝑝 and 𝑞 without prefixes and suffixes.

�
�
� �

�
�� �� � ��

Figure 5.6: The figure shows the cases considered in the proof of Lemma 5.45 for two
walks 𝑝 and 𝑞 with the same endpoints. In the first case, there is at least one walk between
𝑝 and 𝑞, while in the second case, there are no faces but those given by a map.

Using the map, one can check whether there is a walk 𝑟 between 𝑝 and 𝑞. Note that
the set of quasi-simple walks is finite, and one can then freely iterate through any subset
of it; see Theorem 5.26.

5.5 The type of spherical maps 97

w1

w2

w1

w2

w1

w2

⇐

⇐

⇐

⇐
⇐

⇐

⇐ ⇒

⇒

Figure 5.7: The figure shows three different walk homotopies between the walks 𝑤1 and
𝑤2 in a graph with a spherical map.

Now, if there is no such walk 𝑟 , then one checks if 𝑝 and 𝑞 cover one or more faces from
the finite set of faces of ℳ. If so, one can repeatedly use data constructors like htrans
and hcollapse to build up a walk homotopy using the faces between 𝑝 and 𝑞, as illustrated
in Figure 5.6. Covering a face using 𝑝 and 𝑞 means that the boundary of such a face is
the concatenation of a subwalk of 𝑝 and a subwalk of 𝑞. Otherwise, there is a hole, which
allows concluding that such a map is not spherical.

On the other hand, if there is a walk 𝑟 between 𝑝 and 𝑞, then we recursively check if
𝑝 ∼ℳ 𝑟 and 𝑟 ∼ℳ 𝑞. If both walk homotopies exist, one continues with a different pair
of walks. Otherwise, the map is not spherical. □

Lemma 5.46. The collection of all spherical maps for a (finite) graph is a (finite) set.

Proof. This is a subtype of the type of maps, which, when considering a finite graph, turns
out to be finite. Subtypes of finite types are finite. □

We will only refer to spherical maps as maps that follow Definition 5.44, unless other-
wise indicated. It is straightforward to prove that loops are homotopic to the correspond-

98 Walks and Spherical Maps

ing trivial walk if a spherical map is given.

Lemma 5.47. Given a graph 𝐺, a spherical map M and 𝑥 ∶ N𝐺 , it follows that ‖(𝑒 ⊙⟨𝑥⟩) ∼M

⟨𝑥⟩‖ for all 𝑒 ∶ ESym(𝐺)(𝑥, 𝑥).

Proof. Apply M to the walks (𝑒 ⊙ ⟨𝑥⟩) and ⟨𝑥⟩. □

Theorem 5.48. Given a graph 𝐺 with a spherical map M and discrete set of nodes, for any
walk 𝑝 ∶ WSym(𝐺)(𝑥, 𝑧), there exists a normal form of 𝑝, denoted by nf(𝑝), such that 𝑝 is
merely homotopic to nf(𝑝), in the sense of Definition 5.41.

Proof. Given a walk 𝑝 in Sym(𝐺) from 𝑥 to 𝑧 of length 𝑛, we will construct a term of type
𝑄(M, 𝑥, 𝑧, 𝑝) defined as follows.

𝑄(M, 𝑥, 𝑧, 𝑤) ∶≡ ∑
(𝑣∶WSym(𝐺)(𝑥,𝑧))

(𝑤 ⇝∗ 𝑣) × Normal(𝑣) × ‖𝑤 ∼M 𝑣‖.

The proof is done by using strong induction on 𝑛.

▷ Case 𝑛 equals zero. The walk 𝑝 is the trivial walk ⟨𝑥⟩, and it is then in normal form
and also, by hrefl, homotopic to itself.

▷ Case 𝑛 equals one. The walk 𝑝 is a one-edge walk. We then ask if 𝑥 = 𝑧.

1. If 𝑥 = 𝑧, the walk 𝑝 reduces to the trivial walk ⟨𝑥⟩ by 𝜉1. Applying M, one obtains
evidence of a homotopy between 𝑝 and ⟨𝑥⟩, as the two walks are quasi-simples.

2. If 𝑥 ≠ 𝑧, the one-edge walk 𝑝 is its own normal form and homotopic to itself by
hrefl.

▷ Assuming that 𝑄(𝑥′, 𝑧′, 𝑤) for any walk 𝑤 from 𝑥′ to 𝑦 ′ of length 𝑘 ≤ 𝑛, we must
prove that 𝑄(𝑥, 𝑧, 𝑝) when the length of 𝑝 is 𝑛 + 1.

▷ Therefore, let 𝑝 be a walk (𝑒 ⊙ 𝑤) where 𝑒 ∶ ESym(𝐺)(𝑥, 𝑦) and the walk 𝑤 ∶
WSym(𝐺)(𝑦 , 𝑧) is of length 𝑛. The following cases must be considered with respect to
equality 𝑥 = 𝑦 .

1. If 𝑥 = 𝑦 then by the induction hypothesis applied to 𝑤 , one obtains the normal
form nf(𝑤) of the walk 𝑤 , along with 𝑟 ∶ 𝑤 ⇝ nf(𝑤) and ℎ1 ∶ ‖𝑤 ∼M nf(𝑤)‖.
We ask if 𝑥 = 𝑧 to see if 𝑝 is a loop.

(a) If 𝑥 = 𝑧 then the walk 𝑝 reduces to the trivial walk ⟨𝑥⟩ by 𝜉1. By applying M

to the quasi-simple walk nf(𝑤) and ⟨𝑥⟩, ℎ2 ∶ ‖ nf(𝑤) ∼M ⟨ 𝑧 ⟩ ‖ is obtained.
It remains to show that 𝑝 is homotopic to ⟨𝑥⟩. Because being homotopic is a
proposition, the propositional truncation in ℎ1 and ℎ2 can be eliminated to

5.5 The type of spherical maps 99

get access to the corresponding homotopies. The required walk homotopy
is as follows.

𝑝 ≡ (𝑒 ⊙ 𝑤)
𝑝 ∼M 𝑒 ⊙ nf(𝑤) (By Lemma 5.42 and ℎ1)
𝑝 ∼M 𝑒 ⊙ ⟨𝑧⟩ (By Lemma 5.42 and ℎ2)
𝑝 ∼M ⟨𝑥⟩ (By Lemma 5.47 applied to M).

(b) If 𝑥 ≠ 𝑧, then the walk 𝑝 reduces to nf(𝑤) by the following calculation using
ℎ1.

𝑝 ≡ (𝑒 ⊙ 𝑤)
𝑝 ≡ (𝑒 ⊙ ⟨𝑥⟩) ⋅ 𝑤 (By def. of walk composition)
𝑝 ⇝∗ 𝑤 (By 𝜉3)
𝑝 ⇝∗ nf(𝑤) (By 𝑟).

2. If 𝑥 ≠ 𝑦 , then we split 𝑤 at 𝑥 using Lemma 5.9. Hence, two cases have to be
considered: whether 𝑥 is in 𝑤 or not, see Definition 5.8.

(a) If 𝑥𝑖𝑠 ∈ 𝑤 , then, for every node 𝑘 in 𝐺, there are walks 𝑤1 ∶ WSym(𝐺)(𝑦 , 𝑘)
and 𝑤2 ∶ WSym(𝐺)(𝑘, 𝑧) such that 𝛾 ∶ 𝑤 = 𝑤1 ⋅ 𝑤2, along with evidence that
𝑥 ∉ 𝑤1 by Lemma 5.9. By the induction hypothesis applied to 𝑤1 and to 𝑤2,
we obtain the normal forms nf(𝑤1) and nf(𝑤2), and the terms 𝑟𝑖 ∶ 𝑤𝑖 ⇝ nf(𝑤𝑖)
and ℎ𝑖 ∶ ‖𝑤𝑖 ∼M nf(𝑤𝑖)‖ for 𝑖 = 1, 2. The following cases refer to whether
𝑥 = 𝑧 or not.

i. If 𝑥 = 𝑧, the walk 𝑝 reduces to ⟨𝑥⟩ by the rule 𝜉1. To show that 𝑝 is
homotopic to ⟨𝑥⟩, let 𝑠1 and 𝑠2 of type, respectively, ‖𝑝 ∼M nf(𝑤2)‖ and
‖ nf(𝑤2) ∼M ⟨𝑥⟩‖, as given below. Assuming one has the terms 𝑠1 and 𝑠2,
by elimination of the propositional truncation and the transitivity prop-
erty of walk homotopy with 𝑠1 and 𝑠2, the required conclusion follows.
The walk homotopy 𝑠1 is as follows.

𝑝 ≡ (𝑒 ⊙ 𝑤)
𝑝 ∼M 𝑒 ⊙ (𝑤1 ⋅ 𝑤2) (By the equality 𝛾)
𝑝 ∼M (𝑒 ⊙ 𝑤1) ⋅ 𝑤2 (By assoc. property of (⋅))
𝑝 ∼M (𝑒 ⊙ nf(𝑤1)) ⋅ nf(𝑤2) (By Lemma 5.42, ℎ1, and ℎ2)
𝑝 ∼M ⟨𝑥⟩ ⋅ nf(𝑤2) (By the homotopy from ℎ4)
𝑝 ∼M nf(𝑤2) (By definition),

where ℎ4 ∶ ‖(𝑒 ⊙ nf(𝑤1)) ∼M ⟨𝑥⟩‖ is given by applying the map M to
the quasi-simple walks, (𝑒 ⊙ nf(𝑤1)) and ⟨𝑥⟩. The walk (𝑒 ⊙ nf(𝑤1)) is
quasi-simple by Lemma 5.14. Also, note that 𝑥 ∉ nf(𝑤1) by Lemma 5.32
and the assumption 𝑥 ∉ 𝑤1. Finally, the remaining walk homotopy 𝑠2 is

100 Walks and Spherical Maps

obtained by applying M to the quasi-simple walks, nf(𝑤2) and the trivial
walk at 𝑥 .

ii. If 𝑥 ≠ 𝑧, then the walk 𝑝 reduces to nf(𝑤2) by the reduction reasoning in
(5.5–18). As the walk nf(𝑤2) is in normal form, it remains to show that 𝑝
is homotopic to nf(𝑤2). However, the reasoning is similar to Item 2(a)i.

𝑝 ≡ (𝑒 ⊙ 𝑤)
𝑝 ⇝∗ 𝑒 ⊙ (𝑤1 ⋅ 𝑤2) (By splitting 𝑤 using Lemma 5.9)
𝑝 ⇝∗ (𝑒 ⊙ 𝑤1) ⋅ 𝑤2 (By assoc. property of (⋅))
𝑝 ⇝∗ ⟨𝑥⟩ ⋅ 𝑤2 (By 𝜉2 applied to the loop (𝑒 ⊙ 𝑤1))
𝑝 ⇝∗ 𝑤2 (By definition of walk composition)
𝑝 ⇝∗ nf(𝑤2) (By the induction hypothesis).

(5.5–18)

(b) Otherwise, there is evidence that 𝑥 ∉ 𝑤 . By the induction hypothesis ap-
plied to 𝑤 , the walk nf(𝑤) is obtained, alongwith a reduction 𝑟 ∶ 𝑤 ⇝ nf(𝑤)
and evidence ℎ ∶ ‖ 𝑤 ∼M nf(𝑤) ‖. The proof is by structural induction on
the walk, nf(𝑤).
i. If nf(𝑤) is the trivial walk ⟨𝑦⟩, then the walk 𝑝 reduces either to ⟨𝑥⟩, if

𝑥 = 𝑧, or to the walk (𝑒 ⊙ ⟨𝑧⟩), if 𝑥 ≠ 𝑧. Either way, it is possible to
construct the corresponding homotopies, similarly as for Item 1a.

ii. If the walk nf(𝑤) is the composite walk (𝑢 ⊙ 𝑣) for 𝑢 ∶ ESym(𝐺)(𝑦 , 𝑦 ′),
𝑣 ∶ WSym(𝐺)(𝑦 ′, 𝑧) and nodes 𝑦 ′, 𝑧 ∶ N𝐺 , then we ask if 𝑥 = 𝑧.
– If 𝑥 = 𝑧, then the walk 𝑝 reduces to the trivial walk ⟨𝑥⟩ by 𝜉1. It re-

mains to show that the walk (𝑒 ⊙ nf(𝑤)) is homotopic to ⟨𝑥⟩. The
spherical property of the map M is applied to observe this. Note that
the walk (𝑒 ⊙ nf(𝑤)) is quasi-simple by Lemma 5.14, as 𝑥 ∉ nf(𝑤) by
Lemma 5.32 applied to the assumption 𝑥 ∉ 𝑤 .

– If 𝑥 ≠ 𝑧, then the walk 𝑝 reduces to the walk (𝑒 ⊙ nf(𝑤)) by 𝜉2.
By the propositional truncation elimination applied to the evidence of
Lemma 5.42 and the homotopy ℎ, one can obtain evidence that the walk
(𝑒 ⊙ 𝑤) is homotopic to (𝑒 ⊙ nf(𝑤)). It remains to show that the com-
posite walk (𝑒 ⊙ nf(𝑤)) is in normal form. By Lemma 5.14, this walk is
quasi-simple. By case analysis on the possible reductions using Defi-
nition 5.29, one proves that this walk does not reduce. Therefore, the
walk (𝑒 ⊙ nf(𝑤)) is in normal form. □

Corollary 5.49. The two spherical map definitions, Definition 5.43 and Definition 5.44, are
equivalent when considering graphs with a discrete set of nodes.

Proof. The definitions in question are propositions. Thus, it is only necessary to show

5.5 The type of spherical maps 101

that they are logically equivalent.

1. Every spherical map by Definition 5.44 is a spherical map with additional data in the
sense of Definition 5.43

2. Let M be a spherical map by Definition 5.44. To see M also satisfies Definition 5.43,
let 𝑤1 and 𝑤2 be two quasi-simple walks from 𝑥 to 𝑦 . We must now exhibit evidence
that 𝑤1 is homotopic to 𝑤2. By Theorem 5.48, a walk homotopy ℎ1 between 𝑤1 and
the normal form nf(𝑤1) exists. Similarly, one can obtain a term ℎ2 of type ‖𝑤2 ∼M

nf(𝑤2)‖.

𝑤1 ∼M nf(𝑤1) (By ℎ1 from Theorem 5.48)
𝑤1 ∼M nf(𝑤2) (By ℎ3 from Definition 5.44)
𝑤1 ∼M 𝑤2 (By ℎ2 from Theorem 5.48).

(5.5–19)

On the other hand, note that walks in normal form are quasi-simple walks by def-
inition. Therefore, it is possible to get ℎ3 ∶ ‖nf(𝑤1) ∼M nf(𝑤2)‖ by applying the
spherical property of the map M to nf(𝑤1) and nf(𝑤2). By the elimination of the
propositional truncation applied to ℎ1, ℎ2, and ℎ3, the required evidence of a homo-
topy between 𝑤1 and 𝑤2 can be obtained, as stated in (5.5–19). □

For the sake of completeness, let us here state Lemma 5.51 that there exists one spher-
ical map for every 𝐶𝑛. This lemma together with the results of Section 4.4.2 allows us to
prove later Example 6.3. The candidate map for 𝐶𝑛 to be spherical is precisely the one
given in Example 4.30.

Lemma 5.50. Let 𝑥, 𝑦 be nodes in 𝐶𝑛. The following claims hold for the graph Sym(𝐶𝑛). The
walks cwSym(𝐶𝑛)(𝑥, 𝑦) and ccwSym(𝐶𝑛)(𝑥, 𝑦), referenced in Lemma 4.29, are quasi-simple
walks. The total length of these walks sums up to 𝑛.

Additionally, one can prove that 𝑛 is the maximum possible length of a quasi-simple
walk in the graph Sym(𝐶𝑛), as stated in Lemma 5.24. Moreover, as illustrated in Figure 4.5
for the face F, the graph Sym(𝐶𝑛) is completely covered by the walks ccwSym(𝐶𝑛)(𝑥, 𝑦) and
cwSym(𝐶𝑛)(𝑥, 𝑦). Note that for any graph 𝐺, there are at least two closed walks between
any pair of nodes 𝑥, 𝑦 in any face F, respectively, ccwF(𝑥, 𝑦) and cwF(𝑥, 𝑦).
Lemma 5.51. The graph map for 𝐶𝑛 given in Example 4.30 is spherical.

Proof. We must show that any pair of walks in 𝐶𝑛, equivalently quasi-simple walks, are
walk-homotopic. Let us consider the following cases.

1. If 𝑛 = 1, the only walk to consider is the trivial walk, which is trivially homotopic to
itself.

102 Walks and Spherical Maps

2. If 𝑛 > 1 and 𝑥 ≠ 𝑦 , then one only needs to consider the quasi-simple walks
ccwSym(𝐶𝑛)(𝑥, 𝑦) and cwSym(𝐶𝑛)(𝑥, 𝑦) given by Lemmas 4.29 and 5.50.

However, such walks are walk-homotopic by

hcollapse(F, 𝑥, 𝑦 , 𝑥, 𝑦 , ⟨𝑥⟩, ⟨𝑦⟩),

where F is the face induced by Sym(𝐶𝑛).
3. Otherwise, if 𝑛 > 1 and 𝑥 = 𝑦 , the only walks to consider are the trivial walk

at 𝑥 and cwSym(𝐶𝑛)(𝑥, 𝑥). Remember that the ccwSym(𝐶𝑛)(𝑥, 𝑦) is by definition ⟨𝑥⟩.
Similarly, as in the previous case, these two walks are homotopic by the constructor
hcollapse. □

5.6 Discussion

In other areas of mathematics unrelated to type theory, considering homotopy for graph-
theoretical concepts, for example, is not new. There are several proposals for the concept
of homotopy for graphs using a few discrete categorical constructions [GLM+14]. Many
of these constructions use the ×-homotopy notion, defined as a relation based on the cat-
egorical product of graphs in the Cartesian closed category of undirected graphs. Since a
walk of length 𝑛 in a graph 𝐺 is simply a morphism between a path graph 𝑃𝑛 into 𝐺, the
notion of homotopy for walks is defined as homotopy between graph homomorphisms.
The looped path graph 𝐼𝑛 is used to define the homotopy of these morphisms in a manner
similar to the interval [0, 1] for the concept of homotopy between functions in homotopy
theory. As a source of more results, it is possible to endow the category of undirected
graphs with a 2-category structure by considering homotopies of walks as 2-cells, as de-
scribed by Chih and Scull [CS20].

In terms of the reduction relation on walks and spherical maps, this work is related
to polygraphs used in the context of higher-dimensional rewriting systems. Recent work
by Kraus and von Raumer [KvR21; KvR20] uses ideas in graph theory, higher categories,
and abstract rewriting systems to approximate a series of open problems in HoTT. In the
same vein, the internalisation of rewriting systems and the implementation of polygraphs
in Coq by Lucas [Luc20; Luc19] were found to be related to the Kraus and von Raumer
approach. A fundamental object in the work of the authors mentioned above is that of
an 𝑛-polygraph, also called computad.

A 𝑛-polygraph is a (higher dimensional) structure that can serve, for example, to anal-
yse reducing terms to normal forms and compare reduction sequences on abstract term
rewriting systems. The following is a possible correspondence to relate these ideas within
the context of our work. The notion of a 1-polygraph [KvR21, §2], which is given by two
sets Σ0 and Σ1, and two functions, 𝑠0, 𝑡0 ∶ Σ1 → Σ0 is equivalent to the type of graphs in

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-definitions.Alternative-definition-is-equiv.html

5.6 Discussion 103

Definition 3.1. An object is a node, a reduction step is an edge, and a reduction sequence
𝑎 ⇝∗ 𝑏 is a walk between nodes 𝑎 to 𝑏. A (closed) zig-zag is a (cycle) walk in the sym-
metrisation of the graph representing the reduction relation. A (generalised) 2-polygraph
[KvR21, Def. 25] consists of a type𝐴, a set of reduction steps on𝐴, and all rewriting steps
between zig-zags. Then, the notion of 2-polygraph on𝐴will correspond to a graph 𝐺 rep-
resenting the type 𝐴 with the set of all walks in 𝐺 and the collection of walk homotopies
in the symmetrisation Sym(𝐺) for a given combinatorial map.

Using the previous interpretation for polygraphs, one may state that a graph with a
spherical map holds properties such as terminating, closed under congruence, cancels in-
verses, and it has aWinkler–Buchberger structure [KvR21, Eq. 32-35]. The related concept
of homotopy basis of a 2-polygraph [KvR21, Def. 28] may be seen as the set obtained from
Definition 5.43 without using propositional truncation in the corresponding type.

On the other hand, Noetherian induction for closed zig-zags [KvR21, § 3.5] addresses a
similar issue that we investigated here. In this work, we found that to prove certain prop-
erties, such as the normalisation theorem in Theorem 5.48 for graphswith a spherical map
and a discrete set, it was only necessary to consider (cycle) walks without inner loops.
One can prove other properties related to walk homotopies for graphs with spherical
maps, not only considering the property on a cycle walk but on any walk. This approach
relies on the machinery of quasi-simple walks in Section 5.2 and the loop reduction rela-
tion on walks in Section 5.3. Our loop reduction relation is likely locally confluent [KvR21,
§ 3.3], but without the uniqueness of normal forms. Proof of these properties will be done
in the future, since they are not required here. We will also investigate in depth the ex-
tent to which the constructions given by Kraus and von Raumer, as well as by Lucas, are
not only related but also applicable to our main project of graph theory in HoTT [Pri24].

Finally, on the computer formalisation side, we identify only the earlier mentioned
work by Kraus and von Raumer as related to our Agda formalisation. They have a for-
malised version of their results in Lean’s HoTT variant [vRD20].

104 Walks and Spherical Maps

6
Planar Maps

In this final chapter, our aim is to combine the concepts developed in previous chapters
and establish a HoTT characterisation of graph planarity, as outlined in Definition 6.1.
Our comprehension of graph planarity is influenced by topological graph theory [GT87,
§3], allowing us to employ combinatorial maps to represent graph embeddings in a sur-
face up to isotopy, without needing to define a notion of surface or other topological
concepts within type theory.

We begin by reviewing background information on graph planarity before presenting
the type of planar maps. Subsequently, we introduce planar extensions of graph maps
and analyse the Euler characteristic for finite graphs. This method of extending graphs
paves the way for constructing a multitude of planar graphs.

6.1 Planarity in graph theory

In the field of graph theory, planar graphs refers to graphs that can be drawn in the two-
dimensional plane without any edge crossings. Why are planar graphs important? Planar
graphs, apart from the joy of studying them, are often used as convenient and efficient
models to address a wide variety of real-world problems. From a practical standpoint,
they aid in numerous applications ranging from geographical mapping, data visualisa-
tion, and various graph drawing algorithms to network layouts and electric circuit print-

106 Planar Maps

ing. In light of this, various characterisations have been introduced to offer alternative
perspectives and methods for understanding and identifying planar graphs.

The study of planarity criteria, which encompasses methods for identifying planar
graphs, commenced with Kuratowski’s work in 1930 and its theorem on graph planarity.
According to this theorem, a graph is considered planar if and only if it does not contain
a subgraph isomorphic to any of the forbidden minors 𝐾3,3 or 𝐾5. Consequently, if a
graph can be transformed into one of the forbidden minors through edge deletions and
contractions, then it is deemed non-planar. Another planarity criterion that mentions the
forbidden minors is Wagner’s theorem [Die12; Rah17]. Alternative approaches involve
algebraicmethods such asMacLane’s planarity criterion [Mac37] and Schnyder’s theorem
[Bau12, §3.3].

In the context of type theory and formal methods, planar graphs hold a special place.
The Four Colour Theorem (FCT), a seminal result in graph theory, was proven with com-
puter assistance by Appel and Haken in 1976. This theorem states that any finite planar
graph can be coloured with no more than four colours, ensuring no two adjacent nodes
share the same colour. Its proof, covering over 1900 cases, marks a significant milestone
in formal verification history and sparks a debate on the role of computers in mathemat-
ics. It raises questions such as: is a computer-checked proof truly a mathematical proof?
And to what extent can computers assist in theorem proving?

Addressing the concerns surrounding the validity of Appel andHaken’s proof, Gonthier
undertook a complete formalisation of the FCT proof using Coq [Gon23]. This monumen-
tal task stands as a significant milestone in the realm of formal verification. Their work
not only fortified the standing of the FCT proof but also illuminated the vast potential of
computer-assisted methodologies. One such method involves elaborating mathematical
statements using dependently typed theories such as the Coq’s type system.

6.2 A type of planar maps for a graph

We aim to characterise graph planarity in HoTT based on the intuitive notion that edges
cannot cross each other on the plane. Finding a way to define the concept of edge cross-
ing carefully is a challenging task. If we follow the geometric nature of the intuitive
description, we may end up working with real numbers to represent, for example, the
coordinates in the R2 to represent the nodes and edges of the graph drawing. The con-
struction of real numbers in HoTT is discussed in [Uni13, §10]. To avoid these issues, we
choose to follow the combinatorial approach described in previous chapters to describe
graph maps in the plane, or equivalently, the 2-sphere with a puncture.

In the context of topology, we are aware that the 2-sphere possesses two primary in-
variants that we want transport to the language of graph maps: path-connectedness and
simply-connectedness. The concept of path-connectedness is that a path exists connect-

6.2 A type of planar maps for a graph 107

ing any two points within the 2-sphere. On the other hand, simply-connectedness sug-
gests that if two paths share the same endpoints in the 2-sphere, they can be deformed
into one another.

If we consider a walk as the path in the corresponding space induced by the graphmap,
we can transport these two concepts with a fixed graph. Thus, the path-connectedness
property coincides with being connected for the embedded graph. To address simply-
connectedness for the surface induced by a graph map, we need to have an equivalent
notion to saying how a pair of walks can be deformed into one another. We developed
this notion and called walk homotopy in Definition 5.41. The concept of a graph map in
the 2-sphere is what we call a spherical map.

A spherical map for a graph 𝐺 is defined as a map M that satisfies the property of
isSpherical(M).

isSpherical(M) ∶≡ ∏
(𝑥,𝑦∶NSym(𝐺))

∏
(𝑤1,𝑤2∶WSym(𝐺)(𝑥,𝑦))

∥ 𝑤1 ∼M 𝑤2 ∥ . (6.2–1)

In essence, the concept of a spherical map for a graph is defined as the characterisation
of graph embeddings in the 2-sphere. The non-edge-crossing condition appearing in the
intuitive definition of planarity mentioned earlier is now captured in the characterisation
of spherical maps with the notion of homotopy of walks. In other words, there is no edge-
crossing when embedding a graph using a map if such is spherical. As a result, having
spherical maps for a graph is a necessary condition for its planarity.

��

Figure 6.1: The stereographic projection of the sphere 𝑆2 onto the two-dimensional plane.

The final observation involves determining how to obtain a graph embedding in the
plane from a spherical map. This process comes naturally; recall that by puncturing the
2-sphere at a specific location and subsequently applying stereographic projection, we
can transform a graph embedded in the 2-sphere into one embedded in the plane. Thus,
we need to select one face of the map to serve as the puncture point on the 2-sphere,

108 Planar Maps

which completes our characterisation of planarity as described below.

Definition 6.1. A connected and locally finite graph 𝐺 is planar if the type Planar(𝐺) is
inhabited. Elements of Planar(𝐺) are called planar maps of 𝐺.

Planar(𝐺) ∶≡ ∑
(M ∶ Map(𝐺))

isSpherical(M) × Face(𝐺,M)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
outer face

.

We define the type Planar(𝐺) to represent all possible embeddings of 𝐺 into the plane,
specifically focusing on plane graphs. Although Planar(𝐺) is not a planarity test in itself,
it can be used to determine if a finite graph is planar or not by generating all the maps of
the graph and subsequently verifying their spherical nature and the presence of an outer
face, see Lemma 5.45.
Theorem 6.2. The type of all planar maps of a (finite) graph forms a (finite) set.

Proof. The type of planar maps in Definition 6.1 is not a proposition. It encompasses two
sets: the set of combinatorial maps, see Lemma 4.10, and the set of faces, see Lemma 4.18.
Since being spherical for a map is a mere proposition, one concludes that the Σ-type
collecting all planar maps of a graph forms a set. Now, given a finite graph, the finiteness
property of the collection of its planar maps is a direct consequence of the finiteness of
the set of nodes, edges, maps, and faces (see Lemma 4.10 and Theorem 4.26). □

Example 6.3. To establish the planarity of 𝐶𝑛, we begin with the base case 𝑛 = 0. For
reference, see the illustration in Figure 3.2 of the 𝑛-cycle graph 𝐶𝑛 for 𝑛 = 0,⋯ , 5. The
graph 𝐶0 is a unit graph, a graph with a single node ⋆ and no edges. Without edges,
the type of functions mapping this node to any cyclic order of its star is a contractible
type, yielding a unique, trivially spherical map. The map is spherical since the only
walk to consider is the empty walk, which is trivially homotopic to itself. Planarity
follows as 𝐶0 is connected by definition and possesses an outer face. To define this
face, we use as the base cyclic graph, the graph 𝐶0 itself along with identity graph
homomorphism ℎ, see that Sym(𝐶0) ≅ 𝐶0. The other conditions to inhabit the type
of faces for our map are thus trivially met, and the proof is detailed in Example A.1.

For 𝑛 > 0, 𝐶𝑛 is connected and locally finite as shown by Lemma 4.28. Its planarity
is supported by Example 4.30, which confirms the existence of a unique map M for 𝐶𝑛.
To show this map is spherical, it suffices to show that any two walks 𝑤1 and 𝑤2 with
identical endpoints are homotopic. Inner loops in walks can be ignored since they
are irrelevant to walk homotopy, as shown in Corollary 5.49. Let us now consider
the following cases. For 𝑛 = 1, the only walk is the one-edge walk, which is self-
homotopic. For 𝑛 > 1, when examining nodes 𝑥 and 𝑦 in 𝐶𝑛, we have:

▷ If 𝑥 ≠ 𝑦 , the relevant walks are

6.3 Planar extensions 109

ccwSym(𝐶𝑛)(𝑥, 𝑦)
and

cwSym(𝐶𝑛)(𝑥, 𝑦),
as per Lemma 4.29. These walks are homotopic via

hcollapse(F, 𝑥, 𝑦 , 𝑥, 𝑦 , ⟨𝑥⟩, ⟨𝑦⟩),

where F denotes the face associated with Sym(𝐶𝑛) where these walks form the
boundary of F.

▷ If 𝑥 = 𝑦 , thewalks under consideration are the trivial walk at 𝑥 and cwSym(𝐶𝑛)(𝑥, 𝑥).
Similarly to the previous case, these walks are homotopic via hcollapse.

Finally, the outer face of M is naturally induced by 𝐶𝑛, which satisfies Defini-
tion 4.14 by construction. In fact, the definition of faces in Definition 4.14 was in-
formed by the structure of 𝐶𝑛. Hence, we conclude that 𝐶𝑛 is planar for all 𝑛.
In addition to their simple structure, cyclic graphs, and in particular 𝐶𝑛 graphs, are

building blocks in a few relevant constructions in formal notions related to the study
of the planarity of graphs, such as planar triangulations and the characterisation of all
2-connected planar graphs.

In order to expand our collection of planar map examples, we will now explore the
concept of planar extensions in the context of graph maps. This approach will provide a
deeper understanding and additional instances of planar structures in graph theory.

6.3 Planar extensions

This subsection outlines the construction of planar maps from existing ones using the
path addition operation. The inspiration for this construction derives from ear decompo-
sitions [BG09, §5.3], reliable networks, extensions of planar graphs for undirected graphs
[GYA18, §5.2, 7.3], and the characterisation of 2-connected graphs [Whi32].

6.3.1 Path additions

Definition 6.4. Let 𝐺 be a graph with nodes 𝑢, 𝑣 , and 𝑃𝑛 denote a path graph of 𝑛 nodes as
defined in Definition 3.13. The (simple) path addition of 𝑃𝑛 to 𝐺 at nodes 𝑢 and 𝑣 in 𝐺 is
a new graph constructed using the function path-addition with arguments 𝐺, 𝑢, 𝑣 , 𝑛, and 𝑟
showing that 𝑛 is positive, as illustrated in Figure 6.5 (a). For short, this new graph is denoted
by 𝐺 •𝑢,𝑣 𝑃𝑛. Here, 𝑢 and 𝑣 are referred to as the endpoints of the addition.

110 Planar Maps

path-addition ∶ ∏
(𝐺∶Graph)

∏
(𝑢, 𝑣∶N𝐺)

∏
(𝑛∶N)

(0 < 𝑛) → Graph.

path-addition (𝐺, 𝑢, 𝑣 , 𝑛, 𝑟) ∶≡ (𝑁 ′, 𝐸′, ℎ1, ℎ2).

The types of nodes 𝑁 ′ and the family of edges 𝐸′ are defined below. The functions ℎ1 and
ℎ2 are well defined, although not elaborated here. Refer to Example A.3 for details on these
functions, their properties, and other functions related to path-additions.

𝑁 ′ ∶≡ N𝐺 + J𝑛K.
𝐸′ ∶ 𝑁 ′ → 𝑁 ′ → U.
𝐸′(inl(𝑥), inl(𝑦)) ∶≡ E𝐺(𝑥, 𝑦).
𝐸′(inl(𝑥), inr(𝑦)) ∶≡ (𝑥 = 𝑢) × (𝑦 = (0, 𝑟)).
𝐸′(inr(𝑥), inl(𝑦)) ∶≡ (𝑥 = pred((0, 𝑟))) × (𝑦 = 𝑣).
𝐸′(inr(𝑥), inr(𝑦)) ∶≡ E𝑃𝑛(𝑥, 𝑦).

Remember that the path graph 𝑃𝑛 with 𝑛 nodes can be defined as follows.

𝑃𝑛 ∶≡ (J𝑛K, 𝜆 𝑢 𝑣 .toNat(𝑢) + 1 = toNat(𝑣)),

where
toNat ∶ J𝑛K → N.
toNat (𝑘, !) ∶≡ 𝑘.

We also conveniently define the non-simple path addition of 𝑃𝑛 to 𝐺 at nodes 𝑢 and 𝑣 in
𝐺. This operationmirrors the symmetrisation of a simple path addition. This construction
of non-simple path addition is needed for subsequent sections, as it is used to establish
the planar graphs, which involve the symmetrisation of the given graph.

Definition 6.5. Let 𝐺 be a graph with nodes 𝑢, 𝑣 . The non-simple path addition of 𝑃𝑛 to
𝐺 at these nodes yields a new graph. This graph is constructed in a similar fashion as the
simple path addition, by linking 𝐺 and the graph Sym(𝑃𝑛) using four edges. Two of these
edges go from node 𝑢 to 0 in Sym(𝑃𝑛) and back. The other two edges link 𝑣 to 𝑛 in Sym(𝑃𝑛)
and back.

To ease the upcoming discussion, we must introduce the following conventions.

▷ 𝐺 is a locally connected finite graph with decidable equality on its nodes.

▷ 𝑛 is a positive natural number.

▷ In the graph 𝐺 •𝑢,𝑣 𝑃𝑛, we denote the walk from 𝑢 to 𝑣 via the addition of 𝑃𝑛 to 𝐺 as 𝑝.
This is illustrated in Figure 6.2 (a). By an abuse of notation, we may also refer to this

6.3 Planar extensions 111

walk as 𝑒0 ⋅ 𝑃𝑛 ⋅ 𝑒𝑛. Here, 𝑒0 and 𝑒𝑛 are the edges connecting nodes 𝑢 to 0 and nodes
𝑛 − 1 to 𝑣 respectively. The remaining edges, denoted as 𝑒𝑖, connect nodes 𝑖 − 1 and 𝑖
and represent the new additions from the path addition.

▷ For brevity, we denote 𝐺 •𝑢,𝑣 𝑃𝑛 by 𝐺 • 𝑝. This notation is often used below when the
specifics of 𝑛 and 𝑢, 𝑣 are not crucial to the discussion.

▷ We denote 𝐺 •𝑢,𝑣 Sym(𝑃𝑛) by 𝐺 • 𝑝. Here, 𝑝 represents the subgraph added to 𝐺
through the non-simple path addition of 𝑃𝑛 at nodes 𝑢 and 𝑣 . This is illustrated in
Figure 6.2 (b).

▷ In 𝐺 •𝑝, we adopt similar notation regarding edges in the symmetrisation of a graph,
as introduced in Figure 4.1. The walk ⃖⃖𝑝 signifies the walk in 𝑝 induced by the se-
quence ⃖⃖ ⃖𝑒0 ⋅ ⃖⃖ ⃖𝑒1 ⋅ ⋯ ⋅ ⃖⃖ ⃖𝑒𝑛. Conversely, ⃖⃗𝑝 denotes the opposite direction walk, induced by
the sequence ⃖⃖ ⃗𝑒𝑛 ⋅ ⃖⃖ ⃖⃖ ⃖⃖ ⃗𝑒𝑛−1 ⋅ ⋯ ⋅ ⃖⃖ ⃗𝑒0. See Figure 6.2 (b) for an illustration.

▷ Both 𝐺 • 𝑝 and 𝐺 • 𝑝 are referred to as graph extensions.

▷ The operator (•) is left associative.

▷ The variables 𝑝𝑖 denote finite path graphs of positive length, with respective end-
points 𝑢𝑖 and 𝑣𝑖, adhering to the same considerations as for 𝑝 in the previous items.

▷ A simple cyclic addition to 𝐺 is the path addition 𝐺 •𝑢,𝑢 𝑝 for some 𝑝, where 𝑢 is a
node in 𝐺.

Pn

v

en

n-10

e1
u

e0

Sym(Pn)

v

u

G • p
G • p

en
e0

e0
→

← ← en
→

Figure 6.2: The left figure illustrates the path addition 𝐺 •𝑢,𝑣 𝑃𝑛, achieved by adding path
graph 𝑃𝑛 to graph 𝐺 at nodes 𝑢 and 𝑣 . This process introduces two new edges, 𝑒0 and
𝑒𝑛, along with 𝑛 new nodes from path 𝑃𝑛. We define 𝑝 as the walk 𝑒0 ⋅ 𝑃𝑛 ⋅ 𝑒𝑛 from 𝑢 to 𝑣
in 𝐺 •𝑢,𝑣 𝑃𝑛, simplifying notation. Similarly, the right figure depicts the non-simple path
addition of 𝑃𝑛 to 𝐺 at nodes 𝑢 and 𝑣 , extending graph 𝐺 with 𝑃𝑛’s symmetrisation and
four additional edges.

Lemma 6.6. If 𝐺 is connected, then 𝐺 • 𝑝 and 𝐺 • 𝑝 are connected.

Proof. To demonstrate the connectedness of 𝐺 •𝑢,𝑣 𝑃𝑛, it is sufficient to consider connec-
tivity between all node pairs in the augmented graph. The case for 𝐺 •𝑢,𝑣 Sym(𝑃𝑛) is
analogous. Additionally, we assume a walk always can be constructed to connect any
two nodes in 𝐺. This is justified by eliminating the propositional truncation in the def-
inition of connectedness, since we want to prove connectedness for a graph, which is a

112 Planar Maps

proposition itself. The proof is followed by cases, depending on the location of the nodes
in the augmented graph.

Let 𝑥 and 𝑦 be distinct nodes in 𝐺 •𝑢,𝑣 𝑃𝑛; for identical nodes, a trivial walk suffices. If
both are in 𝐺, their connectivity is inherent. If 𝑥 is in 𝐺 and 𝑦 is in 𝑃𝑛, their connectivity
is established via a concatenated walk from 𝑥 to 𝑢 within 𝐺, followed by the subwalk of
𝑒0 ⋅𝑃𝑛 ⋅ 𝑒𝑛 that connects 0 to 𝑦 . If 𝑥 and 𝑦 lie in 𝑃𝑛, say they correspond to 𝑖 and 𝑗, we can use
as the walk to connect them, 𝑒𝑖+1 ⋅⋯ ⋅ 𝑒𝑗 if 𝑖 < 𝑗. Otherwise, the walk is 𝑒𝑖 ⋅⋯ ⋅ 𝑒𝑛 ⋅ 𝑤 ⋅ 𝑒0 ⋅⋯ ⋅ 𝑒𝑗 ,
where 𝑤 denotes a given walk from 𝑣 to 𝑢 in 𝐺. □

Lemma 6.7. Sym(𝐺 • 𝑝) ≅ Sym(𝐺) • 𝑝.

Proof. To show these graphs are isomorphic, we compare their node and edge sets for
equivalence. By definitions of Sym and path-addition, the node sets are identical:

NSym(𝐺•𝑝) ≡ N𝐺 + J𝑛K ≡ NSym(𝐺) + J𝑛K ≡ NSym(𝐺)•𝑝 .

For the edge sets, we want to show that for given nodes 𝑥 and 𝑦 ,

ESym(𝐺•𝑝)(𝑥, 𝑦) ≃ ESym(𝐺)•𝑝(𝑥, 𝑦).

To address this equivalence, we notice how the path addition operation affects the edge
sets of original graph. This operation affects the edges differently based on the location
of 𝑥 and 𝑦 , but within 𝐺 or 𝑃𝑛, and because symmetrisation does not alter the edge sets:

ESym(𝐺•𝑝)(𝑥, 𝑦) ≡ ESym(𝐺)(𝑥, 𝑦) ≡ ESym(𝐺)•𝑝(𝑥, 𝑦).

When 𝑥 is in 𝐺 and 𝑦 in 𝑃𝑛, or vice versa, symmetry allows us to consider two cases:
𝑥 ≡ 𝑢 and 𝑦 ≡ 0, or 𝑥 ≡ 𝑣 and 𝑦 ≡ 𝑛. In both scenarios, the new edges introduced by path
addition result in equivalent edge sets.

ESym(𝐺•𝑢,𝑣𝑃𝑛)(𝑢, 0) ≃ J2K ≃ ESym(𝐺)•𝑝(𝑢, 0).
The first part of this chain, the equivalence, ESym(𝐺•𝑢,𝑣𝑃𝑛)(𝑢, 0) ≃ J2K which is due to the
fact that 𝑢 and 0 are adjacent in Sym(𝐺 •𝑢,𝑣 𝑃𝑛). These two edges are the one induced
in 𝐺 •𝑢,𝑣 𝑃𝑛 and the other one from the symmetrisation process. On the other hand, the
equivalence ESym(𝐺)•𝑝(𝑢, 0) ≃ J2K follows by applying (•𝑝) to Sym(𝐺). The case for 𝑥 ≡ 𝑣
and 𝑦 ≡ 𝑛 is analogous. Consequently, the edge sets coincide, confirming the expected
isomorphism. □

Lemma 6.8. Let M represent a planar map of 𝐺, F a specific face, and 𝑢 and 𝑣 two nodes on
the boundary walk of F. An extended planar map of 𝐺 •𝑝 can be constructed from M, where
𝑝 is situated onto F, splitting it into two faces.

6.3 Planar extensions 113

The proof of Lemma 6.8 unfolds in several steps. We first define a map that extends
M to a proper map of 𝐺 • 𝑝 with defined values for the nodes in 𝑝. Next, as illustrated in
Figure 6.4, we establish two faces resulting from placing 𝑝 onto F. The final step involves
demonstrating that the candidate map for 𝐺 • 𝑝 is planar. That is, per Definition 6.1, that
all pairs of walks in the symmetrisation of 𝐺 • 𝑝 are walk homotopic with respect to the
given map.

Proof of Lemma 6.8. Let M be a planar map of 𝐺, F a specific face, and 𝑢 and 𝑣 two nodes
on the boundary walk of F. We denote the graph 𝐺 • 𝑝 as 𝐻 and the prospective planar
map for this graph as M′. In the context of Definition 4.14, within the face walk boundary
𝜕F of the given face F, we identify an edge preceding 𝑢, represented as 𝑎 ∶ E𝐺(pred(𝑢), 𝑢),
and its succeeding edge 𝑎+ ∶ E𝐺(𝑢, suc(𝑢)). Analogously for 𝑣 , we have 𝑏 ∶ E𝐺(pred(𝑣), 𝑣)
and 𝑏+ ∶ E𝐺(𝑣 , suc(𝑣)), as depicted in Figure 6.3a.

We define the map M′ at each node 𝑥 in 𝐻 . We begin with the endpoints of 𝑝, that is,
𝑥 = 𝑢 and 𝑥 = 𝑣 . For 𝑥 = 𝑢, we alter the cycle M(𝑢) by introducing 𝑒0 between the edges
𝑎 and 𝑎+, resulting in the cycle M′(𝑢) = (⋯ 𝑎 𝑒0 𝑎+ ⋯). Similarly, for 𝑥 = 𝑣 , the modified
cycle M′(𝑣) is (⋯ 𝑏 𝑒𝑛 𝑏+ ⋯). For internal nodes of 𝑝, that is, nodes 𝑥 in 𝑃𝑛, the map M′ is
defined directly. At each of these nodes, we encounter only two edges, denoted as 𝑒𝑖 and
𝑒𝑖+1, where 𝑖 ranges from 0 to 𝑛 − 1. Remember that 𝑒0 connects nodes 𝑢 and 0, 𝑒𝑛 links
nodes 𝑛 − 1 and 𝑣 , and for the remaining, 𝑒𝑖 bridges nodes 𝑖 − 1 and 𝑖.

Pn

u

en

a

a+

b+

b

v

n-1

e0
0

e1

(a) Path addition used in Lemma 6.8.

p q

r

(b) The embedded graph Sym(𝐺 • 𝑝 • 𝑞 • 𝑟).
Figure 6.3: Figure (a) in the caption illustrates the path addition 𝐺 • 𝑝 as detailed in
Lemma 6.8. Figure (b) presents the planar map for 𝐺 from Figure 4.2 (b), showcasing
three graph extensions: the path addition of 𝑝, cyclic addition of 𝑞, and spike addition of
𝑟 . Though it is feasible to define the construction of 𝑟 , it is not necessary for this discus-
sion. The additions of 𝑝 and 𝑞 split faces 𝐹2 and 𝐹3 from Figure 4.2, generating two new
faces each. The spike addition of 𝑟 substitutes 𝐹4 with a face of higher degree.

Assume the face F, induced by (𝐴, ℎ) of degree 𝑚 according to Definition 4.14. Here,
ℎ is an edge-injective graph homomorphism from 𝐴 to Sym(𝐻), satisfying the map-
compatibility condition. Let 𝜕F be the boundary walk of F of length 𝑘, and define 𝑛1, 𝑛2
as 𝑘 + (𝑛 + 1) and (𝑚 − 𝑘) + (𝑛 + 1) respectively.

114 Planar Maps

Let us denote 𝐹1, 𝐹2 as faces induced by (𝐶𝑛1 , ℎ1) and (𝐶𝑛2 , ℎ2) respectively, where ℎ1 =
(𝛼1, 𝛽1) and ℎ2 = (𝛼2, 𝛽2) are morphisms of type Hom(𝐶𝑛𝑖 , Sym(𝐻)) for 𝑖 = 1, 2. The
boundary walks of these faces, 𝜕𝐹1 and 𝜕𝐹2, are defined as cwF(𝑢, 𝑣) ⋅ ⃖⃗𝑝 and ccwF(𝑢, 𝑣) ⋅ ⃖⃗𝑝
respectively. The illustration in Figure 6.4 provides a visual representation of this concept.

F1

F2

∂F

ccwF(u, v)

v

u

p

cwF(u, v)

Sym(G • p)
Cn1

Cn2

(α1, β1)

(α2, β2)

Figure 6.4: The figure demonstrates the partitioning of face F into two, 𝐹1 and 𝐹2, via 𝐺 •𝑝
when 𝑝 resides on face F.

To establish the planarity of M′, we must first demonstrate that for each face 𝐹1 and 𝐹2
of M′, ℎ1 and ℎ2 satisfy the map-compatibility condition and uphold the edge-injectivity
property: in other words, we must first demonstrate that it is a map. Beginning with
ℎ1, consider the nodes in 𝐶𝑛1 , namely 0, 1, … , 𝑛1 − 1. Each node 𝑖 ∶ N𝐶𝑛1 maps to a node
defined by 𝛼 from F. Specifically, 𝛼1(𝑖) equals 𝛼(𝑖) for 𝑖 < 𝑘, while 𝛼(𝑖) positions the node
in cwF(𝑢, 𝑣). For the corresponding edges, 𝑒 ∶ E𝐶𝑛1 (𝑖, 𝑖 + 1), we employ the function 𝛽
from F to define 𝛽1, such that 𝛽1(𝑖, 𝑖 + 1, 𝑒) corresponds to 𝛽(𝑖, 𝑖 + 1, 𝑒).

However, if 𝑘 ≤ 𝑖 ≤ 𝑛1, node 𝑖 must be placed in 𝑝, then 𝛼1(𝑖) is 𝑛 − 𝑖. Correspondingly,
for edges, we set 𝛽1(𝑖, 𝑖 + 1, 𝑒) as the edge inl(𝑒𝑖) in Sym(𝐻). It is clear by construction
that ℎ1 is an edge-injective, map-compatible graph homomorphism with the map M′,
properties naturally inherited from ℎ. In a similar vein, it can be proven that ℎ2 is well
defined and satisfies the map-compatibility condition and the edge-injectivity property.

•𝑥 •𝑢 •𝑦 •𝑣 •𝑧𝛿1 𝑝2

cwF(𝑢,𝑣)

𝛿2𝑝1

ccwF(𝑢,𝑣)
ℎ𝐹2

ℎ𝐹1

Figure 6.5: The figure shows a part of the graph Sym(𝐺 • 𝑝) embedded in the 2-sphere.
As constructed in the proof of Lemma 6.8, the faces, 𝐹1 and 𝐹2, of the map M′ are given
by a face division of F by the path 𝑝. Such gives rise to new walk homotopies, as ℎ𝐹1 andℎ𝐹2 in the picture. The walk ⃖⃖𝑝 from 𝑢 to 𝑣 is the walk composition of 𝑝1, a walk from 𝑢 to
𝑦 , and 𝑝2, a walk from 𝑦 to 𝑣 . The walks 𝛿1 and 𝛿2 are walks in Sym(𝐺) from 𝑥 to 𝑧.

6.3 Planar extensions 115

To prove that M′ is planar, we must first show that it is spherical. To see this, we rely
on Lemma 5.45, which allows us to apply the elimination of the propositional truncation
to the evidence that M is spherical. This enables us to obtain a walk homotopy for any
pair of walks in Sym(𝐺) sharing endpoints, which is perhaps used henceforth without
explicit mention. This entails that homotopic walks in Sym(𝐺), deforming along faces
other than F, maintain their homotopy in Sym(𝐻). Therefore, our focus narrows down
to:

(i) the set of walks in Sym(𝐺) deforming along F, and

(ii) the set of walks resulting from possible compositions of 𝑝 with existing walks in
Sym(𝐺).

For both walks originating from set (i), their homotopy is defined by the vertical com-
position of homotopies along 𝐹1 and 𝐹2, as referenced in Lemma 5.42, [Pri22, §5].

In case (ii), we consider walks without inner loops, following Lemma 5.8 in [Pri22].
We examine three subcases without loss of generality, where the walk 𝑝 from 𝑢 to 𝑣
decomposes into 𝑝1 and 𝑝2. Here, 𝑝1 is a walk from 𝑢 to node 𝑦 in Sym(𝐺 • 𝑝), and 𝑝2
from 𝑦 to 𝑣 , as shown in Figure 6.5. Recall that a walk homotopy for any pair of walks in
Sym(𝐺) sharing endpoints is always accessible by hypothesis.

(a) Either 𝑤1, 𝑤2, or both, include ⃖⃖𝑝 as a subwalk from 𝑥 to 𝑧. If 𝑤1 composes as 𝛿1 ⋅ ⃖⃖𝑝 ⋅ 𝛿2,
and ⃖⃖𝑝 is not a subwalk of 𝑤2, with 𝛿1 and 𝛿2 being walks in Sym(𝐺) from 𝑥 to 𝑢
and 𝑣 to 𝑧, a homotopy of walks can be obtained as in the calculation below. The
remaining cases are demonstrated similarly.

𝑤1 ≡ 𝛿1 ⋅ ⃖⃖𝑝 ⋅ 𝛿2
𝑤1 ≡ 𝛿1 ⋅ ccw𝐹1(𝑢, 𝑣) ⋅ 𝛿2 (By construction of 𝐹1)
𝑤1 ∼M′ 𝛿1 ⋅ cw𝐹1(𝑢, 𝑣) ⋅ 𝛿2 (By hcollapse constructor applied to 𝐹1, 𝛿1, and 𝛿2)
𝑤1 ≡ 𝛿1 ⋅ cwF(𝑢, 𝑣) ⋅ 𝛿2 (By construction of 𝐹1)
𝑤1 ∼′

M 𝑤2 (By hypothesis: walks in Sym(𝐺) are homotopic).

(b) The walks 𝑤1 and 𝑤2 from 𝑥 to 𝑦 share a suffix (𝑝1) or a prefix (𝑝2). Without loss of
generality, let 𝑤1 = 𝛿1 ⋅ 𝑝1 and 𝑤2 = 𝛿 ⋅ 𝑝1, where 𝛿 is a walk from 𝑥 to 𝑢. These walks
are homotopic in Sym(𝐺) via the spherical map M, i.e., 𝛿1 ∼M 𝛿 . The construction
of M′ ensures 𝛿1 ∼M′ 𝛿 . Utilising right whiskering, we deduce 𝛿1 ⋅ 𝑝1 ∼M′ 𝛿 ⋅ 𝑝1,
thereby reaching our desired conclusion. Similarly, if 𝑤1 is 𝑝2 ⋅ 𝛿2 and 𝑤2 is 𝑝2 ⋅ 𝛿 ,
where 𝛿 is a walk from 𝑣 to 𝑧, one can show that 𝛿2 ∼M 𝛿 , and hence 𝛿2 ⋅ 𝑝2 ∼M′ 𝛿 ⋅ 𝑝2
by left whiskering.

(c) The walks 𝑤1 and 𝑤2 from 𝑥 to 𝑦 can be expressed as composites of 𝛿 ⋅ 𝑝1 and 𝛿′ ⋅ ⃖⃖ ⃖⃗𝑝2,

116 Planar Maps

respectively. Here, 𝛿 and 𝛿′ are walks from 𝑥 to 𝑢 and 𝑥 to 𝑣 , without sharing a
common prefix or suffix subwalk. We aim to show 𝑤1 ∼M′ 𝑤2 via 𝐹2 deformation.

𝑤1 ≡ 𝛿 ⋅ ⃖⃖ ⃖⃖𝑝1
𝑤1 ≡ 𝛿 ⋅ cw𝐹2(𝑢, 𝑦) (By construction of 𝐹2)
𝑤1 ∼M′ 𝛿 ⋅ ccw𝐹2(𝑢, 𝑦) (By constructor hcollapse applied to 𝐹2, 𝛿1, and ⟨𝑦⟩)
𝑤1 ≡ 𝛿 ⋅ (ccwF(𝑢, 𝑣) ⋅ ⃖⃖ ⃖⃗𝑝2) (By construction of 𝐹2)
𝑤1 ≡ (𝛿 ⋅ ccwF(𝑢, 𝑣)) ⋅ ⃖⃖ ⃖⃗𝑝2 (By assoc. of walk concat.)
𝑤1 ∼M′ 𝛿′ ⋅ ⃖⃖ ⃖⃗𝑝2 (By whiskering applied to the walk htpy. by hyp.)
𝑤1 ≡ 𝑤2.

Concluding our proof of Lemma 6.8, we have shown that M extends to a spherical map
M′ of 𝐺 • 𝑝. By identifying 𝐹1 as the outer face, we further establish that M′ is a planar
map. □

Given that M is a planar map, we denote its planar extension derived from Lemma 6.8
by 𝐸(M,F, 𝑢, 𝑣 , 𝑃𝑛). To shorten the notation, this planar extension is denoted by M by
𝐸(M,F, 𝑝), when the specifics of 𝑢, 𝑣 , and 𝑃𝑛 are not really crucial to the discussion. We
refer to this as the face division of F by 𝑝, since this construction results in the placement
of 𝑝 in F, dividing it into two new faces.

Definition 6.9. If 𝐺 is a finite graph with a map M, then we refer to the Euler characteristic
of 𝐺 by M, denoted by 𝜒M, as the number associated with the cardinal of the set of nodes (𝑣),
edges (𝑒), and faces (𝑓).

𝜒M ∶≡ 𝑣 − 𝑒 + 𝑓 . (6.3–2)

Given a graph 𝐺 with a planar map M, any planar extension of M preserves the Euler
characteristic of 𝐺. Evidence for this is found in the construction of 𝐸(M,F, 𝑝) as outlined
in the proof of Lemma 6.8. Here, the path addition of 𝑃𝑛 to 𝐺 increases the node count 𝑣
by 𝑛 + 1, edge count 𝑒 by 𝑛 + 2, but only augments the face count 𝑓 by one.
Lemma 6.10. For a graph𝐺 with planarmapM, any planar extension ofMmaintains Euler’s
characteristic. That is, for any face F of M and nodes 𝑢, 𝑣 within F connected by a path 𝑃𝑛,
we have 𝜒M equals 𝜒𝐸(M,F,𝑢,𝑣 ,𝑃𝑛).

Proof. The lemma follows from the construction detailed in the proof of Lemma 6.8. The
path addition of 𝑃𝑛 between nodes 𝑢 and 𝑣 on face F increases the node count by 𝑛 + 1,
edges by 𝑛 + 2, and faces by one, preserving the Euler characteristic. □

Euler characteristic serves as a planarity criterion for connected finite graphs. Specif-
ically, according to Euler’s formula, a graph 𝐺 is planar under the map M if and only if

6.3 Planar extensions 117

𝜒M equals two. The constructions detailed in this section facilitate the verification of Eu-
ler’s formula for graphs constructed via path additions, an approach also employed later
for biconnected planar graphs in Section 6.3.3.

However, for arbitrary graphs not derived from graph extensions, validating Euler’s
formula remains challenging, primarily due to the nontrivial task of determining the car-
dinality of the set of faces for an arbitrary map M of a given graph 𝐺, i.e., computing the
set of elements of type Face(𝐺,M) (Definition 4.14). Progress was made by establishing
that the type of faces forms a finite set in Section 4.4.1. This suggests the feasibility of
extracting this number in practise, possibly utilising the employed proof-assistant. We
leave this to future work.

6.3.2 Planar synthesis of graphs

F1 F3

F2

F4F
F2

Figure 6.6: The figure illustrates a planar synthesis for constructing a𝐾4 planar map using
a 𝐶3 planar map. Initially, face F is divided into 𝐹1 and 𝐹2. Subsequently, 𝐹1 is split into
𝐹3 and 𝐹4. The resulting map ends up with four faces, including the outer face.

Inductive graph construction methods abound, such as Whitney–Robbins synthesis,
ear decomposition of a graph, and the 𝐾4 construction depicted in Figure 6.6. Drawing
inspiration from these methods and face divisions (Lemma 6.8), we propose a method to
build larger planar graphs using graph extensions, ensuring that we remain within the
type of planar graphs.

Definition 6.11. A Whitney synthesis (synthesis for short) of graph 𝐺 from graph 𝐻 is
defined as a sequence of graphs 𝐺0, 𝐺1, ⋯ , 𝐺𝑛, where 𝐺0 is 𝐻 , 𝐺𝑛 is 𝐺, and each 𝐺𝑖 results
from the path addition of 𝑝𝑖 to 𝐺𝑖−1 for 𝑖 in the range 1 to 𝑛. Consequently, 𝐺 can be viewed
as the result of adding paths 𝑝1, 𝑝2, ⋯ , 𝑝𝑛 to 𝐻 :

𝐺 ≡ 𝐻 • 𝑝1 • 𝑝2 • ⋯ • 𝑝𝑛.

The length of this synthesis is 𝑛. A simple synthesis refers to a sequence containing only
simple additions. Conversely, a sequence composed solely of non-simple additions is termed
a non-simple synthesis.

118 Planar Maps

Lemma 6.12. Syntheses preserve graph connectedness. Specifically, if a graph𝐻 is connected
and 𝐺 is synthesised from 𝐻 , then each intermediate graph 𝐺𝑖 in the synthesis sequence is
also connected.

Proof. We prove this by induction on the length of the synthesis, and the fact that path
additions preserve connectedness, Lemma 6.6. □

Definition 6.13. Given a planar map M of the graph𝐻 with outer face F, we define a planar
synthesis of 𝐺 from 𝐻 of length 𝑛 as a sequence

(𝐺0,M0,F0), (𝐺1,M1,F1)⋯ , (𝐺𝑛,M𝑛,F𝑛),

where:

▷ (𝐺0,M0,F0) is equivalent to (𝐻 ,M,F), and
▷ (𝐺𝑛,M𝑛) corresponds to (𝐺, 𝐸(M𝑛−1,F𝑛−1, 𝑝𝑛−1)).

For each 𝑖 in the range 1 to 𝑛, the graph 𝐺𝑖 is 𝐺𝑖−1 • 𝑝𝑖, and the map M𝑖 is 𝐸(M𝑖−1,F𝑖−1, 𝑝𝑖−1),
where F𝑖−1 is a face of M𝑖−1.

Lemma 6.14. If a graph 𝐺 is synthesised from a planar graph 𝐻 via planar synthesis, then
𝐺 and every graph in the corresponding sequence are planar.

Proof. Through planar synthesis, each 𝐺𝑖 is derived from 𝐺𝑖−1 via path addition, ensuring
planarity by Lemma 6.8. □

While we have not yet employed non-simple additions, they become relevant whenwe
characterise planar biconnected graphs in the next section. It is possible to extend the face
division lemma and construction to utilise non-simple additions, Lemma 6.8, allowing us
to adapt not only the planar synthesis in Definition 6.13 to non-simple planar syntheses,
but also Lemma 6.14 to accommodate non-simple additions. Hence, given a map M for 𝐺
with a face F, the corresponding planarmap for𝐺•𝑝 is denoted as 𝐸(M,F, 𝑝), maintaining
a similar notation as before. As with path additions, extending the map with non-simple
additions introduces new faces.

u

v

F

p

Figure 6.7: The figure illustrates the face division of F by a non-simple path addition.

6.3 Planar extensions 119

Consider the graph 𝐺 •𝑢,𝑣 Sym(𝑃𝑛) and its corresponding map 𝐸(M,F, 𝑝). The addition
of the non-simple path results in the following changes to the graph structure.

The number of faces increases by 𝑛 + 2. This occurs because the original face F is
replaced by 𝑛 + 3 new faces: 𝑛 + 1 faces formed along the path from the division of F,
plus two additional faces 𝐹1 and 𝐹2 formed by the non-simple addition. The number of
edges increases by 2(𝑛+1), representing pairs of edges at each of the 𝑛+1 steps along the
path, as illustrated in Figure 6.7. Recall that non-simple additions add a pair of edges to
the graph. Finally, the number of nodes increases by 𝑛, corresponding to the new nodes
introduced along the path of the non-simple addition.

Through these modifications, the Euler characteristic of 𝐸(M,F, 𝑝) remains equal to
that of the original map M.

𝜒𝐸(M,𝑝) ∶≡ (𝑣 + 𝑛 + 1) − (𝑒 + 2 ⋅ (𝑛 + 1)) + (𝑓 + 𝑛 + 2) ≡ 𝜒M.
Figure 6.3b demonstrates the construction of larger planar graphs using various path,

cycle, and spike additions. A spike addition to 𝐺, although not precisely defined here, as
it is not extensively used for further constructions, can be essentially described as a path
addition sharing only one node with 𝐺. With a given map for 𝐺, a simple addition of a
spike creates a new face of higher degree than the face where the spike is inserted. Con-
sequently, non-simple spike additions also increase the number of faces for the extended
map due to the emergence of new faces between edge pairs that share endpoints.

6.3.3 Biconnected planar graphs

This subsection aims to characterise the construction of all 2-connected planar graphs.
In general, a graph is 𝑘-connected if it cannot be disconnected by removing less than

𝑘 nodes. Depending on 𝑘, there are various methods to construct the set of 𝑘-connected
graphs. For instance, any undirected 2-connected graph can be constructed by applying
path additions to an appropriate cyclic graph [Die12, §3]. Our focus in the following will
be on the construction of 2-connected planar graphs.

Definition 6.15. A graph 𝐺 is defined as 2-connected, or biconnected, when the proposition
Biconnected(𝐺) holds. This is, when the resulting graph 𝐺 − 𝑥 , formed by removing a node
𝑥 from 𝐺, remains connected.

Specifically, 𝐺 − 𝑥 is the graph made up of the set of nodes, Σ𝑦∶N𝐺 (𝑥 ≠ 𝑦), and their
corresponding edges in 𝐺.

Biconnected(𝐺) ∶≡ ∏
(𝑥 ∶N𝐺)

Connected(𝐺 − 𝑥).

Lemma 6.16. If 𝐺 is a cyclic graph, then Sym(𝐺) is 2-connected.

120 Planar Maps

Proof. The cyclic nature of 𝐺 ensures that in Sym(𝐺), there are two inner loop-free walks
between any pair of nodes: a direct walk following the cycle of 𝐺, and a reverse walk
counter to the cycle. These walks are edge-disjoint and thus preserve the graph’s con-
nectivity despite the removal of any single node—only one of the walks might be affected,
leaving the other intact to sustain connectedness. □

The property of 2-connectedness in a graph does not remain invariant under sim-
ple path additions. Clearly, removing a node from the added path 𝑝 disconnects 𝐺 • 𝑝.
Yet, through non-simple path additions, it is possible to maintain and even augment 2-
connected graphs.
Lemma 6.17. Let 𝐺 denote a 2-connected graph. The graph extensions, 𝐺 •𝑝 and Sym(𝐺)•𝑝,
preserve the 2-connected graph property.

Proof. To show that 𝐺 •𝑢,𝑣 Sym(𝑃𝑛) − 𝑥 remains connected for any node 𝑥 in 𝐺 • 𝑝, we
consider the location of 𝑥 . If 𝑥 is within 𝐺, then 𝐺 − 𝑥 is connected by hypothesis. Ap-
plying Lemma 6.6, it follows that 𝐺 • 𝑝 − 𝑥 is also connected, showing the 2-connectivity
of 𝐺 • 𝑝. Otherwise, if 𝑥 lies on 𝑝, its removal divides 𝑝 into two parts, 𝑝1 and 𝑝2. For
any two nodes in 𝐺 • 𝑝 − 𝑥 we show they are connected. If both nodes are in 𝐺 or the
same part 𝑝𝑖, they are connected by prior arguments or direct traversal, respectively. If
they are located in distinct subgraphs, say 𝑥 is in 𝑝1 and 𝑦 is in 𝑝2. We can construct a
walk from 𝑥 to 𝑢, another walk across 𝐺 from 𝑢 to 𝑣 (since 𝐺 is connected), and then to
the second node, Hence, 𝐺 • 𝑝 maintains 2-connectivity. □

Inspired by Yamamoto’s work in [YNH+95], our focus is on the construction of 2-
connected planar graphs. Within a different theoretical setting (HOL) and using a differ-
ent graph definition, Yamamoto shows that any undirected 2-connected planar graph can
be inductively built by adding diverse paths to circuits (their term for cyclic graphs). In our
context, we initiate constructions with any 2-connected graph Sym(𝐶𝑛) and subsequently
extend these graphs by non-simple planar additions.
Lemma 6.18. In a non-simple Whitney synthesis of 𝐺 originating from a 2-connected graph
𝐻 , with planarity ensured by a map M, each graph in the synthesis maintains 2-connectivity
and planarity via planar extension of M using non-simple additions.

Proof. Assuming a non-simple Whitney synthesis of 𝐺 from 𝐻 of length 𝑛 is given, we
proceed by induction on 𝑛.

▷ Base case (𝑛 = 0): The graph 𝐺 is 𝐻 , and by hypothesis, 𝐻 is a 2-connected planar
graph. Thus, the conclusion follows.

▷ Inductive step: For the inductive step, we assume that the claim holds for a sequence
of length 𝑛, thus establishing 𝐺𝑛 as a 2-connected planar graph via map M𝑛. We then

6.3 Planar extensions 121

aim to demonstrate that 𝐺, defined as 𝐺𝑛 • 𝑝𝑖 for some path 𝑝𝑖, also qualifies as a
2-connected planar graph.

▷ Given that 𝐺𝑛 is 2-connected, it follows from Lemma 6.17 that 𝐺𝑛 • 𝑝𝑖 also retains
this property. We then extend the planar map M𝑛 of 𝐺𝑛 to a planar map M for 𝐺,
preserving the outer face or selecting a new outer face from the additions. This
construction of M follows the method in Lemma 6.8, where we expand planar maps
using simple additions, as required here. □

Lemma 6.19. Any graph 𝐺, synthesised from Sym(𝐶𝑛) through non-simple Whitney synthe-
ses is a 2-connected planar graph.
Proof. Given that 𝐶𝑛 is planar by Example 6.3 and consequently connected, Sym(𝐶𝑛) is 2-
connected by Lemma 6.16. By repeatedly applying Lemma 6.18 to each step in the given
synthesis sequence, we ensure the resulting graph’s 2-connectivity and planarity. □

Lemma 3 and Proposition 4 in [YNH+95] discuss undirected 2-connected planar graphs
similar to the converse of Lemma 6.19. It is possible to follow Yamamoto’s argument
closely, even though it was presented in an informal way. However, this requires prelim-
inary formalisation of several technicalities, such as maximal subgraphs, adjacent faces,
and edge sequence deletion. Subsequently, one can assert that non-simple Whitney syn-
theses entirely determine 2-connected planar graphs, as expressed similarly in [Die12,
§3]. In essence, any graph defined as planar in Definition 6.1 and 2-connected in Def-
inition 6.15, can be inductively generated from Sym(𝐶𝑛) via iterative non-simple path
additions and proper map extensions.

Further exploration of graph extensions, such as amalgamations, appendages, dele-
tions, contractions, and subdivisions, should be considered to generate planar graphs
[GYA18, §7.3].

122 Planar Maps

7
Concluding Remarks

In the following, we give a brief summary of the contributions of this thesis, that are
novel in HoTT, as far as we know. The order of the chapters is not accidental in the
document. The final chapter, Chapter 6, present, among other things, our characterisation
of planarity of connected and locally finite directed multigraphs using graph maps also
referred to as combinatorial maps or rotation systems. This characterisation is significant
as it wraps up our main constructions. For example, the type of planar maps of a graph 𝐺
requires us to define the type of graph maps, the subtype of spherical maps, and the type
of faces introduced in Definition 5.43 and Definition 4.14, respectively.

In addition to the technical definition given in Chapter 6 for the planarity of graphs,
we believe that we have encoded, in a better combinatorial and more general way, the
essence of the topological intuition behind it. Rather than stating planarity only as a
property of the graph itself, we have defined it here as structure on the type of graphs,
a different approach compared to other works, see, for example, definitions in terms of
hypermaps and cyclic lists and expressed in other proof-irrelevant type theories [Gon23;
YNH+95; Bau05]. In other words, we characterised the identity types of the type of planar
maps of a graph and showed that it forms a homotopy set, as shown in Theorem 6.2. This
result is significant and common theme in HoTT when defining new types. To support
this claim, we developed a few lemmata, as listed below, and proven in the same order
they appear.

124 Concluding Remarks

1. The star at any node 𝑥 of 𝐺 is a set, see Lemma 4.6.

2. The collection of all graph maps for 𝐺, and, in particular, the subtype of its spherical
maps, forms a set, see Section 4.3 and Lemmas 5.22 and 5.46.

3. The subtype of walks without inner loops of 𝐺, here called quasi-simple walks, form
a set, see Theorem 5.26.

4. The faces of any graph map of 𝐺 is a set, see Lemma 4.18 and Theorem 4.26.

5. The collection of planar maps of 𝐺 is a set, see Theorem 6.2.

To support the previous results, we gave new proofs in Chapter 5 to a few non-trivial
facts about quasi-simple walks (walks without internal loops or phrased differently, sim-
ple pathswith possibly loops attached at one of its endpoints) and spherical maps, two key
concepts introduced in [Pri22]. The main contributions to this regard are Theorems 5.38
and 5.48, and especially Corollary 5.49. Briefly, Theorems 5.38 and 5.48 gives us a nor-
malisation algorithm for walks. That is, given any walk, we can always find its normal
form which removes all the internal loops with evidence that the normal form is walk-
homotopic to the original walk. This occurs whenever the node set of the graph is discrete
and the graph is embedded in the sphere. On the other hand, Corollary 5.49 establishes
an equivalence between the two definitions for spherical maps, which confirms that one
can ignore loops and multiple edges when considering spherical maps of graphs where
the node set is discrete. The machinery shown in Chapter 5 was mainly developed to
support this result.

Moreover, for characterising maps of finite graphs in the sphere, we found that con-
sidering only the finite set of quasi-simple walks suffices. Using the results mentioned
herein, one could devise an algorithm to determine whether a graph map is spherical or
not; see Lemma 5.45. Additionally, we have shown that the set of planar maps is finite,
provided that the graph is also finite. We use this result in Section 6.3, where we introduce
planar extensions and the Euler characteristic number for planar graphs. To this end, we
presented a method for constructing planar graphs using planar extensions inductively.
This method is inspired by Yamamoto’s work on biconnected planar graphs [YNH+95].
See, for example, the construction of a planar map of 𝐾4 based on a map for 𝐶3 by using
simply path additions.

As part of our contributions, we provided computer proofs of most results in the de-
pendently typed programming language Agda, see Appendix A. The Agda formalisation
turned out to be helpful on several occasions. For example, we use our formalisation to
confirm that only a subset of HoTT was necessary to perform all the proofs in Chap-
ter 5. Precisely, the formalisation of that chapter only needed the intensional Martin-Löf
type theory equipped with universes, function extensionality, and propositional trunca-
tion. No other HITs nor Univalence was required. Moreover, we also used the computer
formalisation to identify flaws, missing assumptions, and new proofs.

7.1 Directions of further developments 125

7.1 Directions of further developments

There are several directions for further research on the topics of this thesis. Let us men-
tion a few of them.

For example, there exist other criteria of planarity in literature, for instance, Kura-
towski’s and Wagner’s characterisations for planar graphs. An interesting result would
be to prove that our notion of planarity is equivalent to one of these characterisations.

Another possible direction is the study of surfaces in HoTT as the topological repre-
sentation/realisation. At the moment of writing, defining the notion of a surface is still
an open problem in HoTT. On this regard, consider the torus as the realisation of the
bouquet graph consisting of two edges using the graph map 𝑀𝑐 given in Figure 4.8.

Transferring this to HoTT would mean a mapping, hopefully, an equivalence, between
a HIT representing the torus [Uni13, §6.6] and a type representing the topological reali-
sation of the bouquet graph with the graph map 𝑀𝑐 . Concerning planar maps, we would
expect the correspondence between any planar map and the type of the 2-sphere as de-
fined in (7.1–1), spotlighted by the stereographic projection, as illustrated in Figure 6.1.
Let us elaborate a bit more on this regard.

Specifically, we conjecture that there is an equivalence between the 2-cell topological
realisation of a graph 𝐺 with a planar map ℳ, and the type of the 2-sphere S2.

data S2 ∶ U

base ∶ S2

surf ∶ reflbase = reflbase.
(7.1–1)

To elaborate on this conjecture, we first need to introduce two distinct geometric re-
alisations of graphs, the 1- and 2-cell topological representations of a graph. These con-
structions are further explained in Appendices B and C.

The 1-cell topological realisation of a graph 𝐺 is denoted by T1(𝐺) and can be defined
using the following HIT.

data T1 (𝐺 ∶ Graph) ∶ U

n ∶ N𝐺 → T1(𝐺)
e ∶ Π(𝑎 𝑏 ∶N𝐺) . E𝐺(𝑎, 𝑏) → n(𝑎) = n(𝑏).

Given a graph mapℳ for the graph 𝐺, let us consider the 2-cell topological realisation
of 𝐺, T2(𝐺,ℳ), which can be defined using the HIT in (7.1–2). The function w used
in (7.1–2) maps a walk to a path, see Appendix B.5.

126 Concluding Remarks

data T2 (𝐺 ∶ Graph) (ℳ ∶ Map(𝐺)) ∶ U

n ∶ N𝐺 → T2(𝐺,ℳ)
e ∶ Π(𝑎 𝑏 ∶N𝐺) . E𝐺(𝑎, 𝑏) → n(𝑎) = n(𝑏)
f ∶ Π(F∶Face(𝐺,M)) . Π(𝑎 𝑏 ∶NF) . w(cw(F, 𝑎, 𝑏)) = w(ccw(F, 𝑎, 𝑏)).

(7.1–2)

Our first conjecture states that the type T2(𝐶0, 𝑚) is equivalent to the type of the 2-
sphere S2, where 𝐶0 is the unit graph consisting of one node with no edges, and𝑚 denotes
the only graph map for 𝐶0, see Example A.1.

Conjecture 7.1. Let 𝐶0 be the unit graph consisting of one node with no edges, and 𝑚 be the
graph map for 𝐶0. Then,

T2(𝐶0, 𝑚) ≃ S2. (7.1–3)

As expected, as illustrated in Figure 7.1, establishing the back-and-forth correspon-
dence between the two types is straightforward. Recall that there is only one graph map
for 𝐶0, 𝑚, and one face for such a map. However, the difficulty lies in proving the cor-
respondent homotopies for this equivalence. It involves two HITs, which are not easy
to work with, especially because of the induction principles for these types due to their
path constructors. Therefore, we believe lemmata developed on Spheres [Uni13, § 6]
would come in handy, and the work done in the induction principle for T2(𝐶0, 𝑚) (Ap-
pendix C.1.3).

𝐶0
base

reflbasesurf

𝑆2

Figure 7.1: The correspondence between the sphere S2 and the 2-cell topological realisa-
tion of the unit graph 𝐶0.

In Lemma B.29 we established that the 1-cell topological realisation of a tree yields
a contractible type. Hence, it is reasonable to conjecture an analogous outcome for the
2-cell realisations of graphs. A tree with only one map and one face, when realised as a
2-cell topological space, should yield the same type as realising the unit graph.

7.1 Directions of further developments 127

Conjecture 7.2. Let 𝐺 be a tree, as defined in Definition B.5, and ℳ be its map, then,

T2(𝐺,ℳ) ≃ T2(𝐶0, 𝑚). (7.1–4)

Now consider a graphmapℳ for a graph 𝐺. We require an operation that can contract
a face in a graph map to a singular node, a process akin to deforming a disk to a point.
The proposed transformation entails contracting a face F within ℳ for a graph 𝐺 into a
singular node, leading to a subgraph 𝐻 of 𝐺, along with one new map ℳ′, a restriction
of ℳ to 𝐻 . We denote such an operation as in

(𝐺,ℳ) ⇝F (𝐻 ,ℳ′). (7.1–5)

The underlying conjecture is that such a transformation preserves the graph’s pla-
narity, ensuring that the resultant map ℳ′ is also planar.

Conjecture 7.3. Given graphs 𝐺 and 𝐻 with maps ℳ and ℳ′ respectively, and a face con-
traction from (𝐺,ℳ) to (𝐻 ,ℳ′), if 𝐺 is planar by ℳ, then 𝐻 is planar by ℳ′.

Conjecture 7.4. Let F be a face of the graph mapℳ and 𝐻 be a subgraph of 𝐺 with a graph
map ℳ′. If (𝐺,ℳ) ⇝F (𝐻 ,ℳ′), then,

T2(𝐺,ℳ) ≃ T2(𝐻 ,ℳ′). (7.1–6)

Assuming the provability of prior conjectures, we can construct an equivalence be-
tween the 2-cell topological realisation of any planar graph and the sphere S2. Let us
state this result as a theorem.

Theorem 7.5. Let 𝐺 be a non-empty finite graph with 𝑛 nodes and ℳ be a planar map for
𝐺. Then,

T2(𝐺,ℳ) ≃ S2. (7.1–7)

Proof. Given 𝐺’s finiteness, we proceed by case analysis on the number 𝑚 of faces for a
planar map ℳ of 𝐺. Starting with the base case 𝑚 = 1. Here, 𝐺 is a tree. If 𝐺 is 𝐶0, the
result follows from Conjecture 7.1. Otherwise, 𝐺 is a tree with at least one edge, then the
desired equivalence is obtained via (7.1–4) and (7.1–3).

T2(𝐺,ℳ) ≃ T2(𝐶0, 𝑚) ≃ S2. (7.1–8)

For the inductive step, assume we obtain the equivalence in question for graphs with
𝑚−1 faces. Now, contracting a face F from 𝐺 yields a new graph 𝐺′ with a corresponding

128 Concluding Remarks

map ℳ′, which is planar since contracting a face preserves planarity (Conjecture 7.3),

(𝐺,ℳ) ⇝F (𝐺′,ℳ′).

Conjecture 7.4 provides an equivalence T2(𝐺,ℳ) ≃ T2(𝐺′,ℳ′). Since 𝐺′ has 𝑚 −
1 faces, the induction hypothesis implies T2(𝐺′,ℳ′) ≃ S2. We can then establish the
following chain of equivalences, from which the conclusion follows.

T2(𝐺,ℳ) ≃ T2(𝐺′,ℳ′) ≃ S2. □

7.2 Formalisation

Although formalisation is an important aspect of our thesis, it is not our primary focus.
Due to the time-consuming nature of formalising concepts in a proof assistant, we have
prioritised our efforts accordingly. Nonetheless, besides providing insights into the con-
jectures discussed earlier, the future work involves completing the elaboration of some
of the contributions listed earlier. This includes proving the planarity of any cyclic graph
in Agda, as outlined in Example 6.3, and expanding on the main results about planar ex-
tensions discussed in Section 6.3, such as Lemmas 6.8 and 6.19. On this regard, we expect
extract an algorithm for computing the number of faces of a given map for finite graphs
to validate that the Euler characteristic number for planar graphs is 2. A starting point
for this must be the proof’s formalisation in Section 4.4.1, demonstrating the finiteness
property of face types.

“Those who cannot remember the past are condemned to repeat
it.”

George Santayana

Epilogue

This thesis titled Investigations into Graph-theoretical Constructions in Homotopy Type The-
ory documents my research from late 2018 to late 2022. It was conducted at the ICT Re-
search School of the University of Bergen and adds to the study field of Homotopy Type
Theory/Univalent Foundations. This field converges constructive mathematics, logic,
type theory, category theory, homotopy theory, algebraic topology, and formalisation
of mathematics using proof-assistants. The manuscript as it stands today have been im-
proved by the feedback of my advisors, Håkon Gylterud and Marc Bezem, the comments
of anonymous reviewers from the events where I presented my work, and the comments
of my reviewers, Noam Zeilberger and Paige Randall North.

I have structured each chapter in my writing to focus on a specific subject. Some
chapters include an introduction and a discussion section, and some contain examples. To
provide a contextual overview of the thesis and connect its key elements, I have included
a summary of the main results in the conclusion chapter. This chapter also contains a
discussion of the implications of the results and conjectures for future research. This will
allow readers who want to explore further research to do so. The appendices contain
additional results that did not fit well within the main chapters but are still relevant to
the thesis and, in my opinion, quite interesting.

In the following, I briefly describe how the research for this thesis was carried out,
which may be of interest to those considering a similar project.

The research journey for this thesis began in 2018 when I beganmy PhD at the Univer-
sity of Bergen. Given the freedom to explore my interests, I attended Marc Bezem’s in-
troductory seminar on advances topics in programming languages, which covered HoTT.
It was during these sessions that I met Håkon Gylterud, a researcher who occasionally
attended the seminars and later became my primary advisor.

In the summer of 2018, I collaboratedwithMarc to illustrate equivalences related to the
circle and another equivalence involving the type of pathovers [Pri18]. This collaboration
deepened my understanding of how HoTT uses dependent types to encapsulate diverse
concepts and the strictness of its constructive nature. I saw the potential of HoTT as
a formal system for creating/defining new constructions in a precise and discipline way,
which led me to pursue a PhD in this field. Combinatorics emerged as the primary option

130 Epilogue

due to the scarcity of research in this area. Thus, I decided to explore this area.
In late 2018, I began to adapt graph theory concepts to HoTT, with a particular focus

on potential characterisations of graph planarity. This interest was likely sparked by
Gonthier’s formalisation of the Four Colour Theorem (4CT) [Gon23], a proof verified
using the proof assistant Coq, asserting that every finite planar graph can be coloured with
no more than four colours. Håkon shared this interest, leading to our collaboration on the
topic.

Our initial proposal on a type of planar embeddings for undirected graphs was pre-
sented at TYPES [PG19]. Feedback from the conference led us to broaden our scope to
include the planarity of directed multigraphs. The remainder of my research focused on
redefining and formalising multiple constructions in Agda, a proof assistant similar to
Coq.

This iterative process allowed me to prove, disprove, and refine my initial conjectures.
One such conjecture, which remained unproven until 2021, was later formalised in Agda
as Corollary 5.49, which basically states that one can ignore loops and multiple edges
when considering spherical maps of graphs with discrete node sets.

In the summer of 2019, I attended the CMUHoTT Summer School in Pittsburg, where I
was introduced to Cubical methods by Anders Mörtberg. Inspired by his lectures, I began
using Cubical Agda for my constructions, summarised in Appendix B. This appendix,
along with the work in Appendix C, focusses on graph embeddings as a way to realise
graphs as spaces in HoTT. This construction was inspired by geometrical intuition and
the concept underlying HITs. Later I would discover that this construction is used by
Swan in his proof on the Nielsen–Schreier Theorem in HoTT [Swa22].

During the 2020-2021 COVID-19 pandemic, I organised a weekly seminar¹ on type
theories, Haskell, and Agda. In collaboration with fellow PhD students and friends
from the PLT research group at UiB (Elisabeth, Benji, Tam, Knut, and Max) we engaged
in the study and discussion of various topics. These included content from the PLFA
book [KSW20], homotopy theory as presented in Cubical Agda [MP20], and the topology
of data types [Esc04]. As a side effect, I was able to prove a few lemmas on homotopy
walks, which are summarised in Chapter 5 during the preparation of talks on Lambda
Calculus and Term Rewriting Systems.

Formalisation of mathematics. The computational aspect of my project, the formali-
sation of mathematics, is another key component. Gonthier’s work, which used Coq, a
proof assistant based on the Calculus of Inductive Constructions—inspired me. However,
I opted for Agda, a dependently typed functional programming language, due to its in-
herent support for HoTT and my previous experience with Haskell and Agda during my
master’s studies.

¹https://nextjournal.com/uib-types/meetings

https://nextjournal.com/uib-types/meetings

Epilogue 131

When my formalisation project began in late 2018, I contemplated using the recom-
mended HoTT-Agda library. However, compatibility issues with the latest compiler ver-
sion led me to develop my own library for Agda (v2.6.0+). Despite discovering Escardo’s
TypeTopology library at the Midlands Graduate School in Birmingham in April 2019, I
continued with my library, as it was already in progress. At the end, although my de-
velopment fulfils the formalisation requirements, I underestimated the time and effort
needed to develop/maintain a library. In this regard, for those considering formalisa-
tion, I suggest examining existing libraries in your field and contributing where gaps are
identified. Fortunately, many libraries exist today.

Here are some libraries compatible with recent Agda versions and related to HoTT
and its derivatives, listed alphabetically.

▷ Vanilla Agda with HoTT support:

Agda-UniMath http://unimath.github.io/agda-unimath.
Swan’s HoTT-Agda https://github.com/awswan/HoTT-Agda/.
TypeTopology https://www.cs.bham.ac.uk/~mhe/TypeTopology/.
Thesis’s library https://jonaprieto.github.com/synthetic-graph-theory.

▷ Cubical methods in Agda:

1Lab https://1lab.dev/.
Cubical Agda http://www.github.com/agda/cubical.

Final Comment. The exploration of graph planaritywithinHoTT uncoveredme a range
of unexpected constructions, many of which emerged through iterative interactions ses-
sions I had with Agda, my proof-assistant. This approach truly offers an engaging ap-
proach to our understanding of mathematics, promoting amore profound comprehension
and stimulating novel insights. Although, the formalisation process can be challenging
and time-consuming, it also comes with a sense of accomplishment and, tends to be fun.
I believe that type theories, such as HoTT and its newer variants, represent a promis-
ing formal system for new forms of mathematical research, offering substantial potential
for groundbreaking discoveries, including new proofs of existing results and new results
that are impossible or hard to prove in other formal systems. I foresee that the future of
mathematics will be shaped by the development of these theories and the tools that sup-
port them, such as proof-assistants and automatic theorem provers. About this work, I
hope the topics developed in this manuscript serve as both a stimulus and groundwork
for future research, inspiring further refinement, completion, or new (mathematical) con-
structions on graphs in HoTT.

http://unimath.github.io/agda-unimath
https://github.com/awswan/HoTT-Agda/
https://www.cs.bham.ac.uk/~mhe/TypeTopology/
https://jonaprieto.github.com/synthetic-graph-theory
https://1lab.dev/
http://www.github.com/agda/cubical

132 Epilogue

“It soon became clear that the only real long-term solution to the prob-
lems that I encountered is to start using computers in the verification
of mathematical reasoning.”
“A technical argument by a trusted author, which is hard to check
and looks similar to arguments known to be correct, is hardly ever
checked in detail.”

Vladimir Voevodsky, Univalent Foundations, March 26, 2014.

A
Computer Formalisation

This thesis includes a set of mechanised proofs and constructions, verified using Agda
v2.6.2.2-442c76b, our chosen proof assistant. The formalisation comprises its own self-
contained Agda library of a subset of the HoTT book’s foundations and the central el-
ements of the thesis. For our experiments with Cubical Agda in Appendix B, we used
the Cubical Agda version v0.3 of the library. This projects can be found at the following
address:

▷ https://jonaprieto.github.io/synthetic-graph-theory/.

A.1 Proof assistants

Proof assistants are sophisticated computer programs that function as tools to develop
formal proofs, making the process of verifying correctness more efficient (up to the cor-
rectness of the proof assistant itself). When used in combination with dependently typed
programming languages, these tools cater not only to the programming language com-
munity but also to those who require rigorous and trustworthy communication methods
with a powerful and expressive language. Their adoption may offer a significant im-
provement over traditional humanmethods, such as the revision process of mathematical
papers.

https://jonaprieto.github.io/synthetic-graph-theory/

134 Computer Formalisation

Our choice of Agda as our proof assistant to conduct this investigation stems from its
modernity, robustness, and reliance on a powerful intuitionistic type theory. Crucially,
its type system fully backs this thesis’ HoTT focus by disabling the Axiom K [CDP16]
and enabling term rewriting via the REWRITE pragma [Coc19], which allow us to define
higher-inductive types and their computational rules. For our experiments inAppendix B,
we used Cubical Agda, which is a mode of Agda that offers backing for cubical type
theories, enhancing higher inductive type definitions via pattern matching.

Despite its flexibility and power, Agda lacks maturity and robustness in certain areas
such as program synthesis via auto, especially when compared to systems like Coq, Is-
abelle, and Lean. This can result in lengthy explicit proof terms, making the formalisation
process somewhat tedious, even for small-scale developments. However, its emphasis on
dependently typed programming and its commitment to incorporates the latest develop-
ments in type theory makes it a suitable tool for conducting research effectively.

A.2 Agda notation

Several examples included in this chapter and the appendices use Agda syntax. We offer
below a very short description of the main constructs of the language. For an in-depth
exposition on Agda, refer to its official documentation [The23] and the sources of this
thesis for any types not explicitly defined herein.

▷ Type annotations in Agda are written similar as on paper. For example, x : A is
used to indicate that x is a term of type A.

▷ Type denotes a type family of types indexed by their universe level with the following
hierarchy:

Type 0 : Type 1 : ... : Type 𝓁 : Type (lsuc 𝓁) : ...

Thus, A : Type 𝓁 indicates that A is a type in the universe 𝓁. Most of the time, our
definitions are universe polymorphic, i.e., they hold for any universe level 𝓁.

▷ The empty type is denoted by 𝟘 or ⊥ and the unit type by 𝟙 or ⊤. Also, we use standard
type formers such as (→) for function types, (×) for product types, Σ-types through
the use of the Σ type former, and Π-types for functions with codomain varying over
the domain, e.g. the type ((x : A) → B x) in Agda signifies a function that takes in a
term x of type A and returns a term of type B x, given that B is a type family over A.

▷ The identity type on a type A between 𝑥 and 𝑦 is denoted by Path {A} x y, or simple
as 𝑥 ≡ 𝑦 . The constructor for the identity type is refl.

▷ Propositional truncation of a type A is denoted by ∥ A ∥, and its constructor is |_|, so
| a | is a term of type ∥ A ∥ for any a : A.

A.2 Agda notation 135

▷ Declaring inductive data types is done through the use of the data keyword. For
example, the following declaration defines the type of natural numbers.

data ℕ : Type 0 where

zero : ℕ

suc : ℕ → ℕ

▷ We can define functions by pattern matching whenever the domain is an inductive
data type. For example, the following function add defines addition on natural num-
bers.

add : ℕ → ℕ → N

add zero n = n

add (suc m) n = suc (add m n)

Alternatively, we can define functions using the with keyword, which allows us to
pattern match on an expression. An equivalent definition of add using with is as
follows.

add' : Nat Nat Nat

add' n m with n

... | Z = m

... | S x = S (add' x m)

▷ Records that act as named dependent product types are declared with the record

keyword, where the components are declared after the field keyword and which can
be accessed with their respective projections. For example, the following declaration
represents Σ-types.

record Σ {𝓁₁ 𝓁₂} (A : Type 𝓁₁) (B : A → Type 𝓁₂) : Type (𝓁₁ ⊔ 𝓁₂) where

constructor _,_

field

π₁ : A

π₂ : B π₁

▷ Modules encapsulate declarations, serving as namespaces. To declare a module, use
the module keyword, which may include parameters of types and terms. For instance,
the module M, parameterised by a type A and a term a, is defined as follows. Anony-
mous modules are declared with _ as the name.

module M (A : Type) (a : A) where

▷ To import definitions from a module into the current scope, the keyword import is
used. These imported names are qualified by the module name they are imported
from. To bring all the names, unqualified, from a module into the current module,
the keyword open is used. For example, the following statement imports the module
M and brings all its names into the current scope.

open import M

136 Computer Formalisation

▷ One powerful feature of Agda is the ability to infer implicit arguments for calls to
functions, including data constructors. Implicit arguments in Agda are denoted by
curly braces, e.g. {A : Type}.

A.3 Library

The Agda codebase accompanying this thesis comprises a library of 15459¹ lines of code.
The codebase is structured into two main directories: foundations and lib. The former
aligns with the essential background from the HoTT book, while the latter contains the
central elements of the formalisation, further divided into distinct modules. For example,
the reader can find the formalisation of Chapter 5 in the library ².

{-# OPTIONS without-K exact-split rewriting #-}

module agda-index where

 ∙ Graph definitions as seen in the document
import lib.graph-definitions.Graph As in the document
import lib.graph-definitions.Alternative-definition-is-equiv

 ∙ Graph forms a univalent category
import lib.graph-definitions.Graph.EquivalencePrinciple
import lib.graph-definitions.Graph.IsomorphismInduction
import lib.graph-definitions.Graph.isGroupoid
import lib.graph-homomorphisms.Hom
import lib.graph-homomorphisms.classes.Isomorphisms
import lib.graph-homomorphisms.classes.Isomorphisms.Exponentiation

 ∙ Special set of graph homomorphisms
import lib.graph-homomorphisms.classes.EdgeInjective
import lib.graph-homomorphisms.classes.Injective
import lib.graph-homomorphisms.classes.EdgeInjective.Lemmas
import lib.graph-homomorphisms.Lemmas

 ∙ Graph isomorphisms/equivalences
import lib.graph-relations.Isomorphic
import lib.graph-relations.Isomorphic.isSet
import lib.graph-relations.Homomorphic
import lib.graph-calculation-reasoning.Isos

 ∙ Graph walks
import lib.graph-walks.Walk
import lib.graph-walks.Walk.Composition
import lib.graph-walks.Walk.SigmaWalks
import lib.graph-walks.Walk.Equality
import lib.graph-walks.Walk.isSet

 ∙ Quasi-simple walks
import lib.graph-walks.Walk.QuasiSimple
import lib.graph-walks.Walk.QuasiSimpleFinite

¹Calculation performed using the loc command from the https://github.com/cgag/loc tool.
²https://jonaprieto.github.io/synthetic-graph-theory/CPP2022-paper.html.

https://github.com/cgag/loc
https://jonaprieto.github.io/synthetic-graph-theory/CPP2022-paper.html

A.3 Library 137

 ∙ Graph transformations, symmetrisation of graphs
import lib.graph-transformations.U
import lib.graph-transformations.W
import lib.graph-transformations.Inv

 ∙ Graph maps/embeddings
import lib.graph-embeddings.Map
import lib.graph-embeddings.Map.Face
import lib.graph-embeddings.Map.Face.isSet
import lib.graph-embeddings.Map.Face.Walk
import lib.graph-embeddings.Finiteness

 ∙ Walk-homotopy and whiskering
import lib.graph-embeddings.Map.Face.Walk.Homotopy
import lib.graph-embeddings.Map.Face.Walk.Whiskering

 ∙ Graph maps into the sphere (spherical maps)
import lib.graph-embeddings.Map.Spherical
import lib.graph-embeddings.Map.Spherical-is-enough

 ∙ Planar graph maps
import lib.graph-embeddings.Planar
import lib.graph-embeddings.Planar.isSet

 ∙ The one-point graph is planar.
import lib.graph-embeddings.Map.Face.Example

 ∙ One higher-inductive of a graph with 2-cells
 And the reason we need the flag rewriting.
import HIT
import HIT-toProp
import HIT-toSet
import Homotopic-are-equal

 ∙ Some families of graphs seen in the document
import lib.graph-families.CycleGraph
import lib.graph-families.CycleGraph.RotHom
import lib.graph-families.CycleGraph.Isomorphisms.IdentityType
import lib.graph-families.CycleGraph.Isomorphisms.Lemmas
import lib.graph-families.CycleGraph.Map
import lib.graph-families.CycleGraph.isCyclicGraph
import lib.graph-families.CycleGraph.isFiniteGraph
import lib.graph-families.CycleGraph.Walk
import lib.graph-families.BouquetGraph
import lib.graph-families.CompleteGraph

 ∙ A few graph classes used in the document
import lib.graph-classes.CyclicGraph
import lib.graph-classes.CyclicGraph.Stuff
import lib.graph-classes.CyclicGraph.isFiniteGraph
import lib.graph-classes.CyclicGraph.Walk
import lib.graph-classes.EmptyGraph
import lib.graph-classes.UnitGraph
import lib.graph-classes.StarGraph
import lib.graph-classes.CompleteGraph
import lib.graph-classes.ConnectedGraph
import lib.graph-classes.FiniteGraph
import lib.graph-classes.UndirectedGraph
import lib.graph-classes.PartiteGraph

138 Computer Formalisation

 Appendix. Univalent foundations

import foundations.Core ∙ Part I in the HoTT book
import foundations.Nat ∙ Lemmata about ℕ
import foundations.Fin ∙ ⟦ n ⟧ ∶≡ { 0,1,2,⋯, n-1}.
import foundations.Finite ∙ Finite types ∑[n] ∥ A ≃ ⟦ n ⟧ ∥.
import foundations.Cyclic ∙ Cyclic types

A.4 Small excerpts from the library

Let us explore a few of the essential definitions pertinent to the type of planar maps.

▷ Cycle types as introduced in Definition 2.21:

record
CyclicSet (A : Type 𝓁) : Type 𝓁
where
constructor cyclic-set
field

φ : A → A
n : ℕ
cyclicity

: ∥ ∑[e ∶ (A ≃ ⟦ n ⟧)]
((φ :> (e ∙→)) ≡ (e ∙→) :> fin-pred) ∥

▷ The symmetrisation of a graph, Sym, called here 𝑈 for short (see Definition 4.1):

U : Graph 𝓁 → Graph 𝓁
U g@(graph Ng Eg Ng-set Eg-set)

= graph Ng
(UEdge g)
Ng-set
λ x y → +-set (Eg-set x y) (Eg-set y x)
where

UEdge : (G : Graph 𝓁) (x y : Node G) → Type 𝓁
UEdge G x y = (Edge G x y) + (Edge G y x)

▷ Star at a node as introduced in Definition 4.4:

Star : (G : Graph 𝓁) → Node G → Type 𝓁
Star G x = ∑[y ∶ Node (U G)] Edge (U G) x y

▷ Graph maps as introduced in Definition 4.8 :

Map : (G : Graph 𝓁) → Type 𝓁
Map G = Π[x ∶ Node G] CyclicSet (Star G x)

▷ Faces for a graph map as an inductive record type to ensure eta-equality by default.
The fields within the record type represent the conditions outlined in Definition 4.14.

record Face (𝓜 : Map G) : Type (lsuc 𝓁) where
inductive
constructor face
field

A : Graph 𝓁
A↺ : CyclicGraph 𝓁 A
h : Hom A (U G)

A.4 Small excerpts from the library 139

h-is-edge-inj : isEdgeInj h
star-cond : starFaceCond A h
corners-cond : faceCornersPreserved 𝓜 A A↺ h

The type of these fields use the following definitions:

– Cyclic graph:

record
CyclicGraph (𝓁 : Level) (G : Graph 𝓁) : Type (lsuc 𝓁)
where
eta-equality
constructor cyclic-graph
field

φ : Hom G G
n : ℕ
is-cyclic : ∥ Path {A = ∑[H] (Hom H H)}

(G , φ) (Cycle 𝓁 n , rot 𝓁 n) ∥

– Edge-injectivity property for graph homomorphisms:

isEdgeInj : Hom G H → Type (𝓁₁ ⊔ 𝓁₂)
isEdgeInj (hom α β)

= ∀ {x y} → (e₁ : Edge G x y)
→ ∀ {x' y'} → (e₂ : Edge G x' y')
→ Path {A = ∑[x] ∑[y] Edge H x y}
(α x , α y , β x y e₁)
(α x' , α y' , β x' y' e₂)

→ (x , y , e₁) ≡ (x' , y' , e₂)

– Conditions on the stars:

starFaceCond : Type 𝓁
starFaceCond = (x : Node A) → ∥ Star G (α h x) ∥ → ∥ Star A x ∥

– and preservation of corners by the combinatorial map:

faceCornersPreserved : Type 𝓁
faceCornersPreserved

= (x : Node A) → (e₀ : Edge A (pred-↺ A A↺ x) x)
→ (e₁ : Edge A x (suc-↺ A A↺ x))
→ Path {A = Star G (α h x)}

(CyclicSet.φ (𝓜 (α h x))
(α h (pred-↺ A A↺ x) , flip (β h _ _ e₀)))
((α h (suc-↺ A A↺ x) , β h _ _ e₁))

▷ A planar map can then be defined as a spherical graph map with a face:

Planar : Graph 𝓁 → Type (lsuc 𝓁)
Planar G = isConnectedGraph (U G) × (∑[𝓜] (isSphericalMap G 𝓜 × Face G 𝓜))

Where spherical graph maps are defined as follows:

– Spherical maps as introduced in Chapter 5:

isSphericalMap : Map G → Type (lsuc 𝓁)
isSphericalMap 𝓜

= (x y : Node (U G))
→ (w₁ w₂ : Walk (U G) x y)
→ w₁ is-quasi-simple

140 Computer Formalisation

→ w₂ is-quasi-simple
→ ∥ w₁ ∼⟨ 𝓜 ⟩∼ w₂ ∥

– Quasi-simple walks as introduced in Definition 5.12:

isQuasi : ∀ {x z : Node G} → Walk G x z → Type 𝓁
isQuasi w = ∏[y ∶ Node G] (isProp (y ∈w w))

– The special membership relation used above as introduced in Definition 5.10:

∈w : Node G → Walk G x z → Type 𝓁
y ∈w ⟨ z ⟩ = ⊥ 𝓁
y ∈w (e ⊙ w) = (y ≡ source G e) + (y ∈w w)

Utilising the above definitions, we ascertain that the face type constitutes a homotopy
set. This consequently implies that the planar map type is also a set.

{-# OPTIONS without-K exact-split #-}

module lib.graph-embeddings.Map.Face.isSet
where
open import foundations.Core
open import foundations.HLevelLemmas
open import foundations.NaturalsType
open import foundations.Nat
open import lib.graph-embeddings.Map
open import lib.graph-embeddings.Map.Face
open import lib.graph-definitions.Graph
open Graph
open import lib.graph-walks.Walk
open import lib.graph-transformations.U
open import lib.graph-homomorphisms.Hom
open Hom
open import lib.graph-classes.CyclicGraph
open CyclicGraph
open import lib.graph-classes.CyclicGraph.Stuff
open import lib.graph-homomorphisms.classes.EdgeInjective

module _ {𝓁 : Level} (G : Graph 𝓁) (𝓜 : Map G) where

Face-is-set : isSet (Face G 𝓜)
Face-is-set = equiv-preserves-sets (Face'≃Face G 𝓜) Face'-is-set

where
abstract

Face'-is-set : isSet (Face' G 𝓜)
Face'-is-set

f1@(d1@(A , A↺@(cyclic-graph φA zero pA) , f) , (p₁ , p₂) , p₃)
f2@(d2@(B , B↺@(cyclic-graph φB zero pB) , g) , (q₁ , q₂) , q₃)
= trunc-elim prop-is-prop

(λ {idp → trunc-elim prop-is-prop
(λ {idp → isProp-≃

(≃-sym (≃-trans (Face'-Path-space G 𝓜 f1 f2) equiv))
(∑-prop

(∑-prop
(equiv-preserves-prop
(≃-sym

(≃-trans equiv-principle only-one-iso)) 𝟙-is-prop)
(λ {_ → Hom-is-set _ _ _ _}))
(λ _ → Hom-is-set A B _ _))
}) pB}) pA

A.4 Small excerpts from the library 141

where
open import lib.graph-classes.UnitGraph
open import lib.graph-definitions.Graph.EquivalencePrinciple
open EquivPrinciple (𝟙-graph 𝓁) (𝟙-graph 𝓁)

equiv
: (d1 ≡ d2)

≃ (∑[p ∶ ∑[α ∶ A ≡ B] (tr _ α f ≡ g)] ((tr _ (π₁ p) φA) ≡ φB))
equiv =

begin≃
_

≃⟨ qinv-≃ (λ {idp → idp})
((λ {idp → idp}) , (λ {idp → idp}) , (λ {idp → idp})) ⟩

Path {A = ∑[_] ∑[_] ∑[_] _ }
(A , f , φA , pA)
(B , g , φB , pB)
≃⟨ qinv-≃ (λ {idp → idp})

((λ {idp → idp}) , (λ {idp → idp}) , (λ {idp → idp})) ⟩
Path {A = ∑[(X , h , φh) ∶ ((∑[X] (∑[_] Hom X _)))] _ }

((A , f , φA) , pA)
((B , g , φB) , pB)
≃⟨ simplify-pair (λ {(_ , _ , _) → trunc-is-prop}) ⟩

Path {A = ∑[_] ∑[_] _ }
(A , f , φA)
(B , g , φB)
≃⟨ qinv-≃ (λ {idp → (idp , idp) , idp})

((λ { ((idp , idp) , idp) → idp})
, (λ {((idp , idp) , idp) → idp}) , λ {idp → idp}) ⟩

_ ≃∎
Face'-is-set ((A , A↺@(cyclic-graph φA zero pA) , f) , (p₁ , p₂) , p₃)

((B , B↺@(cyclic-graph φB (succ nB) pB) , g) , (q₁ , q₂) , q₃)
= trunc-elim prop-is-prop (λ {idp → trunc-elim prop-is-prop

(λ {idp → λ {()}})
pB}) pA

Face'-is-set ((A , A↺@(cyclic-graph φA (succ nA) pA) , f) , (p₁ , p₂) , p₃)
((B , B↺@(cyclic-graph φB zero pB) , g) , (q₁ , q₂) , q₃)

= trunc-elim prop-is-prop (λ {idp → trunc-elim prop-is-prop
(λ {idp → λ {()}})
pB}) pA

Face'-is-set
f1@(d1@(A , A↺@(cyclic-graph φA (succ nA) pA) , f) , (p₁ , p₂) , p₃)
f2@(d2@(B , B↺@(cyclic-graph φB (succ nB) pB) , g) , (q₁ , q₂) , q₃)
= trunc-elim prop-is-prop

(λ {idp → trunc-elim prop-is-prop
(λ {idp →

isProp-≃
(≃-sym

(≃-trans (Face'-Path-space G 𝓜 f1 f2) equiv))
(∑-prop (ℕ-is-set _ _) (λ {idp → ∑-prop

(∑-Cn-isos-is-prop 𝓁
(succ nA) (succ-n>0 𝓁 {nA}) (U G) f p₁ g q₁)

(λ _ → Hom-is-set A B _ _)}))})
pB}) pA

where
open import lib.graph-homomorphisms.classes.EdgeInjective.Lemmas
open import lib.graph-homomorphisms.Lemmas
open Hom-Lemma-1 A B
open Hom-Lemma-2 A B (U G) f g

142 Computer Formalisation

equiv : (d1 ≡ d2) ≃ (∑[α ∶ nA ≡ nB]
∑[p ∶ ∑[α ∶ A ≡ B] (f ≡ g∘ α)]
((tr _ (π₁ p) φA) ≡ φB))

equiv =
begin≃

_
≃⟨ qinv-≃ (λ {idp → idp})

((λ {idp → idp}) , (λ {idp → idp}) , (λ {idp → idp})) ⟩
Path {A = ∑[_] ∑[_] ∑[_] ∑[_] _ }
(nA , A , f , φA , pA)
(nB , B , g , φB , pB)
≃⟨ qinv-≃ (λ {idp → idp})

((λ {idp → idp}) , (λ {idp → idp}) , (λ {idp → idp})) ⟩
Path {A = ∑[(nX , X , h , φh) ∶ (∑[_] (∑[X] (∑[_] Hom X _)))] _ }

((nA , A , f , φA) , pA)
((nB , B , g , φB) , pB)
≃⟨ simplify-pair (λ {(_ , _ , _ , _) → trunc-is-prop}) ⟩

Path {A = ∑[_] ∑[_] ∑[_] _ }
(nA , A , f , φA)
(nB , B , g , φB)

≃⟨ qinv-≃ (λ {idp → idp , idp}) ((λ {(idp , idp) → idp}) ,
(λ {(idp , idp) → idp}) , λ {idp → idp}) ⟩

((nA ≡ nB) × Path ((A , f , φA)) ((B , g , φB)))
≃⟨ qinv-≃ (λ {(idp , idp) → idp , (idp , idp)})

((λ {(idp , (idp , idp)) → (idp , idp)}) ,
(λ {(idp , (idp , idp)) → idp}) , λ {(idp , idp) → idp}) ⟩

((nA ≡ nB) × (∑[α ∶ A ≡ B] (Path (f , tr _ α φA) (g∘ α , φB))))
≃⟨ qinv-≃ (λ {(idp , (idp , idp)) → idp , (idp , idp) , idp})

((λ {(idp , ((idp , idp) , idp)) → idp , (idp , idp)}) ,
(λ {(idp , ((idp , idp) , idp)) → idp})
, λ {(idp , (idp , idp)) → idp}) ⟩

((nA ≡ nB) × (∑[p ∶ ∑[α ∶ A ≡ B] (f ≡ g∘ α)] ((tr _ (π₁ p) φA) ≡ φB)))
≃∎

Planar-is-set : {G : Graph 𝓁} → isSet (Planar G)
Planar-is-set {G} =

×-is-set
(prop-is-set being-connected-is-prop)
(∑-set

(Map-is-set G)
(λ 𝓜 → ×-is-set (prop-is-set (isSphericalMap-is-prop G 𝓜))

(Face-is-set G 𝓜)))
where
open import lib.graph-embeddings.Map.Face.isSet

(1)

A.4 Small excerpts from the library 143

Example A.1. Let us elaborate on a basic example, the planar map of the one-point
graph. This instance sheds light on the stringent process necessary to affirm a graph
is planar within the formal setting of this thesis. Herein, we construct an Agda term
step-by-step. First, affirming that the trivial graph map for the one-point graph is
spherical and that it has an outer face, thus fulfilling the required data.

{-# OPTIONS without-K exact-split #-}

module lib.graph-embeddings.Map.Face.Example
where
open import foundations.Core
open import lib.graph-definitions.Graph
open import lib.graph-transformations.U
open Graph

open import lib.graph-embeddings.Map
open import lib.graph-classes.UnitGraph

open import foundations.Cyclic using (CyclicSet; cyclic-set)
open import foundations.Fin
open import foundations.Nat

open import lib.graph-embeddings.Map
open import lib.graph-definitions.Graph
open import lib.graph-homomorphisms.Hom
open import lib.graph-homomorphisms.classes.EdgeInjective
open import lib.graph-transformations.U
open import lib.graph-classes.CyclicGraph
open import lib.graph-classes.CyclicGraph.Stuff
open import lib.graph-embeddings.Map.Face

open import lib.graph-embeddings.Planar
open import lib.graph-classes.EmptyGraph

open import foundations.Fin
open import lib.graph-classes.UnitGraph
open import lib.graph-classes.EmptyGraph
open import foundations.Cyclic
open import foundations.UnivalenceAxiom
open CyclicGraph-is-set
open import foundations.FunExtAxiom

𝓁 : Level
𝓁 = lzero

star-𝟙 : Star (𝟙-graph 𝓁) ∗ ≃ Fin 𝓁 0
star-𝟙

= qinv-≃
(λ { (_ , inl ()) ; (_ , inr ())})
((λ { (zero , ()) ; (succ _ , ())}) ,
(λ { (zero , ()) ; (succ _ , ())}) , λ { (_ , inl ()) ; (_ , inr ())})

zero-is-only-once-cyclic : isProp (CyclicSet 𝓁 (Fin 𝓁 0))
zero-is-only-once-cyclic p q = rapply (lemma-2-13 𝓁 {A = Fin 𝓁 0} p q)

(pi-is-prop (λ _ → isProp-≃ (𝟘-≃-⟦0⟧ 𝓁) 𝟘-is-prop) _ _)

144 Computer Formalisation

 There is only one map.
 Let's prove that by showing that the corresponding type is contractible.
 Or equivalently, that it is a proposition and that the type is inhabited.

𝟙-map : Map (𝟙-graph 𝓁)
𝟙-map ∗ = cyclic-set id 0 ∣ star-𝟙 , funext (λ { (fst₁ , inl ()) ; (fst₁ , inr ())}) ∣

𝟙-has-prop-map : isProp (Map (𝟙-graph 𝓁))
𝟙-has-prop-map = (pi-is-prop (λ {* → tr (λ o → isProp (CyclicSet 𝓁 o)) (! ua star-𝟙)

zero-is-only-once-cyclic}))

 Similarly, we prove that the type Hom(𝟙-graph,U(𝟙-graph)) is contractible.
𝟙-hom : Hom (𝟙-graph 𝓁) (U (𝟙-graph 𝓁))
𝟙-hom = hom id (λ _ _ abs → inl abs)

𝟙-hom-prop' : isProp (Hom (𝟙-graph 𝓁) (𝟙-graph 𝓁))
𝟙-hom-prop' = isProp-≃ (≃-sym (Hom-≃-∑ (𝟙-graph 𝓁) (𝟙-graph 𝓁)))

(∑-prop (pi-is-prop (λ _ → 𝟙-is-prop))
(λ {_ → pi-is-prop
(λ _ → pi-is-prop (λ _ → pi-is-prop
(λ _ → 𝟘-is-prop)))}))

𝟙-hom-prop : isProp (Hom (𝟙-graph 𝓁) (U (𝟙-graph 𝓁)))
𝟙-hom-prop = isProp-≃ (≃-sym (Hom-≃-∑ (𝟙-graph 𝓁) (U (𝟙-graph 𝓁))))

(∑-prop (pi-is-prop (λ _ → 𝟙-is-prop))
(λ {_ → pi-is-prop
(λ _ → pi-is-prop (λ _ → pi-is-prop
(λ _ → +-prop 𝟘-is-prop 𝟘-is-prop (λ {()}))))}))

 CyclicGraph 𝓁 (𝟙-graph 𝓁) is contractible.
𝟙-graph-is-cyclic : CyclicGraph 𝓁 (𝟙-graph 𝓁)
𝟙-graph-is-cyclic = cyclic-graph (id-hom (𝟙-graph 𝓁)) 0 ∣ idp ∣

𝟙-graph-cyclic-prop : isProp (CyclicGraph 𝓁 (𝟙-graph 𝓁))
𝟙-graph-cyclic-prop = isProp-≃ CyclicGraph-≃-∑s

(∑-prop 𝟙-hom-prop' λ {_ (n , c) (m , d)
→ pair= (instances-have-same-natural 𝓁 (𝟙-graph 𝓁)

(cyclic-graph _ n c)
(cyclic-graph _ m d)

, trunc-is-prop _ d) })

𝟙-face : Face (𝟙-graph 𝓁) 𝟙-map
𝟙-face = face (𝟙-graph 𝓁) 𝟙-graph-is-cyclic 𝟙-hom

(λ {()}) (λ _ → id) (λ {_ _ ()})

helper : ∀ {A : Graph 𝓁} → isProp (Hom A (U (𝟙-graph 𝓁)))
helper {A} =

isProp-≃ (≃-sym (Hom-≃-∑ A _))
(∑-prop (pi-is-prop λ _ → 𝟙-is-prop)

λ _ → pi-is-prop (λ _ → pi-is-prop
λ _ → pi-is-prop (λ _ → +-prop 𝟘-is-prop 𝟘-is-prop (λ {()}))))

open import lib.graph-relations.Isomorphic

U𝟙-≅-𝟙 : U (𝟙-graph 𝓁) ≅ 𝟙-graph 𝓁
U𝟙-≅-𝟙 = idEqv ,

λ _ _ → prop-ext-≃
(+-prop 𝟘-is-prop 𝟘-is-prop (λ {()}))
𝟘-is-prop

A.4 Small excerpts from the library 145

((λ { (inl ()) ; (inr ())}) , λ {()})

open import lib.graph-embeddings.Map.Face.Walk.Homotopy
open HomotopyWalks
open import lib.graph-embeddings.Map.Spherical
open import lib.graph-walks.Walk

M-is-spherical : isSphericalMap (𝟙-graph lzero) 𝟙-map
M-is-spherical ∗ .∗ ⟨ .∗ ⟩ ⟨ .∗ ⟩ _ _ = ∣ hwalk-refl ∣
M-is-spherical x .x ⟨ .x ⟩ (inl e ⊙ w) = 𝟘-elim e
M-is-spherical x .x ⟨ .x ⟩ (inr e ⊙ w) = 𝟘-elim e
M-is-spherical x y (inl e ⊙ w1) w2 = 𝟘-elim e
M-is-spherical x y (inr e ⊙ w1) w2 = 𝟘-elim e

open import lib.graph-classes.ConnectedGraph
𝟙-graph-is-connected : (U (𝟙-graph lzero)) is-connected-graph
𝟙-graph-is-connected ∗ ∗ = ∣ ⟨ ∗ ⟩ ∣

𝟙-graph-is-planar : Planar (𝟙-graph lzero)
𝟙-graph-is-planar =

𝟙-graph-is-connected ,
𝟙-map ,
M-is-spherical ,
𝟙-face

Example A.2. The following is the elaboration of the proof of Lemma 3.19.
{-# OPTIONS without-K exact-split #-}
module lib.graph-families.CycleGraph.Isomorphisms.Lemmas

where
open import foundations.Core
module _ (𝓁 : Level) where

open import lib.graph-definitions.Graph
open import lib.graph-homomorphisms.Hom
open import lib.graph-relations.Isomorphic
open import lib.graph-families.CycleGraph.Isomorphisms.IdentityType
open import foundations.FunExtAxiom using (happly)
open import foundations.UnivalenceAxiom using (idtoeqv)
open import foundations.Fin 𝓁
open import foundations.Nat 𝓁
open import foundations.Cyclic 𝓁
open import lib.graph-families.CycleGraph.RotHom 𝓁
open import lib.graph-families.CycleGraph 𝓁

open Graph
open Hom

order-of-an-iso
: (n : ℕ)
→ (n>0 : ℕ-ordering._>_ 𝓁 n 0)
→ (φ : Cycle n ≅ Cycle n)
→ ∑[(k , _) ∶ ⟦ n ⟧] ((rot n ^-hom k) ≡ hom-from-iso φ)

order-of-an-iso zero ()
order-of-an-iso n@(succ _) ∗ φ = ((Isos-→-Fin 𝓁 n ∗) φ) ,

(begin
(rot n ^-hom π₁ (((Isos-→-Fin 𝓁 n ∗) φ)))

≡⟨⟩

146 Computer Formalisation

hom-from-iso ((Fin-→-Isos 𝓁 n ∗) (((Isos-→-Fin 𝓁 n ∗) φ)))
≡⟨ ap hom-from-iso (rlmap-inverse-h (Isos-≃-Fin 𝓁 n ∗) φ) ⟩

hom-from-iso φ ∎)

open import lib.graph-homomorphisms.Lemmas
module _ (n : ℕ) (n>0 : n > 0)

where
hom-from-≡ = Hom-Lemma-1.hom-from-≡ (Cycle n) (Cycle n)
≡-from-iso = Hom-Lemma-1.≡-from-iso (Cycle n) (Cycle n)
same-hom-from-≡-or-≅ = Hom-Lemma-1.same-hom-from-≡-or-≅ (Cycle n) (Cycle n)

rot^k-from-iso
: (n : ℕ) (n>0 : n > 0)
→ (φ : Cycle n ≅ Cycle n)
→ (G : Graph 𝓁)
→ (f g : Hom (Cycle n) G)
→ let k = π₁ (((Isos-≃-Fin 𝓁 n n>0 ∙) φ))

in
(f ≡ (((hom-from-≡ n n>0) (≡-from-iso n n>0 φ)) ∘Hom g))

≡ (f ≡ ((rot n ^-hom k) ∘Hom g))

rot^k-from-iso zero () φ G f g
rot^k-from-iso n@(succ _) ∗ φ G f g

= ap (λ w → f ≡ (w ∘Hom g))
((same-hom-from-≡-or-≅ n ∗ φ) · ! π₂ (order-of-an-iso n ∗ φ))

m₁
: (n : ℕ) (n>0 : n > 0) (G : Graph 𝓁)(f g : Hom (Cycle n) G)
→ (∑[α ∶ Cycle n ≅ Cycle n]

(f ≡ (((hom-from-≡ n n>0) ((≡-from-iso n n>0) α)) ∘Hom g)))
≃ (∑[(k , _) ∶ ⟦ n ⟧] (f ≡ ((rot n ^-hom k) ∘Hom g)))

m₁ zero ()
m₁ n@(succ _) ∗ G f g

= sigma-maps-≃ (Isos-≃-Fin 𝓁 n ∗) $
λ φ → idtoeqv (rot^k-from-iso n ∗ φ G f g)

abstract
L1-hom

: (n : ℕ) (n>0 : n > 0) { k₁ k₂ : ⟦ n ⟧}
→ ((x y : Node (Cycle n))
→ (e : Edge (Cycle n) x y)
→ let

h₁ = rot n ^-hom (π₁ k₁)
h₂ = rot n ^-hom (π₁ k₂)
in
Path {A = ∑[x] ∑[y] Edge (Cycle n) x y}

(α h₁ x , α h₁ y , β h₁ x y e)
(α h₂ x , α h₂ y , β h₂ x y e))

→ k₁ ≡ k₂

L1-hom zero ()
L1-hom n@(succ m) ∗ {k₁ = k₁}{k₂} f

= fin-exp-is-unique k₁ k₂ (fin-pred (0' 𝓁 m)) eq₁
where
open Sigma

h₁ h₂ : Hom (Cycle n) (Cycle n)
h₁ = rot n ^-hom (π₁ k₁)

A.4 Small excerpts from the library 147

h₂ = rot n ^-hom (π₁ k₂)

eq₁ : (fin-pred {k = n} ^ π₁ k₁) (m , succ m)
≡ (fin-pred ^ π₁ k₂) (m , succ m)

eq₁ =
(fin-pred ^ (π₁ k₁)) (m , succ m)

≡⟨ happly (lemma-on-nodes-hom-expo (rot n) (π₁ k₁)) (m , succ m) ⟩
(α h₁ (m , succ m))

≡⟨ π₁ (Σ-componentwise (f (m , succ m) (0' 𝓁 _) idp)) ⟩
(α h₂ (m , succ m))

≡⟨ ! happly
(lemma-on-nodes-hom-expo (rot n) (π₁ k₂))
((fin-pred (0' 𝓁 _))) ⟩

(fin-pred ^ π₁ k₂) _
∎

Example A.3. We present a few excerpts on the definition of the path addition of a
graph and a few related lemmas as discussed in Section 6.3.1.

▷ The path addition of 𝑃𝑛 to a graph 𝐺, where 𝑛 > 0.
path-addition : (a b : Node G) → (n : ℕ) → 0 < n → Graph 𝓁
path-addition a b n p = graph N' E' N'-is-set E'-forms-sets

where
N' : Type 𝓁
N' = Node G + Fin n
E' : N' → N' → Type 𝓁
E' (inl x) (inl y) = Edge G x y
E' (inl x) (inr y) = (x ≡ a) × (y ≡ (0 , p))
E' (inr x) (inl y) = (x ≡ fin-pred (0 , p)) × (y ≡ b)
E' (inr x) (inr y) = x ≡ fin-pred y

N'-is-set : N' is-set
N'-is-set = +-set (Node-is-set G) Fin-is-set

E'-forms-sets : (x y : N') → (E' x y) is-set
E'-forms-sets (inl x) (inl y) = Edge-is-set G _ _
E'-forms-sets (inl x) (inr y) =

∑-set (prop-is-set (Node-is-set G _ _))
(λ _ → prop-is-set (Fin-is-set _ _))

E'-forms-sets (inr x) (inl y) =
∑-set (prop-is-set (Fin-is-set _ _))

(λ _ → prop-is-set (Node-is-set G _ _))
E'-forms-sets (inr x) (inr y) = prop-is-set (Fin-is-set _ _)

▷ The graph resulting from the path addition contains the walks of the original
graph.

path-addition-has-original-walks
: (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (x y : Node G) → (Walk G x y)
→ Walk (path-addition a b n p) (inl x) (inl y)

path-addition-has-original-walks a b n p x .x ⟨ .x ⟩ = ⟨ inl x ⟩
path-addition-has-original-walks a b n p x y (_⊙_ {y = y₁} e w) = e ⊙ w'

where

148 Computer Formalisation

w' : Walk (path-addition a b n p) (inl y₁) (inl y)
w' = path-addition-has-original-walks a b n p _ _ w

▷ In addition, the graph resulting from the path addition contains the inner walks
in the path graph 𝑃𝑛.

path-addition-has-new-walks
: (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (x y : ℕ) → (x< : x < n) → (y< : y < n)
→ ((x ≡ y) + (x < y))
→ Walk (path-addition a b n p) (inr (x , x<)) (inr (y , y<))

path-addition-has-new-walks a b zero ()
path-addition-has-new-walks a b n@(succ n') ∗ zero zero x< y< (inl idp)

rewrite prop {n = n}{m = zero} x< y< = ⟨ inr (0 , y<) ⟩
path-addition-has-new-walks a b n@(succ n') ∗ zero (succ y) x< y< (inr *)

with _≟fin_ {n} (0 , x<) (fin-pred (succ y , y<))
... | yes p = p ⊙ ⟨ _ ⟩
... | no ¬p = walk-0-to-y ∙w (pair= (idp ,

prop {succ n'}{y} (inj {n}{y} y<) (n⁺<k→n<k {y}{succ n'} y<)) ⊙ ⟨ _ ⟩)
where
open ∙-walk (path-addition a b n *)
walk-0-to-y

: Walk (path-addition a b n *) (inr (0 , x<)) (inr (y , inj {n}{y} y<))
walk-0-to-y with zero ≟nat y
... | yes idp
rewrite prop {n = n}{m = zero} (inj {n}{y} y<) * = ⟨ inr ((0 , x<)) ⟩

... | no ¬p = path-addition-has-new-walks a b (succ n') ∗ 0 y ∗
((inj {n}{y} y<)) (inr (n≠0 (λ p ¬p (sym p))))

path-addition-has-new-walks a b n@(succ n') ∗ (succ x) (succ .x) x< y< (inl idp)
rewrite prop {n = n}{m = succ x} x< y< = ⟨ inr (succ x , y<) ⟩

path-addition-has-new-walks a b n@(succ n') ∗ (succ x) (succ y) x< y< (inr x<y)
with _≟fin_ {n} (succ x , x<) (fin-pred (succ y , y<))

... | yes p = p ⊙ ⟨ _ ⟩

... | no ¬p = walk-0-to-y ∙w
(pair= (idp , prop {succ n'}{y} (inj {n}{y} y<)

(n⁺<k→n<k {y}{succ n'} y<)) ⊙ ⟨ _ ⟩)
where
open ∙-walk (path-addition a b n ∗)
walk-0-to-y

: Walk (path-addition a b n ∗) (inr (succ x , x<)) (inr (y , inj {n}{y} y<))
walk-0-to-y with (succ x) ≟nat y
... | yes idp

rewrite prop {n = n}{m = succ x} (inj {n}{y} y<) x< = ⟨ inr (succ x , x<) ⟩
... | no p =
path-addition-has-new-walks a b (succ n') ∗ (succ x) y

(mono-succ {x}{n'} x<) (inj {n}{y} y<)
(inr (suc-suc< {𝓁} {x}{y} x<y λ o → ¬p

(pair= (sym o , prop {succ n'}{y} _ _))))

▷ As expected, one can prove that the graph resulting from the path addition is
connected if the original graph is connected. To prove this lemma, we need a
few extra lemmas, which are proved below.

path-addition-preserves-connectedness
: G is-connected-graph
→ (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (path-addition a b n p) is-connected-graph

path-addition-preserves-connectedness G-is-connected a b zero ()

A.4 Small excerpts from the library 149

path-addition-preserves-connectedness G-is-connected a b n@(succ n') p
= helper
where
G' : Graph 𝓁
G' = path-addition a b n p
N' = Node G + Fin n
open ∙-walk (path-addition a b n p)

helper : (x y : N') → ∥ Walk G' x y ∥
helper (inl x) (inl y)

= trunc-elim trunc-is-prop
(λ w → ∣ path-addition-has-original-walks a b n p _ _ w ∣)
(G-is-connected x y)

helper (inl x) (inr y@(naty , y<))
with x ≟Node a

... | inl idp = ∣ path-addition-walk-from-first-endpoint a b n p y ∣

... | inr p' = trunc-elim trunc-is-prop
(λ w → ∣ path-addition-has-original-walks a b n p x a w ∙w walk-a-finy ∣)
(G-is-connected x a)
where
walk-a-finy = path-addition-walk-from-first-endpoint a b n p y

helper (inr x@(natx , x<)) (inl y)
with (x ≟fin fin-pred (0 , p)) | (y ≟Node b)

... | yes idp | inl idp = ∣ (((idp , idp)) ⊙ ⟨ inl b ⟩) ∣

... | yes idp | inr y≠b = trunc-elim trunc-is-prop
(λ w → ∣ ((((idp , idp)) ⊙ ⟨ inl b ⟩))

∙w path-addition-has-original-walks a b n p _ _ w ∣)
(G-is-connected b y)

... | no ¬p | inl idp = ∣ walk-fin0-finn-1 ∙w ((idp , idp) ⊙ ⟨ inl b ⟩) ∣
where
walk-fin0-finn-1

: Walk (path-addition a b n p) (inr x) (inr (fin-pred (0 , p)))
walk-fin0-finn-1 = path-addition-walk-to-the-end a b n p x

... | no ¬p | inr y≠b
with (x ≟fin fin-pred (0 , p))

... | yes idp = trunc-elim trunc-is-prop (λ w →
∣ ((((idp , idp)) ⊙ ⟨ inl b ⟩))

∙w path-addition-has-original-walks a b n p _ _ w ∣)
(G-is-connected b y)

... | no ¬p₁ = trunc-elim trunc-is-prop (λ w →
∣ walk-finx-b ∙w (((idp , idp))

⊙ path-addition-has-original-walks a b n p _ _ w) ∣)
(G-is-connected b y)

where
walk-finx-b : Walk (path-addition a b n p) (inr x) (inr (fin-pred (0 , p)))
walk-finx-b = path-addition-walk-to-the-end a b n p x

helper (inr x@(natx , x<)) (inr y@(naty , y<))
with trichotomy natx naty

... | inl (inl idp) =
∣ path-addition-has-new-walks a b n p natx naty x< y< (inl idp) ∣

... | inl (inr natx<naty) =
∣ path-addition-has-new-walks a b n p natx naty x< y< (inr natx<naty) ∣

... | inr naty<natx =
trunc-elim trunc-is-prop (λ w

→ ∣ path-addition-walk-to-last-endpoint a b n p x
∙w path-addition-has-original-walks a b n p _ _ w
·w path-addition-walk-from-first-endpoint a b n p y

150 Computer Formalisation

∣)
(G-is-connected b a)

▷ Walks from the head of a path addition.

path-addition-walk-from-the-head
: (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (x : Fin n)
→ Walk (path-addition a b n p) (inr (0 , p)) (inr x)

path-addition-walk-from-the-head a b zero ()
path-addition-walk-from-the-head a b n@(succ n') p x@(natx , x<)

with natx ≟nat 0
... | yes idp = ⟨ inr x ⟩
... | no ¬p = path-addition-has-new-walks a b n p 0 natx p x< (inr (n≠0 {natx} ¬p))

▷ Walks to the tail of a path addition.

path-addition-walk-to-the-end
: (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (x : Fin n)
→ Walk (path-addition a b n p) (inr x) (inr (fin-pred (0 , p)))

path-addition-walk-to-the-end a b zero ()
path-addition-walk-to-the-end a b n@(succ n') p x@(natx , x<)

with <s-to= natx n' x<
... | (inl idp) rewrite prop {succ n'}{n'} x< (succ n') = ⟨ inr (natx , _) ⟩
... | (inr natx<n') =
path-addition-has-new-walks a b n p natx n' x< (succ n') (inr natx<n')

▷ Walks from the first endpoint of a path addition.

path-addition-walk-from-first-endpoint
: (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (x : Fin n)
→ Walk (path-addition a b n p) (inl a) (inr x)

path-addition-walk-from-first-endpoint a b n p x =
(idp , idp) ⊙ (path-addition-walk-from-the-head a b n p x)

▷ Walks to the last endpoint of a path addition.

path-addition-walk-to-last-endpoint
: (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (x : Fin n)
→ Walk (path-addition a b n p) (inr x) (inl b)

path-addition-walk-to-last-endpoint a b n p x
= path-addition-walk-to-the-end a b n p x ∙w (((idp , idp)) ⊙ ⟨ inl b ⟩)
where
open ∙-walk (path-addition a b n p)

B
On Trees and Their Topological

Realisation

B.1 Introduction

This appendix explores the concepts of rooted trees and oriented spanning trees in HoTT.
A rooted tree is a tree with one node singled out, while an oriented spanning tree is de-
fined as a subgraph that not only forms a tree but also encompasses all nodes of the
original graph [DK04]. Although there is no universal method for constructing span-
ning trees in infinite connected graphs, we can establish the mere existence of oriented
spanning trees for finite, connected graphs, provided that the set nodes are finite and the
edge family comprises homotopy sets. Some notions, including the type of a graph, differ
slightly from the one used in the main text in this part. For example, we define a graph
as a type of nodes equipped with a binary type-valued relation of edges.

Furthermore, we explore these notions of connected graphs rooted trees in the con-
text of HITs in HoTT. Towards this end, we define the 1-cell topological realisation of
a graph, a construction also seen in Swan’s proof on the proof of Nielsen–Schreier the-
orem [Swa22]. This construction, which considers only the 0-cells and 1-cells —nodes
and edges—excluding higher-dimensional cells, can be expressed in HoTT as a coequal-
izer that models the topological space generated by a graph where the nodes are points,

152 On Trees and Their Topological Realisation

and the edges are paths glued to their endpoints in the space. In this context of HITs,
we define a graph as connected if its realisation is a connected type. We also define a
tree as a loop-free graph whose topological realisation is a contractible type. Then, later,
we reconnect with the notion of rooted trees, which are initially defined independently
from topological realisation as trees with a designated node, and prove that realisation of
rooted trees corresponds to contractible types, i.e. also trees in the sense of HITs.

The connection and constructions presented in this appendix , although novel at the
moment of writing, as we did not find any similar work in the literature, were influenced
by Swan’s constructions, especially the sections on enlarging subtrees and spanning trees
(see Appendices B.4 and B.4.1), which draw upon Lemma 4.6 [Swa22, §4]. The primary
distinction between our approach and Swan’s lies in our focus on the combinatorial con-
structions of graphs. We construct (spanning) trees through the expansion of graphs, as
similarly outlined in the main text, rather than directly employing higher inductive types
on the topological realisations of graphs.

B.2 Computer formalisation in Cubical Agda

We use Cubical Agda to formalise this part, an extension of Agda that supports Cubical
type theory and a large family of HITs, making it easy to prove principles like function
and propositional extensionality, and define higher inductive types such as the circle and
the torus. Cubical Agda lets us define (dependent) functions onHITs by patternmatching.
Although we could use vanilla Agda, it is rather tedious without the Cubical Mode. In
recent versions of Agda, we can extend the type-checker’s capabilities by adding custom
rewriting rules, which can alleviate the lack of support for HITs. To type-check the proofs
in this appendix, we use the following versions of Agda and the Cubical Agda library.

▷ Agda version 2.6.2.1-59c7944 with the flag cubical.

▷ Cubical Agda library version 0.3.

{-# OPTIONS cubical #-}

open import Cubical.Core.Everything

open import Base

B.3 Basic concepts

Let us start defining a few basic concepts about graphs.

B.3 Basic concepts 153

B.3.1 The type of graphs

Definition B.1. A graph consists of a type of nodes equipped with a binary type valued
relation of edges.

Graph ∶≡ ∑
(𝑁∶U)

(𝑁 → 𝑁 → U). (B.3–1)

The type of graphs is defined in Agda as follows.
record Graph : Type (𝓁-suc 𝓁) where

constructor graph

field

N : Type 𝓁

E : N → N → Type 𝓁

open Graph

B.3.2 The type of walks

We can define the type of walks in a graph as an indexed inductive data type, similar to
the polymorphic type for lists. This type is useful for formalising results on walks, as it
allows us to define walk functions through pattern matching in an easy and convenient
way [Pri22]. Unfortunately, pattern matching is not supported in Cubical Agda for such
inductive data types at the moment of writing. We, therefore, consider the following
equivalent types fromwhere the former type is chosen for the convenience of the lemmas
stated in this chapter. In particular, walks here grow by attaching edges at their ends, as
in Lemma B.11. In what follows, we denote by 𝑊 𝑛𝐺(𝑥, 𝑦) the type of walks from 𝑥 to 𝑦 of
length 𝑛 in a graph 𝐺.

1. Walks formed by backwards edge addition.
W : ℕ → N G → N G → Type 𝓁

W 0 x y = x ≡ y

W (suc n) a c = Σ[b ∈ N G] (W n a b) × (E G b c)

2. Walks formed by forward edge addition.
W' : ℕ → N G → N G → Type 𝓁

W' 0 x y = x ≡ y

W' (suc n) a c = Σ[b ∈ N G] (E G a b) × (W' n b c)

The concatenation of two walks 𝑝 and 𝑞 of 𝑛 and 𝑚 edges respectively, is a walk of 𝑛 + 𝑚
edges denoted by 𝑝 · 𝑞 and defined in Agda as follows. To not clash with Cubical notation,
we denote the new walk by p ·w q.

module walk-concat (G : Graph {𝓁}) where

open Walks G

154 On Trees and Their Topological Realisation

·w : ∀ {x y z : N G} {n m : ℕ}

→ W n x y → W m y z

→ W (n +ℕ m) x z

·w {x = x} {z = z} {n} {zero} p q

= subst ((λ o → W o x z)) (sym (+-zero n)) (subst (λ o → W n x o) q p)

·w {x = x} {z = z} {n} {suc m} p (b , q , e)

= subst (λ o → W o x z) (sym (+-suc _ _)) (b , p ·w q , e)

As typical in HoTT, once a type is defined, one would like to characterise its identity
type. In the case of walks, we compute the identity type point-wise. Since we are only
interested in the case where graphs consist of sets, the type of walks of such graphs turns
out to be a set.
Lemma B.2. Let 𝐺 be a graph such that the type of nodes is a set and the family of edges
consists of sets. Then, the type of walks of length 𝑛 from 𝑥 to 𝑦 is a set, for any 𝑥, 𝑦 ∶ 𝑁𝐺
and 𝑛 ∶ N.

A proof term for this lemma in Agda is the following.
module _ (V-is-set : isSet (N G))

(E-is-set : (x y : N G) → isSet (E G x y)) where

W-is-set : (n : ℕ) → (x y : N G) → isSet (W n x y)

W-is-set zero _ _ = isProp→isSet (V-is-set _ _)

W-is-set (suc n) _ _ = isOfHLevelΣ 2 V-is-set λ _ →

(isOfHLevel× 2 (W-is-set n _ _) (E-is-set _ _))

We work with strongly connected graphs throughout the following lemmas unless oth-
erwise stated. Let us define such a property as the mere existence of a walk between any
pair of nodes.

Definition B.3 (isGConnected). A graph 𝐺 is strongly connected if the type in (B.3–2) is in-
habited.

isGConnected(𝐺) ∶≡ ∏
(𝑥,𝑦∶𝑁𝐺)

‖ ∑
(𝑛∶N)

𝑊 𝑛𝐺(𝑥, 𝑦)‖ . (B.3–2)

In Agda, the type above is defined as follows.
isGConnected : Graph → Type 𝓁

isGConnected G = (x y : N G) → ∥ Σ[n ∈ ℕ] W G n x y ∥

Lemma B.4. Being connected for a graph is a proposition.

B.3.3 Rooted trees and subgraphs

Trees are usually defined as undirected graphs with a single path between any pair of
nodes. However, we prefer to use a more suitable notion of a tree for working directly

B.3 Basic concepts 155

with directed multigraphs. Therefore, we consider the class of rooted trees, which are
directed graphs with a single node acting as the root of the tree such that there is a single
walk from the root to any other node..

Let us now define the type of rooted trees in a directed multigraph 𝐺. We refer to
rooted trees as trees in the rest of this work unless otherwise stated.

Definition B.5 (isTree). A graph 𝐺 is a tree if the type in (B.3–3) is contractible. The node
in the centre of contraction is referred to as the root of the tree.

∑
(𝑟∶N𝐺)

∏
(𝑥∶N𝐺)

isContr(∑
(𝑛∶N)

W𝑛
𝐺(𝑟 , 𝑥)) (B.3–3)

The notion of trees for directed graphs can also be defined in terms of zig-zags, which
are walks formed by edges of different possible orientations. In this view, a tree is then a
graph if the corresponding type of zig-zag walks is contractible. Finally, it is worth men-
tioning that the definition of the type of undirected graphs and other derived concepts,
including trees and trails, can be found in Agda–UniMath [RBPB+23]. In this Agda li-
brary, an undirected graph consists of a type 𝑉 of nodes and a family 𝐸 of types over
the unordered pairs of 𝑉 . Lastly, an unordered pair of elements in a type 𝐴 consists of a
two-element type 𝑋 and a map of type 𝑋 → 𝐴.
In Agda, the type of rooted trees is defined as follows.

isTree : Graph → Type 𝓁

isTree G = isContr(Σ[r ∈ N G] (∀ x → isContr(Σ[n ∈ ℕ] W G n r x)))

Lemma B.6 (isProp-isTree). Being a tree is a proposition.

We need now to define the notions of subgraph and subtree. Recall that we are inter-
ested in defining and constructing spanning trees out of strongly connected graphs, which
are trees containing all nodes of the original graph. If the graph is finite and strongly con-
nected, such trees can be obtained by traversing the graph using a depth-first search or a
breadth-first search algorithm. For a more general class of graphs, a principle of choice
may be needed to guide the search. In Appendix B.4.1, we prove that a spanning tree
merely exists if the node set of the graph is an inhabited type and the graph is strongly
connected with a family of discrete sets as the type of edges.

Definition B.7 (Subgraph). A subgraph of 𝐺 is a graph 𝐻 with an embedding into 𝐺, denoted
by 𝐻 ↪ 𝐺. The type of subgraphs of 𝐺 is Subgraph(𝐺).

Subgraph(𝐻 , 𝐺) ∶≡ ∑
((ℎ,𝑔)∶Hom(𝐻 ,𝐺))

isEmbedding(ℎ) × ∏
(𝑥,𝑦∶N𝐻)

isEmbedding(𝑔(𝑥, 𝑦)),

156 On Trees and Their Topological Realisation

where Hom(𝐻 , 𝐺) is the type of graph homomorphisms from 𝐻 to 𝐺 and isEmbedding
is the property that the function ap/cong is an equivalence, as defined in the HoTT Book.

We now provide an implementation in Agda that closely mirrors the mathematical
definition above.

module _ {𝓁 : Level} (G : Graph {𝓁}) where

record Subgraph (H : Graph {𝓁}) : Type 𝓁 where

field

h : N H → N G

g : (x y : N H) → E H x y → E G (h x) (h y)

h-is-emb : isEmbedding h

g-is-emb : (x y : N H) → isEmbedding (g x y)

Definition B.8 (isSubtree). A (decidable) subtree of 𝐺 is a tree and subgraph of 𝐺 equipped
with a mechanism for checking whether a node in 𝐺 is in it or not.

record isSubtree (H : Graph {𝓁}) : Type 𝓁 where

constructor subtree

field

is-subgraph : Subgraph H

is-tree : isTree H

dec-fiber : (x : N G) → Dec (fiber (Subgraph.h is-subgraph) x)

B.4 Enlarging rooted subtrees

In this section we develop a few lemmas about the notion of a subgraph and subtree and
about how to construct larger subtrees out of subgraphs. The main result of this section
is Lemma B.11, which requires first to state the following lemma.
Lemma B.9 (∃-edgecut). Let 𝐺 be a connected graph such that its node set is partitioned into
two disjoint non-empty types 𝑉1 and 𝑉2. Then, there merely exists an edge connecting a node
of 𝑉1 to some node of 𝑉2 and vice versa.
Proof. Since we want to prove a proposition, let us apply the elimination principle of the
propositional truncation to the fact of 𝐺 being connected. One can obtain a function 𝑓 ,
which returns a walk connecting any two nodes of 𝐺. Let 𝑣1, 𝑣2 be nodes in 𝑉1 and 𝑉2,
respectively, and 𝑤 be the walk obtained by 𝑓 (𝑣1, 𝑣2).

Let us proceed by induction on the length of 𝑤 . We will exhibit an edge in the walk 𝑤
that must have one node in 𝑉1 and the other node in 𝑉2, as illustrated in Figure B.1. If the
walk has zero length, then there is nothing to prove since such a case is impossible by
construction. Then, we can assume the induction hypothesis holds for a walk of length
𝑛. Let 𝑝 ⋅ 𝑒 be a walk of length 𝑛 + 1 where 𝑝 is a walk from 𝑥 to 𝑦 and 𝑒 is an edge from

B.4 Enlarging rooted subtrees 157

V1

V2

v1 v2G w

Figure B.1: The walk 𝑤 in Lemma B.9’s proof.

𝑦 to 𝑣2. Since the node set of 𝐺 is equivalent to 𝑉1 + 𝑉2, the node 𝑦 is either in 𝑉1 or 𝑉2.
If 𝑦 is in 𝑉1, the required edge is 𝑒. Otherwise, we get the required edge by induction on
the walk 𝑝. □

Figure B.2: The term ∃-edgecut defined below is the Agda term for the Lemma B.9’s proof.

module EdgeCutLemma {𝓁 : Level} {V₁ V₂ : Type 𝓁}
(G : Graph {𝓁}) (G-is-connected : isGConnected G)
(e : N G ≃ V₁ + V₂)
(v₁ : V₁) (v₂ : V₂) where
∃-edgecut : ∥ Σ[x ∈ V₁] Σ[y ∈ V₂] E G (from-V₁ x) (from-V₂ y) ∥
∃-edgecut = trunc-elim isPropPropTrunc (λ {(n , w) → f v₁ v₂ n w}) w

where
isoN : Iso (N G) (V₁ + V₂)
isoN = equivToIso e

w : ∥ Σ[n ∈ ℕ] W G n (from-V₁ v₁) (from-V₂ v₂) ∥
w = G-is-connected _ _

f : (a : V₁) (b : V₂) (n : ℕ) → W G n (from-V₁ a) (from-V₂ b)
→ ∥ Σ[x ∈ V₁] Σ[y ∈ V₂] E G (from-V₁ x) (from-V₂ y) ∥

f _ _ zero w = ⊥-elim (inlinr-→-⊥ (isoInvInjective isoN _ _ w))
f v₁ v₂ (suc n) (b , w , ed)

with from-NG b | inspect from-NG b
... | inl x | [from-NGb≡inlx]
= ∣ x , v₂ , subst (λ o → E G o _) helper ed ∣
where
helper : b ≡ from-V₁ x
helper = sym (retEq e b) ∙ cong to-NG from-NGb≡inlx

... | inr x | [from-NGb≡inrx]
= f v₁ x n (subst (λ o → W G n _ o) helper w)
where
helper : b ≡ from-V₂ x
helper = sym (retEq e b) ∙ cong to-NG from-NGb≡inrx

Lemma B.10 (decompose-image). Let 𝐴, 𝐵 ∶ U and 𝑓 be an embedding from 𝐴 to 𝐵 such that
the type of fibers fib𝑓 (𝑥) is a decidable set for any 𝑥 ∶ 𝐵. Then, the following equivalence
holds.

𝐵 ≃ 𝐴 + ∑
(𝑥∶𝐵)

¬ fib𝑓 (𝑥),

where fib𝑓 (𝑏) ∶≡ ∑(𝑎∶𝐴) 𝑓 (𝑎) = 𝑏.
Lemma B.11 (∃-subtree). Let 𝐺 be a connected graph with a discrete node set such that each

158 On Trees and Their Topological Realisation

type of edges E𝐺(𝑥, 𝑦) is a set for any pair of nodes 𝑥, 𝑦 . If 𝐻 is a subtree of 𝐺 such that
there is a node 𝑢 in 𝐻 and a node 𝑣 in 𝐺 but not in 𝐻 , then there merely exists a subtree of
𝐺 enlarging 𝐻 with one additional node.

Proof. Since 𝐻 is a subtree, then, there must be a pair (ℎ, 𝑔) ∶ 𝐻 ↪ 𝐺. We can decompose
the set of nodes of 𝐺 as in (B.4–4) by applying Lemma B.10 to the embedding ℎ and the fact
that the set of nodes of 𝐻 is a discrete set. We write N𝐺⧵𝐻 for the set ∑(𝑥∶N𝐻) ¬ fibℎ(𝑥).

N𝐺 ≃ N𝐻 + N𝐺⧵𝐻 . (B.4–4)

Let 𝑝 be of type
‖Σ(𝑥∶N𝐻) Σ(𝑦∶N𝐺⧵𝐻) E𝐺(𝑥, 𝑦)‖,

obtained by applying Lemma B.9 to the fact that 𝐺 is connected, and the node set of 𝐺
is partitioned as the coproduct of two non-empty sets. The sets N𝐻 and N𝐺⧵𝐻 are non-
empty by assumption. Now, since the goal of this proof is a proposition, by eliminating
of the propositional truncation applied to 𝑝, we can assume that there is an edge 𝑒 from a
node in 𝐻 to some node in N𝐺⧵𝐻 . Finally, by Lemma B.20, the graph 𝐻 can be extended
by adding to it the edge 𝑒 to get the subgraph𝐻 ∗ of 𝐺, similarly as illustrated in Figure B.4.
The definition of 𝐻 ∗ is given in Definition B.12. The proof 𝐻 ∗ is a subtree of 𝐺 is given
in Lemma B.20. □

The remainder of this section is devoted to supporting the construction of the extended
subtree 𝐻 ∗ of 𝐺, which is crucial for the proof of Lemma B.11. The definition of 𝐻 ∗ is
given in Definition B.12. The proofs that 𝐻 ∗ is a subgraph and a subtree are given in
Lemmas B.14 and B.20, respectively. We assume below that 𝐻 is a subgraph of 𝐺, defined
by (ℎ, 𝑔) ∶ 𝐻 ↪ 𝐺. Additionally, there is a designated edge ̂𝑒 from �̂� in 𝐻 to ̂𝑦 in 𝐺. The
node ̂𝑦 is not in 𝐻 , as illustrated in Figure B.4. As a matter of notation, the singleton
graph formed by the node 𝑥 with no edges is denoted by {𝑥}.
Definition B.12. The graph obtained from adding to 𝐻 the edge ̂𝑒 is referred as to 𝐻 ∗. For-
mally speaking, the set of nodes N𝐻 ∗ is the set N𝐻 + { ̂𝑦} and the family of edges in 𝐻 ∗ is
defined below. Recall that the function ℎ, appearing below in (B.4–5), is the embedding from
N𝐻 to N𝐻 ∗ given by the fact that 𝐻 is a subgraph of 𝐺.

E𝐻 ∗(𝑥, 𝑦) ∶≡
⎧⎪
⎨⎪⎩

E𝐻 (𝑎, 𝑏) if 𝑥 ≡ inl(𝑎), 𝑦 ≡ inl(𝑏),
ℎ(𝑎) = ℎ(�̂�) if 𝑥 ≡ inl(𝑎), 𝑦 ≡ inr(𝑏),
0 otherwise.

(B.4–5)

Lemma B.13. Let 𝐻 ∗ be the graph defined in Definition B.12. The following properties hold
for 𝑎, 𝑏 ∶ N𝐻 and 𝑐 ∶ N{ ̂𝑦 }.

B.4 Enlarging rooted subtrees 159

Figure B.3: An excerpt of the Agda term for Lemma B.11.

module _ (G : Graph {𝓁})
(G-is-connected : isGConnected G)
(_≟Node_ : (x y : N G) → Dec (x ≡ y))
(E-is-set : (x y : N G) → isSet (E G x y)) where

∃-subtree
: (H : Graph)
→ (H-subtree : isSubtree G H)
→ (u : N H) → (v : N G)
→ ¬ (fiber (Subgraph.h (isSubtree.is-subgraph H-subtree)) v)
→ ∥ Σ[H* ∈ Graph] isSubtree G H* × (N H* ≃ (N H + 𝟙)) ∥

∃-subtree H H-subtree u v v-not-in-H =
trunc-elim isPropPropTrunc helper ∃-edgecut
where
H-subgraph = isSubtree.is-subgraph H-subtree
h = Subgraph.h H-subgraph
h-is-emb = Subgraph.h-is-emb H-subgraph
h-has-dec-image = isSubtree.dec-fiber H-subtree
V₁ = N H
isoN : N G ≃ V₁ + V₂
isoN = decompose-image _ _ h h-is-emb h-has-dec-image

open EdgeCutLemma G G-is-connected
isoN u (v , v-not-in-H) hiding (E*)

helper : Σ[x ∈ V₁] Σ[y ∈ V₂] E G (from-V₁ x) (from-V₂ y) → _
helper (x , y , ed) = ∣ H* , H*-subtree , e' ∣

where
 H* is the graph obtained by adding an edge to H.
 H*-subtree is a term constructed in Lemma 4.5-4.16

x̂ ŷ

H

ê

H∗

Figure B.4: The graph𝐻 ∗, mentioned in Lemmas B.13 to B.20, obtained by adding an edge
̂𝑒 to 𝐻 . The edge ̂𝑒 is given by Lemma B.9.

1. The type E𝐻 ∗(inl(𝑎), inr(𝑏)) is a proposition.

2. The type E𝐻 ∗(inl(�̂�), inr(𝑐)) is contractible.

3. The type Σ(𝑎∶N𝐻)E𝐻 ∗(inl(𝑎), inr(̂𝑦)) is contractible.

Lemma B.14 (H*-subgraph). The graph 𝐻 ∗ is a subgraph of 𝐺.

Proof. To show that𝐻 ∗ is a subgraph of𝐺, it suffices to provide an embedding ℎ∗ ∶ N𝐻 ∗ →
N𝐺 and a function 𝑔∗ ∶ Π(𝑥,𝑦∶𝑁𝐻) E𝐻 ∗(𝑥, 𝑦) → E𝐺(ℎ(𝑥), ℎ(𝑦)) such that for all 𝑥, 𝑦 ∶ 𝑁𝐻 ,
the function 𝑔∗(𝑥, 𝑦) is an embedding.

Since 𝐻 is a subgraph of 𝐺, let (ℎ, 𝑔) ∶ 𝐻 ↪ 𝐺, as stated in Definition B.7.

160 On Trees and Their Topological Realisation

ℎ∗(𝑥) ∶≡ {ℎ(𝑎) if 𝑥 ∶≡ inl(𝑎) for 𝑎 ∶ N𝐻 ,
̂𝑦 otherwise.

It is clear that ℎ∗ is an embedding, since when restricting to 𝐻 , it is the embedding ℎ.
Otherwise, it is a map from a contractible domain, which is clearly an embedding.

Finally, let 𝑔∗ ∶ Π(𝑎,𝑏∶N𝐻∗)E𝐻 ∗(𝑎, 𝑏) → E𝐻 ∗(ℎ∗(𝑎), ℎ∗(𝑏)) be the mapping on edges in
𝐻 ∗ defined as follows.

𝑔∗(𝑥, 𝑦 , 𝑒) ∶≡

⎧⎪⎪
⎨⎪⎪
⎩

𝑔(𝑎, 𝑏, 𝑒) if 𝑥 ≡ inl(𝑎), 𝑦 ≡ inl(𝑏),
tr(apℎ(ℎ−1(𝑒)), ̂𝑒) if 𝑥 ≡ inl(𝑎), 𝑦 ≡ inr(𝑏),

and 𝑒 ∶ ℎ(𝑎) = ℎ(�̂�),
0 otherwise.

By definition, the function 𝑔∗ restricted to 𝐻 is the embedding 𝑔. Otherwise, the
next corresponding nontrivial case is 𝑔∗(inl(𝑎), inr(𝑏)). By Lemma B.13-(1), it is possible
to show that any fiber of 𝑔∗(inl(𝑎), inr(𝑏)) is a proposition, and it is then an embedding.
Either way, we conclude that 𝑔∗(𝑥, 𝑦) is an embedding fromwhere the conclusion follows.

□

To prove Lemmas B.19 and B.20, we need to show a few intermediate results, which
we now state. In Lemmas B.15 to B.17, let 𝑛 ∶ N and 𝑎, 𝑏 be two nodes in 𝐻 .
Lemma B.15. The following equivalence holds.

𝑊 𝑛𝐻 (𝑎, 𝑏) ≃ 𝑊𝐻 ∗(inl(𝑎), inl(𝑏)). (B.4–6)

Lemma B.16. The following types are empty.

1. 𝑊 𝑛𝐻 ∗(̂𝑦 , inl(𝑎)).
2. Π(𝑣∶N𝐻) isContr(𝑊 𝑛𝐻 ∗(inl(𝑎), inl(𝑣))).
3. Σ(𝑛∶N) 𝑊 𝑛+1𝐻 ∗ (̂𝑦 , ̂𝑦).

Lemma B.17. The following types are contractible.

1. 𝑊 0𝐻 ∗(̂𝑦 , ̂𝑦).
2. Σ(𝑛∶N) 𝑊 𝑛𝐻 ∗(̂𝑦 , ̂𝑦).

Lemma B.18. The type in (B.4–7) is empty.

∑
(𝑦∶{ ̂𝑦})

∏
(𝑣∶N𝐻∗)

isContr(∑
(𝑛∶N)

𝑊 𝑛𝐻 ∗(inr(𝑦), 𝑣)) . (B.4–7)

B.4 Enlarging rooted subtrees 161

Proof. It suffices to show that there is no walk from 𝑦 to some node in 𝐻 . Let 𝑦 be a node
in { ̂𝑦 } and 𝑣 be a node in 𝐻 ∗.

𝑃(𝑦, 𝑣) ∶≡ isContr(∑
(𝑛∶N)

𝑊 𝑛𝐻 ∗(inr(𝑦), 𝑣)) .

Then,

∑
(𝑦∶{ ̂𝑦})

∏
(𝑣∶N𝐻∗)

𝑃(𝑦, 𝑣) ≃ ∏
(𝑣∶N𝐻∗)

𝑃(̂𝑦 , 𝑣)

≃ ∏
(𝑣∶N𝐻)

𝑃(̂𝑦 , inl(𝑣)) × ∏
(𝑣∶{ ̂𝑦})

𝑃(̂𝑦 , inr(𝑣))

≃ 0 × ∏
(𝑣∶{ ̂𝑦})

𝑃(̂𝑦 , inr(𝑣))

≃ 0. □

Lemma B.19 (Bottleneck). Let 𝐺 be a connected graph, 𝐻 be a subtree of 𝐺 with root r𝐻 .
Then, there is a unique walk in the graph 𝐻 ∗ from inl(r𝐻) to ̂𝑦 .

Proof. It suffices to show that the following type is contractible.

∑
(𝑛∶N)

𝑊 𝑛𝐻 ∗(inl(r𝐻), ̂𝑦). (B.4–8)

Then,

∑
(𝑛∶N)

𝑊 𝑛𝐻 ∗(inl(r𝐻), ̂𝑦) ≃ 0 + ∑
(𝑛∶N)

𝑊 𝑛+1𝐻 ∗ (r𝐻 , ̂𝑦)

≃ ∑
(𝑛∶N)

∑
(𝑣∶N𝐻∗)

𝑊 𝑛𝐻 ∗(inl(r𝐻), 𝑣) × E𝐻 ∗(𝑣 , ̂𝑦)

≃ ∑
(𝑛∶N)

(∑
(𝑣∶N𝐻)

𝑊 𝑛𝐻 ∗(inl(r𝐻), inl(𝑣)) × E𝐻 ∗(inl(𝑣), ̂𝑦))

+ (∑
(𝑣∶{ ̂𝑦})

𝑊 𝑛𝐻 ∗(inl(r𝐻), inr(𝑣)) × E𝐻 ∗(inr(𝑣), ̂𝑦))

≃ ∑
(𝑛∶N)

∑
(𝑣∶N𝐻)

𝑊 𝑛𝐻 (r𝐻 , 𝑣) × E𝐻 ∗(inl(𝑣), ̂𝑦)

+ (𝑊 𝑛𝐻 ∗(inl(r𝐻), ̂𝑦) × 0)

≃ ∑
(𝑣∶N𝐻)

(∑
(𝑛∶N)

𝑊 𝑛𝐻 (r𝐻 , 𝑣)) × E𝐻 ∗(inl(𝑣), ̂𝑦)

162 On Trees and Their Topological Realisation

≃ ∑
(𝑣∶N𝐻)

1 × E𝐻 ∗(inl(𝑣), ̂𝑦)

≃ ∑
(𝑣∶N𝐻)

E𝐻 ∗(inl(𝑣), ̂𝑦)

≃ 1. □

Lemma B.20 (H*-subtree). The graph 𝐻 ∗ is a subtree of 𝐺.
Proof. To show that 𝐻 ∗ is a subtree, the following must hold:

1. The graph 𝐻 ∗ is a connected subgraph of 𝐺, i.e., there is an embedding from 𝐻 ∗ to
𝐺 given as a pair of mappings (ℎ∗, 𝑔∗), as in Definition B.7.

2. The type of fibers fibℎ∗(𝑥) is a decidable set for any node 𝑥 in 𝐺.

3. The following type is contractible.

∑
(𝑟∶N𝐻∗)

∏
(𝑣∶N𝐻∗)

isContr(∑
(𝑛∶N)

𝑊 𝑛𝐻 ∗(𝑢, 𝑣)) . (B.4–10)

The first condition is satisfied by Lemma B.14. Since 𝐻 is a subgraph of 𝐺, we have access
to the embedding given by (ℎ, 𝑔) ∶ 𝐻 ↪ 𝐺. Then, the second condition follows, since
the type in question is equivalent to the fibℎ(𝑏) + (̂𝑦 = 𝑏) for any 𝑏 in 𝐺, by the following
calculation, and any equivalence of types preserve any property.

fibℎ∗(𝑏) ∶≡ ∑
(𝑎∶N𝐻∗)

ℎ∗(𝑎) = 𝑏

≃ (∑
(𝑎∶N𝐻)

ℎ∗(inl(𝑎)) = 𝑏) + ∑
(𝑎∶{ ̂𝑦})

ℎ∗(inr(𝑎)) = 𝑏

≃ (∑
(𝑎∶N𝐻)

ℎ(𝑎) = 𝑏) + (̂𝑦 = 𝑏)

≃ fibℎ(𝑏) + (̂𝑦 = 𝑏).

Themapping ℎ∗ has a decidable image inherited from ℎ, since𝐻 is a tree, and the nodes of
𝐻 form a discrete set. Finally, for the third condition, we have the following calculation.
For brevity, let 𝑃 be a shorthand for the type family in (B.4–10).

∑
(𝑟∶N𝐻∗)

∏
(𝑣∶N𝐻∗)

𝑃(𝐻 ∗, 𝑟 , 𝑣)

≃ ∑
(𝑟∶N𝐻)

∏
(𝑣∶N𝐻∗)

𝑃(𝐻 ∗, inl(𝑟), 𝑣) + ∑
(𝑟∶{ ̂𝑦})

∏
(𝑣∶N𝐻∗)

𝑃(𝐻 ∗, inr(𝑟), 𝑣)

B.4 Enlarging rooted subtrees 163

≃ ∑
(𝑟∶N𝐻)

∏
(𝑣∶N𝐻∗)

𝑃(𝐻 ∗, inl(𝑟), 𝑣) + 0

≃ ∑
(𝑟∶N𝐻)

∏
(𝑣∶N𝐻∗)

𝑃(𝐻 ∗, inl(𝑟), 𝑣)

≃ ∑
(𝑟∶N𝐻)

(∏
(𝑣∶N𝐻)

𝑃(𝐻 ∗, inl(𝑟), inl(𝑣)) × ∏
(𝑣∶{ ̂𝑦})

𝑃(𝐻 ∗, inl(𝑟), inr(𝑣)))

≃ ∑
(𝑟∶N𝐻)

(∏
(𝑣∶N𝐻)

𝑃(𝐻 , 𝑟 , 𝑣) × 𝑃(𝐻 ∗, inl(𝑟), ̂𝑦))

≃ ∑
((𝑟 ,!)∶∑(𝑎∶N𝐻) ∏(𝑣∶N𝐻) 𝑃(𝐻 ,𝑎,𝑣))

𝑃(𝐻 ∗, inl(𝑟), ̂𝑦)

≃ 𝑃(𝐻 ∗, inl(r𝐻), ̂𝑦)

≡ isContr(∑
(𝑛∶N)

𝑊 𝑛𝐻 ∗(inl(r𝐻), ̂𝑦))

≃ isContr(1)
≃ 1. □

B.4.1 Oriented spanning trees

In graph theory, any connected undirected graph has at least one spanning tree. In our
setting, we can prove that any strongly connected and directed multigraph has at least
one oriented spanning tree.

Definition B.21 (isSpanningTree). An oriented spanning tree of 𝐺 is a subtree that contains
all the vertices of 𝐺.

record isSpanningTree (H : Graph) : Type 𝓁 where

open isSubtree; open Graph

field

is-subtree : isSubtree G H

h = Subgraph.h (is-subgraph is-subtree)

g = Subgraph.g (is-subgraph is-subtree)

field

cover-all-nodes : isEquiv h

We are ready now to prove the main result of this section.
Lemma B.22. Let 𝐺 be a non-empty strongly connected graph such that the node set of 𝐺
is finite and the family of edges of 𝐺 consists of sets. Then there merely exists an oriented
spanning tree of 𝐺.

Proof. Let 𝑛 be the cardinality of the node set of 𝐺. We proceed by induction on 𝑛. If 𝑛 = 1,

164 On Trees and Their Topological Realisation

then the graph has only one node, and its spanning tree is the same one-point graph with
no edges. Otherwise, let 𝑛 > 1. We state the induction hypothesis as the mere existence
of a subtree of 𝐺 with 𝑘 nodes where 𝑘 < 𝑛. Since the goal of the lemma is a proposition,
we can apply the elimination principle of the truncation to the induction hypothesis to
get a subtree of 𝐺 with 𝑛−1 nodes, namely, 𝐻𝑛−1. Finally, since there is a missing node of
𝐺 not in 𝐻𝑛−1, we can apply Lemma B.11 to 𝐺 and 𝐻𝑛−1 to obtain the required spanning
tree, a graph 𝐻𝑛 including all the nodes of 𝐺. □

The previous proof suggests that Lemma B.22 can be generalised to the case where the
node set of 𝐺 has a principle of choice. One can construct a chain of subtrees, ordered
by the subgraph relation, using a construction similar to the argument in Lemma B.22’s
proof. Then, the spanning tree of the infinite graph is the maximal element in such a
chain, assuming the axiom of choice, see Lemma 4.7 [Swa22, §4]. However, we do not
attempt to formalise this generalisation here.

On the other hand, one version of the Kőnig’s lemma states that if an infinite graph
is locally finite and connected, then the graph contains a ray. A ray is a simple walk
that starts at one node and continues from it through infinitely many nodes. It seems
natural to consider a proof of this result using Lemma B.9 and the axiom of choice. This
direction is, however, left for future work. Here we only give a first proposal for the type
of rays. A ray in the current setting can be defined as an infinite walk starting at the node
𝑥 such that the type of occurrences of 𝑥 in the walk is contractible. We can define these
definitions in Agda as follows.

record InfiniteWalk (x : N G) : Type 𝓁 where

coinductive

field

head : Σ[y ∈ N G] E G x y

tail : InfiniteWalk (fst head)

open InfiniteWalk

{-# TERMINATING #-}

∈w : (x : N G) → {y : N G} → (w : InfiniteWalk y) → Type 𝓁

∈w x {y} w = (x ≡ y) + (x ∈w tail w)

isRay : (x : N G) → InfiniteWalk x → Type 𝓁

isRay x w = isContr (x ∈w w)

B.5 Topological realisation of graphs

The topological realisation of a graph can be represented by the coequalizer of the cor-
responding source and target functions. Every node in the graph is mapped to a point in

B.5 Topological realisation of graphs 165

the space. Moreover, any edge in the graph gives rise to a path in the space glued to the
endpoints.

This topological point of view for representing graphs is further described in type
theory by Swan [Swa22]. It is worth noting that the type of graphs in this appendix is
equivalent to the type of graphs in their setting, as the following equivalence shows.

Graph ∶ ≡ ∑
(𝑁 ∶ U)

(𝑁 → 𝑁 → U)

≃ ∑
(𝑁 ∶ U)

(𝑁 × 𝑁 → U)

≃ ∑
(𝑁 ,𝐸 ∶ U)

(𝐸 → (𝑁 × 𝑁))

≃ ∑
(𝑁 ,𝐸 ∶ U)

((𝐸 → 𝑁) × (𝐸 → 𝑁)).

Therefore, one benefit of working in Univalent mathematics is that one can transport
their results to the setting of this appendix and vice versa. Now, back to Cubical Agda, let
us define the topological realisation of a graph 𝐺 as the following higher inductive data
type.

module realisation {𝓁 : Level} (G : Graph {𝓁}) where

data 𝕋¹ : Type 𝓁 where

𝕟 : N G → 𝕋¹

𝕖 : ∀ {a b} → E G a b → 𝕟 a ≡ 𝕟 b

To prove a few properties of this geometric realisation below, we define two handy elim-
ination principles into propositions.

elimProp

: {B : 𝕋¹ → Type 𝓁}

→ ((x : 𝕋¹) → isProp (B x))

→ ((a : N G) → B (𝕟 a))

→ (x : 𝕋¹) → B x

elimProp _ f (𝕟 a) = f a

elimProp B-fiber-prop f (𝕖 {a}{b} e i) =

isOfHLevel→isOfHLevelDep 1 B-fiber-prop (f a) (f b) (𝕖 e) i

For the particular case of relations, we obtain the following elimination principle.
elimPropRel

: {R : 𝕋¹ → 𝕋¹ → Type 𝓁}

→ ((x y : 𝕋¹) → isProp (R x y))

→ ((a b : N G) → R (𝕟 a) (𝕟 b))

→ (x y : 𝕋¹) → R x y

166 On Trees and Their Topological Realisation

elimPropRel Rprop f = elimProp (λ x → isPropΠ (λ y → Rprop x y))

(λ x → elimProp (λ y → Rprop (𝕟 x) y) (f x))

The walks in the graph give rise to paths in the geometric realisation, as shown in the
following Agda code. As a consequence, the connectedness of a graph implies the con-
nectedness of its geometric realisation.

𝕨 : {n : ℕ} {a b : N G} → W G n a b → 𝕟 a ≡ 𝕟 b

𝕨 {zero} a=b = cong 𝕟 a=b

𝕨 {suc _} (_ , w , e) = (𝕨 w) ∙ 𝕖 e

The realisation of walks using the function 𝕨 respects the concatenation of walks. In
particular, it respects backward edge addition, as in the Agda code below.

comp-edge

: {a b c : N G} {n : ℕ}

→ (w : W G n a b) (e : E G b c)

→ 𝕨 ((_ , w , e)) ≡ (𝕨 w) ∙ (𝕖 e)

comp-edge {n = zero} w e = reflc

comp-edge {n = suc n} (_ , w , e₁) e₂ = cong (λ x → x ∙ (𝕖 e₂)) (comp-edge w e₁)

Let us introduce the following notions to not clash with the names of some definitions
defined earlier.

Definition B.23. A graph is topologically connected if its geometric realisation is connected.

isConnected : Type 𝓁 → Type 𝓁

isConnected A = (x y : A) → ∥ x ≡ y ∥

isTConnected : Graph → Type 𝓁

isTConnected G = isConnected (realisation.𝕋¹ G)

Lemma B.24. Being connected for the realisation of a graph is a proposition.

isProp-isTConnected : (G : Graph) → isProp (isTConnected G)

isProp-isTConnected _ = isPropΠ λ _ → isPropΠ λ _ → isPropPropTrunc

Lemma B.25. Being connected for a graph implies its geometric realisation is connected.

isGConnected-isTConnected : (G : Graph) → isGConnected G → isTConnected G

isGConnected-isTConnected G G-is-connected =

elimPropRel (λ _ _ → isPropPropTrunc) helper

where

open realisation G

helper : (a b : N G) → ∥ 𝕟 a ≡c 𝕟 b ∥

helper a b = trunc-elim isPropPropTrunc (λ {(_ , w) ∣ 𝕨 w ∣}) (G-is-connected a b)

Definition B.26. A graph is a topological tree if its geometric realisation is contractible.

isTopTree : Graph → Type 𝓁

B.5 Topological realisation of graphs 167

isTopTree G = isContr (realisation.𝕋¹ G)

Using this topological point of view for graphs, we can prove that any tree, as in Defi-
nition B.5 is topologically connected and tree in a topological way. The converse is not
true; see, for example, the triangle graph, where an edge connects any pair of nodes. The
realisation of such a graph contains a non-trivial loop and thus is not contractible.
Lemma B.27. If the graph is a tree then it is topologically connected.

Proof. For this proof, we are only interested in what happens when we apply the geo-
metric realisation on nodes and how the nodes are glued. Since the graph is a tree, we
have access to its root node equipped with a walk to every other node, see Definition B.5.
Finally, one can use the walks given by the tree to connect the nodes in the geometric
realisation, as illustrated in Figure B.5 and proved in Agda code below. □

•𝑟 •𝑎 n 𝑟 n 𝑎

•𝑏 n 𝑏

𝑝

𝑞

w𝑝

(w 𝑞)−1 (w 𝑞)−1⋅w𝑝

Figure B.5: It is shown the walks and paths mentioned in Lemma B.27’s proof. The node
𝑟 on the left represents the root of the given tree. The node 𝑎 is the node connected to 𝑟
by the walk 𝑝, and similarly, the node 𝑏 is the node connected to 𝑟 by the walk 𝑞. Then,
we can connect the realisation of 𝑎 and 𝑏 by the path (w(𝑞))−1 ⋅ w(𝑝).

module _ {𝓁 : Level}(G : Graph {𝓁}) where

open realisation

open walk-concat G

isTree-isTConnected : isTree G → isConnected (𝕋¹ G)

isTree-isTConnected ((r , unique-walk-from-r-to) , _) =

elimPropRel G ((λ _ _ → isPropPropTrunc)) helper

where

helper : (a b : N G) → ∥ 𝕟 {G = G} a ≡c 𝕟 b ∥

helper a b = ∣ (sym (𝕨 G (snd p))) ∙ 𝕨 G (snd q) ∣

where

p : Σ[n ∈ ℕ] W G n r a

p = fst (unique-walk-from-r-to a)

q : Σ[n ∈ ℕ] W G n r b

q = fst (unique-walk-from-r-to b)

Lemma B.28. If the graph is a tree and its topological realisation is a set, then it can be
concluded that the graph is a topological tree.

isTree-isSet-isTopTree : isTree G → isSet (𝕋¹ G) → isTopTree G

isTree-isSet-isTopTree

168 On Trees and Their Topological Realisation

G-is-graph-tree@((r , unique-walk-from-r-to) , _)

𝕋¹G-is-set = 𝕟 r , λ y →

trunc-elim (𝕋¹G-is-set (𝕟 r) y)

(λ nr=y → nr=y)

(isTree-isTConnected G-is-graph-tree (𝕟 r) y)

Finally, we can prove that a tree, in a combinatorial way, is topologically a tree.
Lemma B.29. If a graph is a tree, then its realisation is contractible.

Proof. Let 𝐺 be a graph tree. Then, we must show that 𝕋1(𝐺) is a contractible type. To
show that, let 𝕟(𝑟) be the centre of contraction of 𝕋1(𝐺), where 𝑟 is the root of 𝐺. Then,
we must construct a function that returns a path from 𝕟(𝑟) to 𝑎 for any 𝑎 ∶ 𝕋1(𝐺). We
do this by induction on the constructors of 𝕋1(𝐺). The first case is the point constructor
𝕟(𝑥) for 𝑥 ∶ N𝐺 , for which we can just return the realisation of the unique walk from 𝑟
to 𝑥 given by the proof that 𝐺 is a tree. The second and last case is the path constructor
case. Given a path 𝕖(𝑒), where 𝑒 is an edge from 𝑎 to 𝑏 in 𝐺, we must construct a path from
𝕟(𝑟) to every point in the path 𝕖(𝑒). Since 𝐺 is a tree, we have access to a unique walk
from the root 𝑟 to the nodes 𝑎 and 𝑏, respectively. Let 𝑝 and 𝑞 be such walks, as illustrated
in Figure B.6. Then, the required path can be obtained considering the path 𝕨(𝑝) ⋅ 𝕖(𝑒).

•𝑟 •𝑎 •𝑏

𝕟 𝑟 𝕟 𝑎 𝕟 𝑏

∃! 𝑝

𝕨𝑝

𝑒

𝕖 𝑒 𝑖

∃! 𝑞

𝕨 𝑞

Figure B.6: The construction of a path from 𝕟(𝑟) to any point in the path 𝕖(𝑒).

However, for coherence, we must make sure that there is a homotopy between the
paths 𝕨(𝑝) ⋅ 𝕖(𝑒) and 𝕨(𝑞), which is the right face of the cube as illustrated in Figure B.7.
The back face is the whole square of deforming the path 𝕨(𝑝) to 𝕨(𝑝) · 𝕨(𝑞), which is
precisely Lemma compPath-filler in the Cubical Agda library. □

B.6 Discussion

Here we present one short example of transferring some concepts and results from graph
theory in a classical setting to Cubical type theory. As part of this process, we have used a
proof assistant to support this goal. Precisely, we have characterised the notion of rooted
trees to construct oriented spanning trees for directed multigraphs. These concepts are

B.6 Discussion 169

• •

• •

• •

• •

w𝑝 𝑗

e 𝑒 𝑖

w𝑝 ⋅ e 𝑒 𝑗

n 𝑟
n 𝑟 n 𝑟

n 𝑟

w 𝑞 𝑗

n 𝑏n 𝑎
e 𝑒 𝑖

w𝑝 𝑗

Figure B.7: The constructed cube for Lemma B.29’s proof.

Figure B.8: An Agda term for Lemma B.29.

isTree-isTopTree : isTree G → isTopTree G
isTree-isTopTree ((r , unique-walk-from-r-to) , _) =

𝕟 r , helper
where

walk = snd
helper : (x : 𝕋¹ G) → 𝕟 r ≡c x
helper (𝕟 x) = 𝕨 G (walk (fst (unique-walk-from-r-to x)))
helper (𝕖 {a}{b} e i) j

= hcomp (λ k → λ { (i = i0) → 𝕨p j
; (i = i1) → 𝕨p·𝕖e≡𝕨q k j
; (j = i0) → reflc {x = 𝕟 r} i
; (j = i1) → 𝕖 e i
})

(compPath-filler 𝕨p (𝕖 e) i j)
where
p : Σ[n ∈ ℕ] W G n r a
p = fst (unique-walk-from-r-to a)
length-walk-p = fst p

q : Σ[n ∈ ℕ] W G n r b
q = fst (unique-walk-from-r-to b)

𝕨p : 𝕟 r ≡ 𝕟 a
𝕨p = 𝕨 G (walk p)

𝕨q : 𝕟 r ≡ 𝕟 b
𝕨q = 𝕨 G (walk q)

q-is-unique : q ≡c (suc (length-walk-p) , _ , walk p , e)
q-is-unique = snd (unique-walk-from-r-to b) _

𝕨p·𝕖e≡𝕨q : (𝕨p ∙ 𝕖 e) ≡ 𝕨q
𝕨p·𝕖e≡𝕨q = 𝕨 G (walk p) ∙ 𝕖 e

≡⟨ sym (comp-edge G (walk p) e) ⟩
𝕨 G ((_ , walk p , e))

≡⟨ cong (λ w → 𝕨 G (walk w)) (sym q-is-unique) ⟩
𝕨 G (walk q) ∎

170 On Trees and Their Topological Realisation

the generalisation of the notion of a tree and spanning tree for undirected graphs, re-
spectively. A proof is given for the existence of an oriented rooted spanning tree for any
strongly connected graph with a finite node set and a family of edges consisting of sets.
To this end, we introduce a few lemmas that suggest algorithms for constructing span-
ning trees. Furthermore, we show that any rooted tree is a tree in the topological sense,
inspired by Swan’s work on defining free groups in HoTT and using higher—inductive
types to model the topological realisation of graphs [Swa22]. The results here can then
be used to study free groups, particularly the fundamental group of a graph. In this direc-
tion, the realisation of a graph maps any of its spanning trees to a point in the space, and
the remaining edges not in such a tree, become loops around the point. The loop edges
then correspond to the elements of the group associated with the graph, sometimes called
the fundamental group. We left this investigation for future work.

Most results here are formalised in Agda [The23]. Except for proofs in Appendix B.5,
we conjecture it is only required intensional Martin-Löf type theory equipped with uni-
verses, function extensionality, and propositional truncation. To ease the work with
higher–inductive types, especially in Appendix B.5, we used the Cubical mode [VMA21]
in Agda and the Cubical Agda library [MAE21]. Nevertheless, the type theory as pre-
sented in the HoTT Book [Uni13] suffices to prove the results in this appendix.

Even when graph theory has been formalised before in type theory with proof-
assistants, as the formalisation of the 4CT in Coq [Gon23], there are still a few works
in homotopy type theory [Pri22; KvR20; KvR21]. As far as we know, the proofs and some
types given here are original in this context. We believe this development contributes to
the project of this thesis and the formalisation of mathematical content in type theories
alike. We expect more contributions in this direction in the future.

A notable work close to ours is the recent work in Agda–UniMath [RBPB+23], an Agda
library for Univalent mathematics. Their authors formalised the notion of trees, rooted
and quasi–rooted trees, for the case of undirected graphs. In future, we plan to transfer
the results shown here to Agda–UniMath and make them available to a broader audience.
In addition, ongoing work explores other topics, such as the 2-cells realisation of a graph,
where 2-cells correspond to faces of a graph map.

C
Yet Another HIT for Graphs

In Appendix B, we describe the topological realisation of graphs considering 0-cells
(nodes) and 1-cells (edges). Building upon this, we pair a graph 𝐺 with a graph map
ℳ, and adds 2-cells to the realisation of 𝐺 for considering faces within ℳ. This yields
an enhanced HIT T2(𝐺,ℳ), referred to as the 2-cell realisation of 𝐺 with respect to ℳ,
extending the type T1(𝐺) detailed in Appendix B.5.

The first two constructors for T2(𝐺,ℳ), n and e, are the same as those for T1(𝐺). The
2-path constructor f in (C.0–1) yields identifications between the realisations of walks on
the boundary of each face. Precisely, given two nodes 𝑎 and 𝑏 in the boundary of a face,
we identify the realisations of the counter-clockwise walk and the clockwise walk from 𝑎
to 𝑏, lifting the notion of homotopy of walks in the graph map to actual paths in the space.
The function w used to lift walks into the space is defined similarly as in Appendix B.5.

data T2 (𝐺 ∶ Graph) (ℳ ∶ Map(𝐺)) ∶ U

n ∶ N𝐺 → T2(𝐺,ℳ)
e ∶ Π(𝑎 𝑏 ∶N𝐺) . E𝐺(𝑎, 𝑏) → n(𝑎) = n(𝑏)
f ∶ Π(F∶Face(𝐺,M)) . Π(𝑎 𝑏 ∶NF) . w(cw(F, 𝑎, 𝑏)) = w(ccw(F, 𝑎, 𝑏)).

(C.0–1)

Considering walk homotopies as defined in Section 5.4, we show that any pair of walks

172 Yet Another HIT for Graphs

in a graph 𝐺 with a discrete node set and subject to the graph map ℳ, when homotopic,
yield identical 2-cell topological realisations (refer to Lemma C.1). Moreover, when such
homotopies are restricted to the plane, one can show that the corresponding realisations
of homotopic walks are merely equal (see Corollary C.3).

In the rest of this appendix, we present definitions and theorems using Agda syntax,
specifically employing Agda (v2.6.2.2) for type-checking our constructions. To ensure
compatibility with HoTT, we invoke the flag without-K.

{-# OPTIONS without-K exact-split rewriting #-}
module HIT where

open import foundations.Core
open import lib.graph-definitions.Graph
open Graph

open import lib.graph-embeddings.Map
open import lib.graph-walks.Walk
open import lib.graph-walks.Walk.Composition
open import lib.graph-embeddings.Map.Face
open import lib.graph-homomorphisms.Hom

open import lib.graph-classes.UndirectedGraph
open import lib.graph-transformations.U
open import foundations.Rewriting

To ease the work with HITs in this setting, we use the flag rewriting that allows us
to define custom rewriting rules for the HIT path constructions and the corresponding
computation rules. Agda uses these reduction rules during the type-checking process. As
an example, the following rule, the runit law for path allows us to treat as definitionally
equal the paths 𝑝 and 𝑝 ⋅ refl, where 𝑝 is a path in a type 𝐴.

postulate

runit : ∀ {𝓁} {A : Type 𝓁} {a a' : A} {p : a ≡ a'} → p · idp ↦ p

{-# REWRITE runit #-}

(2)

The reduction relation, denoted by (↦), is defined as follows.
infix 30 _↦_

postulate

↦ : ∀ {𝓁} {A : Type 𝓁} → A → A → Type 𝓁

{-# BUILTIN REWRITE _↦_ #-}

Careful attention is needed when augmenting Agda with manual rewriting rules as
done above. However, the rule in (2) has been proven to enhance type-checking efficiency
without inducing confluence problems. Lastly, some imports and definitions are hidden
in the following Agda excerpts for brevity. We refer the reader to the corresponding files
for the complete detail. See Appendix A.

C.1 The 2-cell topological realisation of graphs 173

C.1 The 2-cell topological realisation of graphs

module construction {𝓁 : Level} (G : Graph 𝓁) (M : Map G) where

open import foundations.Core

open import lib.graph-embeddings.Map.Face.Walk

open FaceWalks G

The 2-cell topological realisation of a graph with a graph map is defined as the HIT
with three constructors, one for each type of cells. The 0-cells are constructed by n, 1-cells
by e and 2-cells by f below. These constructors need to be defined as postulates in Agda
since there is no support for defining HITS natively.

postulate

𝕋² : Type 𝓁

𝕟 : Node G → 𝕋²

𝕖 : ∀ {x y} → Edge G x y → 𝕟 x ≡ 𝕟 y

To define the 2-cell constructor f, we need to consider the faces of the graph map
and the walks in them promoted as paths in the geometric realisation, for which a few
auxiliary functions are needed and stated below.

C.1.1 Promoting walks to equalities

As part of the construction of the geometric realisation of a graph, we need to be able
to lift a walk into an arbitrary space. To do so, we require a function mapping nodes
to points and another function mapping edges to paths. Then, it is possible to define
edge-by-edge a function mapping a walk into a path in the space as follows.

to-eq : (f : Node G → A)

→ ({x y : Node G} → Edge G x y → f x ≡ f y)

→ {x y : Node G} → Walk (U G) x y → f x ≡ f y

to-eq f g = λ {⟨ x ⟩ → refl (f x)

; (inl xz ⊙ w) → g xz · to-eq f g w

; (inr zx ⊙ w) → ! (g zx) · to-eq f g w

}

As suggested in Appendix B, one can prove that lifting walks into the space is an
operation that respects the composition of walks. Meaning that the function to-eq maps
a composition of walks to the composition of the corresponding paths.

to-eq-comp-·w : (f : Node G → A)

→ (g : {x y : Node G} → Edge G x y → f x ≡ f y)

→ {x y z : Node G} → (p : Walk (U G) x y) (q : Walk (U G) y z)

→ to-eq f g (p ·w q) ≡ (to-eq f g p) · (to-eq f g q)

to-eq-comp-·w f g = λ {

⟨ x ⟩ w₂ → idp

174 Yet Another HIT for Graphs

; (inl a ⊙ w₁) w₂ → ap (λ w → (g a) · w) (to-eq-comp-·w f g w₁ w₂)

· (! (·-assoc (g a) (to-eq f g w₁) (to-eq f g w₂)))

; (inr a ⊙ w₁) w₂ → ap (λ w → (! (g a)) · w) (to-eq-comp-·w f g w₁ w₂)

· (! (·-assoc (! (g a)) (to-eq f g w₁) (to-eq f g w₂)))

}

We use a shorthand for the above function to-eq specialised to type 𝕋2(𝐺,ℳ) for con-
venience.

𝕨 : ∀ {x y} → Walk (U G) x y → 𝕟 x ≡ 𝕟 y

𝕨 = to-eq 𝕟 𝕖

Finally, we define the 2-cell constructor 𝕗, which identifies the realisation of walks on
the boundary of each face. Precisely, given two nodes 𝑥 and 𝑦 in the boundary of a face,
the 2-cell constructor of 𝕋2(𝐺,ℳ) is the homotopy between the counter-clockwise walk
and the clockwise walk from 𝑥 to 𝑦 .

postulate

𝕗 : (𝓕 : Face G M) → (a b : Node (Face.A 𝓕))

→ 𝕨 (cw-walk 𝓕 a b) ≡ 𝕨 (ccw-walk 𝓕 a b)

C.1.2 Recursion principle

The non-dependent eliminator 𝕋²-rec for 𝕋2(𝐺,ℳ) allows us to define a function of type
𝕋2(𝐺,ℳ) → 𝐴 for any 𝐴 ∶ U.

module Recursion {𝓁₂} (A : Type 𝓁₂)

(A-𝕟 : Node G → A)

(A-𝕖 : ∀ {x y} → (e : Edge G x y) → A-𝕟 x ≡ A-𝕟 y)

(A-𝕗 : (𝓕 : Face G M) → (a b : Node (Face.A 𝓕)) → let A-𝕨 = to-eq A-𝕟 A-𝕖 in

A-𝕨 (cw-walk 𝓕 a b) ≡ A-𝕨 (ccw-walk 𝓕 a b)) where

postulate

𝕋²-rec : 𝕋² → A

The corresponding computation rules for nodes, edges and faces are introduced as
rewriting rules and named as 𝕋²-β-rec-nodes, 𝕋²-β-rec-edges, and 𝕋²-β-rec-faces, respec-
tively.

postulate

𝕋²-β-rec-nodes : (x : Node G) → 𝕋²-rec (𝕟 x) ↦ A-𝕟 x

{-# REWRITE 𝕋²-β-rec-nodes #-}

𝕋²-β-rec-edges : {x y : Node G} → (e : Edge G x y) → ap 𝕋²-rec (𝕖 e) ↦ A-𝕖 e

{-# REWRITE 𝕋²-β-rec-edges #-}

The computation rule for faces, 𝕋²-β-rec-faces, is a bit more involved since we need to
consider the functorial application of a function on two-dimensional paths.

lhs : ∀ {x y} → (g : Walk (U G) x y) → ap 𝕋²-rec (𝕨 g) ≡ A-𝕨 g

C.1 The 2-cell topological realisation of graphs 175

lhs ⟨ x ⟩ = idp

lhs (inl e ⊙ w) =

ap 𝕋²-rec (𝕖 e · 𝕨 w) ≡⟨ ap-· _ (𝕖 e) _ ⟩

ap 𝕋²-rec (𝕖 e) · ap 𝕋²-rec (𝕨 w) ≡⟨ ap (A-𝕖 e ·_) (lhs w) ⟩

(A-𝕖 e) · A-𝕨 w ≡⟨⟩

A-𝕨 (inl e ⊙ w) ∎

lhs (inr e ⊙ w) =

ap 𝕋²-rec (! 𝕖 e · 𝕨 w) ≡⟨ ap-· _ (! 𝕖 e) _ ⟩

ap 𝕋²-rec (! 𝕖 e) · ap 𝕋²-rec (𝕨 w) ≡⟨ ap (_· _) (ap-inv 𝕋²-rec (𝕖 e)) ⟩

! A-𝕖 e · ap 𝕋²-rec (𝕨 w) ≡⟨ ap (! A-𝕖 e ·_) (lhs w) ⟩

! A-𝕖 e · A-𝕨 w ≡⟨⟩

A-𝕨 (inr e ⊙ w) ∎

postulate

𝕋²-β-rec-faces

: (𝓕 : Face G M) → (a b : Node (Face.A 𝓕))

→ ap (ap 𝕋²-rec) (𝕗 𝓕 a b)

↦ lhs (cw-walk 𝓕 a b) · A-𝕗 𝓕 a b · ! lhs (ccw-walk 𝓕 a b)

{-# REWRITE 𝕋²-β-rec-faces #-}

C.1.3 Induction principle

Wedefine in this subsection the dependent eliminator for G, for which, wemust generalise
thewalk lifting function defined above. We believe that Figure C.2may help to understand
how this generalisation works. Additionally, the notation for heterogeneous equalities
introduced by Licata and Brunerie [LB15], namely pathovers, is used below, similarly as
defined in the HoTT-Agda library [BHC+], see the intuition behind it in Figure C.1.

� ����

����� �����
�� ����� ����� �� � ���� � ��

Figure C.1: The type denoted by 𝑐1 = 𝑐2[𝐶 ↓ 𝛼] is a shorthand for the type of paths
between tr𝐶(𝛼, 𝑐1) and 𝑐2, where 𝛼 ∶ 𝑎 = 𝑎′ is a path in 𝐴 ∶ U, and 𝑐1 ∶ 𝐶(𝑎) and
𝑐2 ∶ 𝐶(𝑎′) are points in the fibre of the type family 𝐶 over 𝐴.

176 Yet Another HIT for Graphs

to-deq : {𝓁' : Level} {A : 𝕋² → Type 𝓁'}

→ (f : (x : Node G) → A (𝕟 x))

→ (g : ∀ {x y : Node G} → (e : Edge G x y)

→ f x ≡ f y [A ↓ (𝕖 e)])

→ {x y : Node G} → (w : Walk (U G) x y)

→ f x ≡ f y [A ↓ 𝕨 w]

to-deq f _ ⟨ x ⟩ = refl (f x)

to-deq f g (inl e ⊙ w) = pathover-comp {p = 𝕖 e} {q = 𝕨 w} (g e) (to-deq f g w)

to-deq f g (inr e ⊙ w) = pathover-comp {p = (𝕖 e) ⁻¹} {q = 𝕨 w}

(! move-transport {α = 𝕖 e} (g e))

(to-deq f g w)

Finally, it is now possible to declare the required data for defining a dependent function
of type Π(𝑥∶𝕋2(𝐺,ℳ)) 𝐴(𝑥) for any type family 𝐴 over 𝕋2(𝐺,ℳ), which are the dependent
functions 𝐴-𝕟, 𝐴-𝕖, and 𝐴-𝕗 of type as in (3).

module Induction

(A : 𝕋² → Type 𝓁)

(A-𝕟 : (x : Node G) → A (𝕟 x))

(A-𝕖 : ∀ {x y} → (e : Edge G x y) → A-𝕟 x ≡ A-𝕟 y [A ↓ 𝕖 e])

(A-𝕗 : (𝓕 : Face G M) → (a b : Node (Face.A 𝓕))

→ let 𝕨ᵈ = to-deq A-𝕟 A-𝕖

in 𝕨ᵈ (cw-walk 𝓕 a b) ≡ 𝕨ᵈ (ccw-walk 𝓕 a b)

[(λ x≡y → A-𝕟 (Hom.α (Face.h 𝓕) a) ≡ A-𝕟 (Hom.α (Face.h 𝓕) b)

[A ↓ x≡y])

↓ 𝕗 𝓕 a b

])

where

(3)

The dependent eliminator is defined below as 𝕋²-ind. The corresponding computation
rules are 𝕋²-β-ind-nodes, 𝕋²-β-ind-edges, and 𝕋²-β-ind-faces, respectively, and stated as
rewriting rules using the REWRITE pragma.

postulate

𝕋²-ind : (x : 𝕋²) → A x

𝕋²-β-ind-nodes : (x : Node G) → 𝕋²-ind (𝕟 x) ↦ A-𝕟 x

{-# REWRITE 𝕋²-β-ind-nodes #-}

𝕋²-β-ind-edges : ∀ {x y} → (e : Edge G x y) → apd 𝕋²-ind (𝕖 e) ↦ A-𝕖 e

{-# REWRITE 𝕋²-β-ind-edges #-}

However, the computation rule for the face constructor requires amore involved equal-
ity reasoning as one has to consider the path over the 2-cell associated with the face 𝐹
and the walks (cw-walk and ccw-walk) in the definition. This requires us to construct two
additional paths, rhs and lhs, given below. The function apd² is defined in Lemma 6.4.6 in

C.1 The 2-cell topological realisation of graphs 177

the HoTT Book [Uni13, § 6].
module _ (𝓕 : Face G M) (a b : Node (Face.A 𝓕)) where

F' : ∀ {x y} p → Type _

F' {x} {y} p = A-𝕟 x ≡ A-𝕟 y [A ↓ p]

rhs : ∀ {x y} → (w : Walk (U G) x y)

→ apd 𝕋²-ind (𝕨 w) ≡ (𝕨ᵈ w) [(F' {x}{y}) ↓ refl (𝕨 w)]

rhs ⟨ x ⟩ = idp

rhs w'@(inl e ⊙ w) = begin

tr F' (refl (𝕨 w')) (apd 𝕋²-ind (𝕨 w')) ≡⟨⟩

apd 𝕋²-ind (𝕨 w') ≡⟨⟩

apd 𝕋²-ind (𝕖 e · 𝕨 w) ≡⟨ i ⟩

apd 𝕋²-ind (𝕖 e) ·d apd 𝕋²-ind (𝕨 w) ≡⟨⟩

A-𝕖 e ·d apd 𝕋²-ind (𝕨 w) ≡⟨ ii ⟩

A-𝕖 e ·d 𝕨ᵈ w ≡⟨⟩

𝕨ᵈ w' ∎

where

i = apd-· 𝕋²-ind (𝕖 e) (𝕨 w)

ii = ap (λ o → pathover-comp {p = (𝕖 e)} {q = 𝕨 w} _ o) (rhs w)

rhs w'@(inr e ⊙ w) = begin

tr F' (refl (𝕨 w')) (apd 𝕋²-ind (𝕨 w')) ≡⟨⟩

apd 𝕋²-ind (𝕨 w') ≡⟨⟩

apd 𝕋²-ind (((𝕖 e) ⁻¹) · 𝕨 w) ≡⟨ i ⟩

apd 𝕋²-ind ((𝕖 e) ⁻¹) ·d apd 𝕋²-ind (𝕨 w) ≡⟨ ii ⟩

(! move-transport {α = 𝕖 e} (apd 𝕋²-ind (𝕖 e))) ·d apd 𝕋²-ind (𝕨 w)

≡⟨ iii ⟩

(! move-transport {α = 𝕖 e} (apd 𝕋²-ind (𝕖 e))) ·d 𝕨ᵈ w

≡⟨⟩

𝕨ᵈ w' ∎

where

i = apd-· 𝕋²-ind ((𝕖 e) ⁻¹) (𝕨 w)

ii = ap (λ o → pathover-comp {p = (𝕖 e) ⁻¹} o _) (apd-! 𝕋²-ind (𝕖 e))

iii = ap (λ o → pathover-comp {p = (𝕖 e) ⁻¹}{q = 𝕨 w} _ o) (rhs w)

lhs : ∀ {x y} → (w : Walk (U G) x y)

→ 𝕨ᵈ w ≡ apd 𝕋²-ind (𝕨 w) [(F' {x}{y}) ↓ refl (𝕨 w)]

lhs w = ! rhs w

pathover

: apd 𝕋²-ind (𝕨 (cw-walk 𝓕 a b)) ≡ apd 𝕋²-ind (𝕨 (ccw-walk 𝓕 a b))

[F' ↓ 𝕗 𝓕 a b]

178 Yet Another HIT for Graphs

pathover = pathover-comp {p = refl (𝕨 (cw-walk 𝓕 a b))} {q = 𝕗 𝓕 a b}

(rhs (cw-walk 𝓕 a b))

(pathover-comp {p = 𝕗 𝓕 a b} {q = refl (𝕨 (ccw-walk 𝓕 a b))}

(A-𝕗 𝓕 a b)

(lhs (ccw-walk 𝓕 a b)))

postulate

𝕋²-β-ind-faces

: apd² 𝕋²-ind (𝕗 𝓕 a b) ↦ pathover

{-# REWRITE 𝕋²-β-ind-faces #-}

Figure C.2: The figure shows on the top a face 𝐹 of a graph map ℳ for graph 𝐺. The
face can be seen as the highlighted region between two walks from 𝑥 to 𝑧 in a graph
𝐺. Such walks are promoted into equalities in the 2-cell realisation of 𝐺 by using the
function to-eq. The 2-cell associated with 𝐹 is denoted by f(𝓕). Later, one can define a
depending function of type Π(𝑥∶𝕋2(𝐺,ℳ)) 𝐴(𝑥) for a type family 𝐴. The required data is
the dependent functions 𝐴-𝕟, 𝐴-𝕖, and 𝐴-𝕗 of type as in (3).

����� �
��� �

��� � ���
������ � ���������� ������� �� � ��� �� � ��� �� � ���

����� � ��������
�� � �������� U ����� � �������� ����� � �������� ����� � ��������

������
���� ������ ������ ������

������

�����
������

�
������

������
�

���

����� � ����� � �������������

������� �
������� �

��������������
Let us look at the elimination principle in some particular situations.

C.1.4 Eliminating into propositions

module toProp {𝓁 : Level} (G : Graph 𝓁) (𝓜 : Map G) where

open ∙-walk (U G)

open construction G 𝓜

The recursion principle and the induction principle, Appendices C.1.2 and C.1.3, are the
main tools to prove lemmas about the 2-cell topological realisation of a graph. However,
in the particular case, where a lemma is a proposition, another simpler principle can be
used, since, the path space of a proposition is a proposition.

Recursion Principle

𝕋²-rec : (A : Type 𝓁) → isProp A → (Node G → A) → (𝕋² → A)

𝕋²-rec A A-is-prop A-𝕟 = Recursion.𝕋²-rec A A-𝕟 A-𝕖 A-𝕗

C.1 The 2-cell topological realisation of graphs 179

where

A-𝕖 : ∀ {x y} → (e : Edge G x y) → A-𝕟 x ≡ A-𝕟 y

A-𝕖 {x = x}{y} _ = A-is-prop (A-𝕟 x) (A-𝕟 y)

A-𝕗 : _

A-𝕗 𝓕 a b = isProp-isSet A-is-prop _ _ _ _

Induction principle

𝕋²-ind : (A : 𝕋² → Type 𝓁)

→ ((x : Node G) → A (𝕟 x))

→ ((x : Node G) → isProp (A (𝕟 x)))

→ (x : 𝕋²) → A x

𝕋²-ind A A-𝕟 A-forms-props = Induction.𝕋²-ind A A-𝕟 A-𝕖 A-𝕗

where

A-𝕖 : {x y : Node G} → (e : Edge G x y) → A-𝕟 x ≡ A-𝕟 y [A ↓ 𝕖 e]

A-𝕖 {y = y} e = A-forms-props y _ _

A-𝕗 : _

A-𝕗 𝓕 a b = isProp-isSet (A-forms-props _) _ _ _ _

C.1.5 Eliminating into sets

module toSet {𝓁 : Level} (G : Graph 𝓁) (𝓜 : Map G) where

open ∙-walk (U G)

open construction G 𝓜

Recursion principle

𝕋²-rec : (A : Type 𝓁) → isSet A

→ (A-𝕟 : Node G → A)

→ (∀ {x y} → Edge G x y → A-𝕟 x ≡ A-𝕟 y)

→ (𝕋² → A)

𝕋²-rec A A-is-set A-𝕟 A-𝕖 = Recursion.𝕋²-rec A A-𝕟 A-𝕖 (λ _ _ _ → A-is-set _ _ _ _)

Induction principle

𝕋²-ind : (A : 𝕋² → Type 𝓁)

→ (A-𝕟 : (x : Node G) → A (𝕟 x))

→ (A-𝕖 : ∀ {x y} → (e : Edge G x y) → A-𝕟 x ≡ A-𝕟 y [A ↓ 𝕖 e])

→ (∀ x → isSet (A (𝕟 x)))

→ (x : 𝕋²) → A x

𝕋²-ind A A-𝕟 A-𝕖 A-sets = Induction.𝕋²-ind A A-𝕟 A-𝕖 (λ _ _ _ → A-sets _ _ _ _ _)

180 Yet Another HIT for Graphs

C.2 Promoting walk homotopies to 2-paths
{-# OPTIONS without-K exact-split rewriting #-}

module Homotopic-are-equal

where

open import foundations.Core

open import foundations.Rewriting

open import lib.graph-definitions.Graph

open import lib.graph-embeddings.Map

open import lib.graph-embeddings.Map.Spherical

open import lib.graph-transformations.U

open Graph

In Section 5.4, we establish a combinatorial definition for the notion of homotopy be-
tween walks using a graph map. This notion is a congruence relation on the set of walks
of the same endpoints, to say that walks are related if one can deform one into another. In
this subsection, we focus on relating the walk homotopy notion with the internal notion
of path homotopy in HoTT. First, in Lemma C.1, we prove that if there is a walk homo-
topy between any pair of walks, assuming that the node set of the graph is discrete, then
their corresponding topological realisation are equal. Second, if one only considers walk
homotopies in the plane, then the corresponding realisations of such walks are merely
equal; see Corollary C.3
Lemma C.1. Let 𝐺 be a graph with discrete set of nodes and ℳ be a map for 𝐺. If 𝑝 and 𝑞
are walks in the symmetrisation of 𝐺 such that 𝑝 ∼ℳ 𝑞, then 𝑝 and 𝑞 are merely equal.

Proof. It follows by induction on the given walk homotopy 𝑝 ∼ℳ 𝑞 for any walk 𝑝 and 𝑞
in the symmetrisation of 𝐺. The detailed proof is given below in (4). □

module _ {𝓁 : Level} (G : Graph 𝓁)

(_≟Node_ : (x y : Node (U G)) → (x ≡ y) + (x ≠ y)) (𝓜 : Map G)

where

open import lib.graph-embeddings.Map.Face.Walk

open import lib.graph-embeddings.Map.Face.Walk.Homotopy

open import lib.graph-embeddings.Map.Spherical-is-enough

open import lib.graph-walks.Walk hiding (length)

open import lib.graph-walks.Walk.Composition

open import lib.graph-walks.Walk.QuasiSimple

open import HIT

open ∙-walk (U G)

open FaceWalks

open HomotopyWalks

C.2 Promoting walk homotopies to 2-paths 181

open WR (U G) _≟Node_ hiding (P)

open construction G 𝓜

𝕨[_] = to-eq 𝕟 𝕖

walk-homotopy-gives-homotopy

: ∀ {x y} {p q : Walk (U G) x y}

→ p ∼⟨ 𝓜 ⟩∼ q → 𝕨 p ≡ 𝕨 q

walk-homotopy-gives-homotopy = λ {

hwalk-refl → idp

; (hwalk-symm q∼p) → ! walk-homotopy-gives-homotopy q∼p

; (hwalk-trans {w₂ = r} p∼r r∼q) → let

p=r = walk-homotopy-gives-homotopy {q = r} p∼r

r=q = walk-homotopy-gives-homotopy {p = r} r∼q

in p=r · r=q

; (collapse 𝓕 {a}{b} p q) →

let

i = to-eq-comp-·w 𝕟 𝕖 p (cw-walk _ 𝓕 a b ∙w q)

ii = ap (𝕨[p] ·_) (to-eq-comp-·w 𝕟 𝕖 (cw-walk _ 𝓕 a b) q)

iii = ap (λ r → 𝕨[p] · (r · 𝕨 q)) (𝕗 𝓕 a b)

iv = ap (λ r → 𝕨[p] · r) (! to-eq-comp-·w 𝕟 𝕖 (ccw-walk _ 𝓕 a b) q)

v = ! to-eq-comp-·w 𝕟 𝕖 p (ccw-walk _ 𝓕 a b ∙w q)

in begin

𝕨[p ·w cw-walk _ 𝓕 a b ∙w q] ≡⟨ i ⟩

𝕨[p] · 𝕨[cw-walk _ 𝓕 a b ∙w q] ≡⟨ ii ⟩

𝕨[p] · (𝕨[cw-walk _ 𝓕 a b] · 𝕨[q]) ≡⟨ iii ⟩

𝕨[p] · (𝕨[ccw-walk _ 𝓕 a b] · 𝕨[q]) ≡⟨ iv ⟩

𝕨[p] · 𝕨[ccw-walk _ 𝓕 a b ∙w q] ≡⟨ v ⟩

𝕨[p ·w ccw-walk _ 𝓕 a b ∙w q] ∎

}

(4)

Corollary C.2. Under the same assumptions as in Lemma C.1, if 𝑝 and 𝑞 are walks in the
symmetrisation of 𝐺 such that 𝑝 ∼ℳ 𝑞, then any normal form of 𝑝 is equal to any normal
form of 𝑞 in the geometric realisation.

Proof. Let 𝑃(𝑥, 𝑦 , 𝑤) be the collection of normal forms for the walk 𝑤 in the symmetrisa-
tion of 𝐺 from 𝑥 to 𝑦 , defined as follows.

𝑃(𝑤) ∶≡ ∑
(𝑟∶𝑊𝑈 (𝐺)(𝑥,𝑦))

(𝑤 ∼ℳ 𝑟) × Normal(𝑟).

The proof of this lemma follows, almost inmediately, from Lemma C.1, as in the following
Agda proof.

182 Yet Another HIT for Graphs

P : ∀ {x y} → Walk (U G) x y → Type (lsuc 𝓁)

P {x}{y} w = ∑[r ∶ Walk (U G) x y] (w ∼⟨ 𝓜 ⟩∼ r) × Normal r

corollary₁ : ∀ {x y} (p q : Walk (U G) x y)

→ ((nf-p , _) : P p) → ((nf-q , _) : P q) → nf-p ≡ nf-q → 𝕨 p ≡ 𝕨 q

corollary₁ p q (nf-p , (p∼nf-p , _)) (nf-q , (q∼nf-q , _)) nf-p≡nf-q = begin

𝕨[p] ≡⟨ walk-homotopy-gives-homotopy p∼nf-p ⟩

𝕨[nf-p] ≡⟨ cong 𝕨 nf-p≡nf-q ⟩

𝕨[nf-q] ≡⟨ ! walk-homotopy-gives-homotopy q∼nf-q ⟩

𝕨[q] ∎

□

Corollary C.3. Let 𝐺 be a graph with discrete set of nodes and ℳ be a spherical map for 𝐺.
Then, any pair of walks 𝑝 and 𝑞 in the symmetrisation of 𝐺 are merely equal.

Proof. Since the graph has a discrete set of nodes, by Corollary 5.49, we can freely use the
most general definition of sphericalmaps to obtain themere existence of awalk homotopy
for any pair of walks [Pri22]. The conclusion then follows by applying the elimination
principle of the propositional truncation to Lemma C.1 and the walk homotopy obtained
earlier. □

corollary₂ : isSphericalMap G 𝓜 → ∀ {x y} → (p q : Walk (U G) x y) → ∥ 𝕨 p ≡ 𝕨 q ∥

corollary₂ 𝓜-is-spherical p q = trunc-elim trunc-is-prop

(λ p∼q → ∣ walk-homotopy-gives-homotopy p∼q ∣) ∣p∼q∣

where

∣p∼q∣ : ∥ p ∼⟨ 𝓜 ⟩∼ q ∥

∣p∼q∣ = lemap (spherical-equiv G (_≟Node_) 𝓜) 𝓜-is-spherical _ _ p q

D
Other Constructions

The complete bipartite graph 𝐾3,3 is a well-known example of the smallest non-planar
graph. It comprises six nodes, evenly divided into two independent sets. Herein, we
define 𝐾3,3, its automorphism group Aut(𝐾3,3), and one of its maps into the torus.

A graph 𝐺 with an 𝑛-colouring is described by a homomorphism of type Hom(𝐺, 𝐾𝑛).
Each node in 𝐾𝑛 signifies a unique colour for the nodes in 𝐺. If 𝐺 has an 𝑛-colouring,
we denote 𝐺 as 𝑛-colourable or 𝑛-partite. Consequently, a *bipartite* graph possesses a 2-
colouring. The graph 𝐾3,3 is such a bipartite complete graph with six nodes. We illustrate
this graph in Appendix D, each arrow symbolises a pair of edges, one in each direction.

K3,3

1

3 4 5

K2

20

The collection of all 𝑛-colourings of a graph forms a set by Lemma 3.3, and the collec-
tion of 𝑛-partite graphs forms a 1-groupoid. Since there are some 𝑛-partite graphs that are
equal up to isomorphism, we have the following distinction. Two graph colourings of 𝐺,
namely, 𝑓 , 𝑔 ∶ Hom(𝐺, 𝐾𝑛) are essentially equal if a nontrivial isomorphism 𝜎 ∶ 𝐾𝑛 ≅ 𝐾𝑛
exists and if the functions 𝑓 and 𝜎 ∘ 𝑔 are equal. The type of essentially equal colourings
of a graph 𝐺 is (D.0–1).

184 Other Constructions

EssentiallyPartite(𝑛, 𝐺) ∶≡ ∑
(𝐴 ∶ Graph)

Hom(𝐺, 𝐴) × ‖𝐴 ≅ 𝐾𝑛‖. (D.0–1)

Example D.1. We compute the identity type of the essentially equal colourings of the
path graph 𝑃3 in Calculation (D.0–2). As we will see, there can only be two graph
homomorphisms from 𝑃3 to 𝐾2, namely 𝜑0 and 𝜑1 as in Figure D.1. Let 𝑐1 and 𝑐2 be of
type EssentiallyPartite(2, 𝑃3).

(𝑐1 = 𝑐2) ≃ ((𝐾2, 𝜑0, !) = (𝐾2, 𝜑1, !)) (D.0–2a)
≃ ∑

(𝜏∶𝐾2=𝐾2)
tr 𝜆𝑋 .Hom(𝑃3,𝑋)(𝜏 , 𝜑0) = 𝜑1 (D.0–2b)

≃ ∑
(𝜏∶𝐾2=𝐾2)

coe (𝜏) ∘ 𝜑0 = 𝜑1. (D.0–2c)

In Equivalence (D.0–2b), the equality 𝜏 ∶ 𝐾2 = 𝐾2 is one of two alternatives: the
trivial path or the path from the equivalence that swaps the only two nodes in 𝐾2.
Only the latter possibility, the equation, coe (𝜏) ∘ 𝜑0 = 𝜑1 can hold.

0

1

0

1

ϕ0

2

1

0

0

1

2

ϕ1

Figure D.1: Two graph homomorphisms 𝜑0 and 𝜑1 from 𝑃3 to 𝐾2. The dashed arrows
represent how 𝜑0 and 𝜑1 map the nodes of 𝑃3 into 𝐾2. We represent the colours of the
2-coloring of 𝑃3 by the nodes black and white in 𝐾2.

Thus, Aut(𝐾3,3) can be identified as the subgroup Z2 × 𝑆3 × 𝑆3 in 𝑆6. This is due to
the nodes of 𝐾3,3 being partitionable into two independent sets of three, which can be
permuted independently. Furthermore, these two partitions are interchangeable.

We now outline a graph map, M, for 𝐾3,3 as per (D.0–3), along with its faces 𝐹1, 𝐹2, and
𝐹3. Although surface holds no significance in our context, as there is no a type that define
such a concept, the map M described above would correspond to the torus in a traditional
setting. This can be depicted using the polygonal schema shown in Figure D.2.

185

F1

F2

F3

0

4

2

5

1

3

Figure D.2: A map for 𝐾3,3 in the surface of the torus.

M ∶≡ (0 ↦ ((03) (04) (05)), 1 ↦ ((13) (15) (14)),
2 ↦ ((24) (25) (23)), 3 ↦ ((32) (31) (30)),
4 ↦ ((40) (41) (42)), 5 ↦ ((51) (50) (52))).

𝐹1 ∶≡ ((30) (04) (41) (13)).
𝐹2 ∶≡ ((14) (42) (25) (51)).
𝐹3 ∶≡ ((03) (32) (24) (40) (05) (52) (23) (31) (15) (50)).

(D.0–3)

186 Other Constructions

“Here’s to those who inspire you and don’t even know it.”
Anonymous

“There’s someone in my head, but it’s not me.”
Pink Floyd

Bibliography

[20] EPIT 2020 - Spring School on Homotopy Type Theory. 2020, [Online]. Available:
https://github.com/HoTT/EPIT-2020 (cit. on p. 19).

[22a] HOTT-UF 2022 - Summer School on Homotopy Type Theory and Univalent Founda-
tions. 2022, [Online]. Available: https://hott-uf.github.io/2022/ (cit. on p. 19).

[22b] Hottest 2022 - Summer School on Homotopy Type Theory. 2022, [Online]. Available:
https://uwo.ca/math/faculty/kapulkin/seminars/hottest_summer_school_2022.html (cit. on
p. 19).

[24a] Coq Graph Theory Library, 2024, [Online]. Available: https : / / github . com / coq -

community/graph-theory (cit. on p. 30).

[24b] Lean Combinatorics, 2024, [Online]. Available: https://leanprover-community.github.
io/mathlib-overview.html#combinatorics (cit. on p. 30).

[AH14] J. Avigad and J. Harrison, Formally Verified Mathematics, Communications of the
ACM, vol. 57, no. 4, pp. 66–75, 2014 (cit. on p. 29).

[AK23] J. Alama and J. Korbmacher, The Lambda Calculus, in The Stanford Encyclopedia of
Philosophy, Winter 2023, 2023 (cit. on p. 9).

[Alt19] T. Altenkirch, Martin Hofmann’s Contributions to Type Theory: Groupoids and Uni-
valence, 2019, [Online]. Available: http://www.cs.nott.ac.uk/~psztxa/martin-19.pdf (cit.
on p. 16).

[AN19] B. Ahrens and P. R. North, “Univalent Foundations and the Equivalence Principle,” in
Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and
General Thoughts. 2019, pp. 137–150, [Online]. Available: https://doi.org/10.1007/978-
3-030-15655-8_6 (cit. on pp. 20, 49).

[ANS+21] B. Ahrens, P. R. North, M. Shulman, et al., The Univalence Principle, 2021, [Online].
Available: https://arxiv.org/abs/2102.06275 (cit. on p. 17).

[ANST20] B. Ahrens, P. R. North, M. Shulman, and D. Tsementzis, A higher structure identity
principle, in Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, 2020, [Online]. Available: https://doi.org/10.1145/3373718.3394755 (cit.
on p. 49).

[AW09] S. Awodey and M. A. Warren, Homotopy theoretic models of identity types, Mathe-
matical Proceedings of the Cambridge Philosophical Society, vol. 146, no. 1, pp. 45–
55, 2009, [Online]. Available: https://doi.org/10.1017/s0305004108001783 (cit. on p. 17).

https://github.com/HoTT/EPIT-2020
https://hott-uf.github.io/2022/
https://uwo.ca/math/faculty/kapulkin/seminars/hottest_summer_school_2022.html
https://github.com/coq-community/graph-theory
https://github.com/coq-community/graph-theory
https://leanprover-community.github.io/mathlib-overview.html#combinatorics
https://leanprover-community.github.io/mathlib-overview.html#combinatorics
http://www.cs.nott.ac.uk/~psztxa/martin-19.pdf
https://doi.org/10.1007/978-3-030-15655-8_6
https://doi.org/10.1007/978-3-030-15655-8_6
https://arxiv.org/abs/2102.06275
https://doi.org/10.1145/3373718.3394755
https://doi.org/10.1017/s0305004108001783

[Awo12] S. Awodey, Type Theory and Homotopy, in Epistemology versus Ontology, 2012,
pp. 183–201, [Online]. Available: https://doi.org/10.1007/978-94-007-4435-6_9 (cit. on
p. 33).

[Awo18] S. Awodey, Univalence as a principle of logic, Indagationes Mathematicae, vol. 29,
no. 6, pp. 1497–1510, 2018, [Online]. Available: https://doi.org/10.1016/j.indag.2018.
01.011 (cit. on pp. 17, 33).

[Bag21] J. Bagaria, Set Theory, in The Stanford Encyclopedia of Philosophy,Winter 2021, 2021,
[Online]. Available: https://plato.stanford.edu/archives/win2021/entries/set-theory/
(cit. on p. 2).

[Bar97] H. Barendregt, The Impact of the Lambda Calculus in Logic and Computer Science,
Bulletin of Symbolic Logic, vol. 3, no. 2, pp. 181–215, 1997, [Online]. Available: https:
//doi.org/10.2307/421013 (cit. on p. 9).

[Bau05] G. J. Bauer, Formalizing Plane Graph Theory: Towards a Formalized Proof of the Ke-
pler Conjecture, Ph.D. dissertation, Technische Universität München, 2005, [Online].
Available: https://mediatum.ub.tum.de/doc/601794/document.pdf (cit. on pp. 31, 123).

[Bau12] M. Baur, Combinatorial Concepts and Algorithms for Drawing Planar Graphs, Ph.D.
dissertation, Universität Konstanz, 2012, [Online]. Available: http://nbn-resolving.de/
urn:nbn:de:bsz:352-202281 (cit. on p. 106).

[Bau17] A. Bauer, Five stages of accepting constructive mathematics, Bulletin of the American
Mathematical Society, vol. 54, no. 3, pp. 481–498, 2017, [Online]. Available: https :
//doi.org/10.1090/bull/1556 (cit. on p. 4).

[BB85] E. Bishop and D. Bridges, Constructive Analysis. Springer Berlin Heidelberg, 1985,
[Online]. Available: https://doi.org/10.1007/978-3-642-61667-9 (cit. on p. 3).

[BBC+22] M. Bezem, U. Buchholtz, P. Cagne, et al., Symmetry, https : / / github . com / UniMath /
SymmetryBook, Commit: 870cb20, 19, 2022, [Online]. Available: https://gitub.com/UniMath/
SymmetryBook (cit. on pp. 19, 43).

[BCH17] M. Bezem, T. Coquand, and S. Huber, The univalence axiom in cubical sets, 2017,
[Online]. Available: https://doi.org/10.1007/s10817-018-9472-6 (cit. on p. 18).

[BDS13] H. Barendregt, W. Dekkers, and R. Statman, Lambda Calculus with Types. Cambridge
University Press, 2013, [Online]. Available: https://doi.org/10.1017/CBO9781139032636
(cit. on p. 4).

[Bel21] J. L. Bell, The Axiom of Choice, in The Stanford Encyclopedia of Philosophy, Winter
2021, 2021 (cit. on p. 12).

[BG09] J. Bang-Jensen and G. Z. Gutin, Digraphs. Springer London, 2009, [Online]. Available:
https://doi.org/10.1007/978-1-84800-998-1 (cit. on p. 109).

[BGL+17] A. Bauer, J. Gross, P. L. Lumsdaine, et al., The HoTT Library: A Formalization of
Homotopy Type Theory in Coq, in Proceedings of the 6th ACM SIGPLANConference
on Certified Programs and Proofs, 2017, pp. 164–172, [Online]. Available: https://doi.
org/10.1145/3018610.3018615 (cit. on p. 41).

https://doi.org/10.1007/978-94-007-4435-6_9
https://doi.org/10.1016/j.indag.2018.01.011
https://doi.org/10.1016/j.indag.2018.01.011
https://plato.stanford.edu/archives/win2021/entries/set-theory/
https://doi.org/10.2307/421013
https://doi.org/10.2307/421013
https://mediatum.ub.tum.de/doc/601794/document.pdf
http://nbn-resolving.de/urn:nbn:de:bsz:352-202281
http://nbn-resolving.de/urn:nbn:de:bsz:352-202281
https://doi.org/10.1090/bull/1556
https://doi.org/10.1090/bull/1556
https://doi.org/10.1007/978-3-642-61667-9
https://github.com/UniMath/SymmetryBook
https://github.com/UniMath/SymmetryBook
https://gitub.com/UniMath/SymmetryBook
https://gitub.com/UniMath/SymmetryBook
https://doi.org/10.1007/s10817-018-9472-6
https://doi.org/10.1017/CBO9781139032636
https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1145/3018610.3018615
https://doi.org/10.1145/3018610.3018615

[BHC+] G. Brunerie, K.-B. Hou (Favonia), E. Cavallo, et al. Homotopy Type Theory in Agda.
(), [Online]. Available: https://github.com/HoTT/HoTT-Agda (cit. on p. 175).

[BHW08] J. C. Baez, A. E. Hoffnung, and C. D. Walker, Higher-Dimensional Algebra VII:
Groupoidification, Theory and Applications of Categories, vol. 24, pp. 489–553, 2009-
08, [Online]. Available: http://arxiv.org/abs/0908.4305 (cit. on p. 34).

[BN02] G. Bauer and T. Nipkow, The 5 Colour Theorem in Isabelle/Isar, in Theorem Proving
in Higher Order Logics, 15th International Conference, TPHOLs 2002, Hampton, VA,
USA, August 20-23, 2002, Proceedings, 2002, pp. 67–82, [Online]. Available: https:
//doi.org/10.1007/3-540-45685-6_6 (cit. on p. 31).

[Bra13] E. Brady, Idris, a general-purpose dependently typed programming language: Design
and implementation, Journal of Functional Programming, vol. 23, pp. 552–593, 05
2013, [Online]. Available: https://journals.cambridge.org/article_S095679681300018X
(cit. on p. 29).

[CCH+17] C. Cohen, T. Coquand, S. Huber, et al., Cubical Type Theory: A Constructive Inter-
pretation of the Univalence Axiom, FLAP, vol. 4, no. 10, pp. 3127–3170, 2017, [Online].
Available: http://collegepublications.co.uk/ifcolog/?00019 (cit. on p. 18).

[CD13] T. Coquand and N. A. Danielsson, Isomorphism is equality, Indagationes Mathemat-
icae, vol. 24, no. 4, pp. 1105–1120, 2013, [Online]. Available: https://doi.org/10.1016/
j.indag.2013.09.002 (cit. on p. 49).

[CDP16] J. Cockx, D. Devriese, and F. Piessens, Eliminating dependent pattern matching with-
out K, Journal of Functional Programming, vol. 26, e16, 2016, [Online]. Available:
https://doi.org/10.1017/s0956796816000174 (cit. on p. 134).

[CH88] T. Coquand and G. Huet, The calculus of constructions, Information and Computa-
tion, vol. 76, no. 2-3, pp. 95–120, 1988, [Online]. Available: https://doi.org/10.1016/
0890-5401(88)90005-3 (cit. on p. 4).

[CHM18] T. Coquand, S. Huber, and A. Mörtberg, On Higher Inductive Types in Cubical Type
Theory, in Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2018, Oxford, UK, July 09-12, 2018, 2018, pp. 255–264, [Online].
Available: https://doi.org/10.1145/3209108.3209197 (cit. on p. 18).

[Chu32] A. Church, A set of postulates for the foundation of logic, The Annals ofMathematics,
vol. 33, no. 2, p. 346, 1932, [Online]. Available: https://doi.org/10.2307/1968337 (cit. on
p. 9).

[Chu40] A. Church, A formulation of the simple theory of types, Journal of Symbolic Logic,
vol. 5, no. 2, pp. 56–68, 1940, [Online]. Available: https://doi.org/10.2307/2266170 (cit.
on pp. 5, 13).

[Coc19] J. Cockx, Hack your type theory, 2019, [Online]. Available: https://jesper.sikanda.be/
posts/hack-your-type-theory.html (cit. on p. 134).

[CS20] T. Chih and L. Scull, A homotopy category for graphs, Journal of Algebraic Combi-
natorics, 2020, [Online]. Available: https://doi.org/10.1007/s10801-020-00960-5 (cit. on
p. 102).

https://github.com/HoTT/HoTT-Agda
http://arxiv.org/abs/0908.4305
https://doi.org/10.1007/3-540-45685-6_6
https://doi.org/10.1007/3-540-45685-6_6
https://journals.cambridge.org/article_S095679681300018X
http://collegepublications.co.uk/ifcolog/?00019
https://doi.org/10.1016/j.indag.2013.09.002
https://doi.org/10.1016/j.indag.2013.09.002
https://doi.org/10.1017/s0956796816000174
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.2307/1968337
https://doi.org/10.2307/2266170
https://jesper.sikanda.be/posts/hack-your-type-theory.html
https://jesper.sikanda.be/posts/hack-your-type-theory.html
https://doi.org/10.1007/s10801-020-00960-5

[dBru83] N. G. de Bruijn, AUTOMATH, a Language for Mathematics, in Automation of Rea-
soning, 1983, pp. 159–200, [Online]. Available: https://doi.org/10.1007/978-3-642-
81955-1%5F11 (cit. on p. 13).

[DGG16] C. Dubois, A. Giorgetti, and R. Genestier, Tests and Proofs for Enumerative Combi-
natorics, in Tests and Proofs - 10th International Conference, TAPSTAF 2016, Vienna,
Austria, July 5-7, 2016, Proceedings, vol. 9762, 2016, pp. 57–75, [Online]. Available:
https://doi.org/10.1007/978-3-319-41135-4%5C_4 (cit. on p. 30).

[Die12] R. Diestel, Graph Theory, 4th Edition. Springer, 2012, vol. 173, [Online]. Available:
https://doi.org/10.1007/978-3-662-53622-3 (cit. on pp. 84, 106, 119, 121).

[DK04] R. Diestel and D. Kühn, Topological paths, cycles and spanning trees in infinite
graphs, European Journal of Combinatorics, vol. 25, no. 6, pp. 835–862, 2004, [On-
line]. Available: https://doi.org/10.1016/j.ejc.2003.01.002 (cit. on p. 151).

[dMKA+15] L. de Moura, S. Kong, J. Avigad, et al., The Lean theorem prover (System Description),
in International Conference on Automated Deduction, Springer, 2015, pp. 378–388,
[Online]. Available: https://doi.org/10.1007/978-3-319-21401-6_26 (cit. on pp. 4, 29,
30).

[Doc21] C. Doczkal, A Variant of Wagner’s Theorem Based on Combinatorial Hypermaps,
working paper or preprint, 2021, [Online]. Available: https://hal.archives-ouvertes.
fr/hal-03142192 (cit. on p. 30).

[DP00] J.-F. Dufourd and F. Puitg, Functional specification and prototyping with oriented
combinatorial maps, Computational Geometry, vol. 16, no. 2, pp. 129–156, 2000, [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/S0925772100000043
(cit. on p. 30).

[DP20] C. Doczkal and D. Pous, Graph Theory in Coq: Minors, Treewidth, and Isomorphisms,
J. Autom. Reason., vol. 64, no. 5, pp. 795–825, 2020, [Online]. Available: https://doi.
org/10.1007/s10817-020-09543-2 (cit. on p. 30).

[Duf09] J. F. Dufourd, An intuitionistic proof of a discrete form of the Jordan curve theorem
formalised in Coq with combinatorial hypermaps, Journal of Automated Reasoning,
vol. 43, no. 1, pp. 19–51, 2009, [Online]. Available: https://doi.org/10.1007/s10817-009-
9117-x (cit. on p. 30).

[EM13] J. Ellis-Monaghan and I. Moffatt, Graphs on Surfaces: Dualities, Polynomials, and
Knots, 1st ed. Springer, New York, 2013 (cit. on p. 58).

[Esc04] M. Escardó, Synthetic topology: Of data types and classical spaces, Electronic Notes in
Theoretical Computer Science, vol. 87, pp. 21–156, 2004, Proceedings of theWorkshop
on Domain Theoretic Methods for Probabilistic Processes, [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1571066104051357 (cit. on p. 130).

[Esc18] M. Escardó, A self-contained, brief and complete formulation of Voevodsky’s Uni-
valence Axiom, 2018, [Online]. Available: https://arxiv.org/abs/1803.02294 (cit. on
p. 33).

https://doi.org/10.1007/978-3-642-81955-1%5F11
https://doi.org/10.1007/978-3-642-81955-1%5F11
https://doi.org/10.1007/978-3-319-41135-4%5C_4
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/j.ejc.2003.01.002
https://doi.org/10.1007/978-3-319-21401-6_26
https://hal.archives-ouvertes.fr/hal-03142192
https://hal.archives-ouvertes.fr/hal-03142192
https://www.sciencedirect.com/science/article/pii/S0925772100000043
https://doi.org/10.1007/s10817-020-09543-2
https://doi.org/10.1007/s10817-020-09543-2
https://doi.org/10.1007/s10817-009-9117-x
https://doi.org/10.1007/s10817-009-9117-x
https://www.sciencedirect.com/science/article/pii/S1571066104051357
https://www.sciencedirect.com/science/article/pii/S1571066104051357
https://arxiv.org/abs/1803.02294

[Esc19] M. Escardó, Introduction to Univalent Foundations of Mathematics with Agda, 2019,
[Online]. Available: http://arxiv.org/abs/1911.00580 (cit. on pp. 19, 51).

[Gen64] G. Gentzen, Investigations into logical deduction, American Philosophical Quarterly,
vol. 1, no. 4, pp. 288–306, 1964 (cit. on p. 5).

[Geu09] H. Geuvers, Lambda Calculus and the Curry-Howard Correspondence, 2009, [On-
line]. Available: https://www.cs.ru.nl/~herman/slidesMLNL2009.pdf (cit. on p. 10).

[GLM+14] A. Grigor’yan, Y. Lin, Y. Muranov, et al., Homotopy theory for digraphs. 2014, [On-
line]. Available: http://arxiv.org/abs/1407.0234 (cit. on p. 102).

[Gon08] G. Gonthier, The four colour theorem: Engineering of a formal proof, in Computer
Mathematics, 2008, pp. 333–333, [Online]. Available: https://doi.org/10.1007/978-3-
540-87827-8_28 (cit. on p. 30).

[Gon23] G. Gonthier, A computer-checked proof of the Four Color Theorem, 2023, [Online].
Available: https://inria.hal.science/hal-04034866v1/file/FINALA%20computer-checked%
20proof%20of%20the%20four%20color%20theorem%20-%20HAL.pdf (cit. on pp. 30, 106, 123, 130,
170).

[Gra18] D. Grayson, An introduction to univalent foundations for mathematicians, Bulletin
of the American Mathematical Society, vol. 55, no. 4, pp. 427–450, 2018, [Online].
Available: https://doi.org/10.1090/bull/1616 (cit. on p. 19).

[GT87] Gross and Tucker, Topological graph theory. John Wiley & Sons Inc., 1987,
pp. xvi+351, A Wiley-Interscience Publication (cit. on pp. 24, 61, 105).

[GYA18] J. Gross, J. Yellen, and M. Anderson, Graph Theory and Its Applications. Chapman
and Hall/CRC, 2018, [Online]. Available: https://doi.org/10.1201/9780429425134 (cit.
on pp. 109, 121).

[HAB+17] T. Hales, M. Adams, G. Bauer, et al., A Formal Proof Of The Kepler Conjecture, Forum
of Mathematics, Pi, vol. 5, e2, 2017, [Online]. Available: https://doi.org/10.1017/fmp.
2017.1 (cit. on p. 30).

[How80] W. A. Howard, The Formulae-as-Types Notion of Construction, in To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalism, 1980 (cit. on p. 10).

[HS98] M. Hofmann and T. Streicher, The groupoid interpretation of type theory, in Twenty-
five years of constructive type theory (Venice, 1995), vol. 36, 1998, pp. 83–111 (cit. on
p. 17).

[KLN05] F. Kamareddine, T. Laan, and R. Nederpelt, A Modern Perspective on Type Theory:
From its Origins Until Today. Kluwer Academic Publishers, 2005, [Online]. Available:
https://doi.org/10.1007%2F1-4020-2335-9 (cit. on p. 5).

[KSW20] W. Kokke, J. G. Siek, and P. Wadler, Programming language foundations in Agda, Sci.
Comput. Program., vol. 194, p. 102 440, 2020, [Online]. Available: https://doi.org/10.
1016/j.scico.2020.102440 (cit. on pp. 92, 130).

[KvR20] N. Kraus and J. von Raumer, Coherence via Well-Foundedness, in Proceedings of the
35th Annual ACM/IEEE Symposium on Logic in Computer Science, 2020, [Online].
Available: https://doi.org/10.1145/3373718.3394800 (cit. on pp. 102, 170).

http://arxiv.org/abs/1911.00580
https://www.cs.ru.nl/~herman/slidesMLNL2009.pdf
http://arxiv.org/abs/1407.0234
https://doi.org/10.1007/978-3-540-87827-8_28
https://doi.org/10.1007/978-3-540-87827-8_28
https://inria.hal.science/hal-04034866v1/file/FINALA%20computer-checked%20proof%20of%20the%20four%20color%20theorem%20-%20HAL.pdf
https://inria.hal.science/hal-04034866v1/file/FINALA%20computer-checked%20proof%20of%20the%20four%20color%20theorem%20-%20HAL.pdf
https://doi.org/10.1090/bull/1616
https://doi.org/10.1201/9780429425134
https://doi.org/10.1017/fmp.2017.1
https://doi.org/10.1017/fmp.2017.1
https://doi.org/10.1007%2F1-4020-2335-9
https://doi.org/10.1016/j.scico.2020.102440
https://doi.org/10.1016/j.scico.2020.102440
https://doi.org/10.1145/3373718.3394800

[KvR21] N. Kraus and J. von Raumer, A Rewriting Coherence Theorem with Applications in
Homotopy Type Theory, 2021 (cit. on pp. 102, 103, 170).

[LB15] D. R. Licata and G. Brunerie, A Cubical Approach to Synthetic Homotopy Theory,
2015, [Online]. Available: https://doi.org/10.1109/lics.2015.19 (cit. on p. 175).

[LI22] B. Linsky and A. D. Irvine, Principia Mathematica, in The Stanford Encyclopedia
of Philosophy, Spring 2022, 2022, [Online]. Available: https://plato.stanford.edu/
archives/spr2022/entries/principia-mathematica/ (cit. on p. 5).

[Luc19] M. Lucas, An implementation of polygraphs, working paper or preprint, 2019, [On-
line]. Available: https://hal.archives-ouvertes.fr/hal-02385110 (cit. on p. 102).

[Luc20] M. Lucas, Abstract rewriting internalized, 2020 (cit. on p. 102).

[Mac37] S. MacLane, A combinatorial condition for planar graphs, 1937 (cit. on p. 106).

[MAE21] A. Mörtberg, V. Andrea, and C. Evan, A Standard library for Cubical Agda, 2021,
[Online]. Available: https://github.com/agda/cubical (cit. on p. 170).

[Mar75] P. Martin-Löf, An Intuitionistic Theory of Types: Predicative Part, in Logic Collo-
quium ’73, Proceedings of the Logic Colloquium, 1975, pp. 73–118, [Online]. Avail-
able: https://doi.org/10.1016/s0049-237x(08)71945-1 (cit. on pp. 4, 5, 11).

[McB] C. McBride, A polynomial testing principle, [Online]. Available: https://personal.cis.
strath.ac.uk/conor.mcbride/PolyTest.pdf (cit. on p. 92).

[Moh88] B. Mohar, Embeddings of infinite graphs, Journal of Combinatorial Theory, Series B,
vol. 44, no. 1, pp. 29–43, 1988, [Online]. Available: https://doi.org/10.1016/0095-
8956(88)90094-9 (cit. on p. 61).

[MP20] A. Mörtberg and L. Pujet, Cubical Synthetic Homotopy Theory, in Proceedings of
the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs,
2020, pp. 158–171, [Online]. Available: https://doi.org/10.1145/3372885.3373825 (cit.
on p. 130).

[Nor07] U. Norrell, Towards a practical programming language based on dependent type the-
ory, PhD thesis, Chalmers University of Technology, 2007, [Online]. Available: https:
//research.chalmers.se/en/publication/46311 (cit. on p. 34).

[Nor88] B. Nordström, Terminating general recursion, Bit, vol. 28, no. 3, pp. 605–619, 1988,
[Online]. Available: 10.1007/bf01941137 (cit. on p. 81).

[Nos14] L. Noschinski, A graph library for isabelle, Mathematics in Computer Science, vol. 9,
no. 1, pp. 23–39, 2014, [Online]. Available: https://doi.org/10.1007/s11786-014-0183-z
(cit. on p. 30).

[Nos15] L. Noschinski, Formalizing Graph Theory and Planarity Certificates, Ph.D. disserta-
tion, Technischen Universität München, 2015, [Online]. Available: https://d-nb.info/
1104933624/34 (cit. on pp. 19, 30).

[NPS90] B. Nordström, K. Petersson, and J. M. Smith, Programming in Martin-Lo¨f’s Type
Theory: An Introduction. Clarendon Press, 1990 (cit. on pp. 4, 11, 16).

https://doi.org/10.1109/lics.2015.19
https://plato.stanford.edu/archives/spr2022/entries/principia-mathematica/
https://plato.stanford.edu/archives/spr2022/entries/principia-mathematica/
https://hal.archives-ouvertes.fr/hal-02385110
https://github.com/agda/cubical
https://doi.org/10.1016/s0049-237x(08)71945-1
https://personal.cis.strath.ac.uk/conor.mcbride/PolyTest.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/PolyTest.pdf
https://doi.org/10.1016/0095-8956(88)90094-9
https://doi.org/10.1016/0095-8956(88)90094-9
https://doi.org/10.1145/3372885.3373825
https://research.chalmers.se/en/publication/46311
https://research.chalmers.se/en/publication/46311
10.1007/bf01941137
https://doi.org/10.1007/s11786-014-0183-z
https://d-nb.info/1104933624/34
https://d-nb.info/1104933624/34

[Pet19] I. Petrakis, Dependent Sums and Dependent Products in Bishop’s Set Theory, in 24th
International Conference on Types for Proofs and Programs (TYPES 2018), vol. 130,
2019, 3:1–3:21, [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2019/11407
(cit. on p. 3).

[PG19] J. Prieto-Cubides and H. R. Gylterud, Planar graphs in HoTT, 25th International Con-
ference on Types for Proofs and Programs, TYPES, 2019, [Online]. Available: http:
//www.ii.uib.no/~bezem/abstracts/TYPES%5F2019%5Fpaper%5F37 (cit. on p. 130).

[PG24] J. Prieto-Cubides and H. R. Gylterud, On planarity of graphs in homotopy type the-
ory, Mathematical Structures in Computer Science, vol. 34, no. 4, pp. 281–321, 2024,
[Online]. Available: https://doi.org/10.1017/S0960129524000100 (cit. on p. 95).

[Pra67] D. Prawitz, Natural deduction. A proof-theoretical study. Journal of Symbolic Logic,
vol. 32, no. 2, pp. 255–256, 1967, [Online]. Available: https://doi.org/10.2307/2271676
(cit. on p. 13).

[Pri18] J. Prieto-Cubides, Pathovers in HoTT, 2018, [Online]. Available: https://jonaprieto.
github.io/type-theory/2018/07/05/pathovers-hott/index.html (cit. on p. 129).

[Pri22] J. Prieto-Cubides, On homotopy of walks and spherical maps in homotopy type the-
ory, in Proceedings of the 11th ACM SIGPLAN International Conference on Certified
Programs and Proofs, 2022, pp. 338–351, [Online]. Available: https://doi.org/10.1145/
3497775.3503671 (cit. on pp. 115, 124, 153, 170, 182).

[Pri24] J. Prieto-Cubides, Mechanised proofs in Agda for the manuscript, Investigations into
Graph-theoretical Constructions in Homotopy Type Theory, Zenodo, 2024, [Online].
Available: https://doi.org/10.5281/zenodo.11092174 (cit. on p. 103).

[Rah17] M. S. Rahman, “Planar Graphs,” in Basic Graph Theory. 2017, pp. 77–89, [Online].
Available: https://doi.org/10.1007/978-3-319-49475-3_6 (cit. on p. 106).

[RBPB+23] E. Rijke, E. Bonnevier, J. Prieto-Cubides, F. Bakke, et al. Univalent mathematics in
Agda. (2023), [Online]. Available: https://github.com/UniMath/agda- unimath/ (cit. on
pp. 30, 155, 170).

[Rij22] E. Rijke, Introduction to Homotopy Type Theory, 2022, [Online]. Available: https:
//arxiv.org/abs/2212.11082 (cit. on p. 19).

[RS20] E. Reck and G. Schiemer, Structuralism in the Philosophy of Mathematics, in The
Stanford Encyclopedia of Philosophy, Spring 2020, 2020, [Online]. Available: https:
//plato.stanford.edu/archives/spr2020/entries/structuralism-mathematics/ (cit. on p. 1).

[Sch72] K. Schütte, The collected papers of Gerhard Gentzen, vol. 37, no. 4, pp. 752–753, 1972,
[Online]. Available: https://doi.org/10.2307/2272429 (cit. on p. 13).

[Shu11] M. Shulman, Homotopy type theory I, 2011, [Online]. Available: https://golem.ph.
utexas.edu/category/2011/03/homotopy_type_theory_i.html (cit. on p. 17).

[Sta78] S. Stahl, The embeddings of a graph–A survey, Journal of Graph Theory, vol. 2, no. 4,
pp. 275–298, 1978, [Online]. Available: https://doi.org/10.1002/jgt.3190020402 (cit. on
pp. 57, 61).

[Sup72] P. Suppes, Axiomatic set theory. Dover publications, 1972 (cit. on p. 12).

http://drops.dagstuhl.de/opus/volltexte/2019/11407
http://www.ii.uib.no/~bezem/abstracts/TYPES%5F2019%5Fpaper%5F37
http://www.ii.uib.no/~bezem/abstracts/TYPES%5F2019%5Fpaper%5F37
https://doi.org/10.1017/S0960129524000100
https://doi.org/10.2307/2271676
https://jonaprieto.github.io/type-theory/2018/07/05/pathovers-hott/index.html
https://jonaprieto.github.io/type-theory/2018/07/05/pathovers-hott/index.html
https://doi.org/10.1145/3497775.3503671
https://doi.org/10.1145/3497775.3503671
https://doi.org/10.5281/zenodo.11092174
https://doi.org/10.1007/978-3-319-49475-3_6
https://github.com/UniMath/agda-unimath/
https://arxiv.org/abs/2212.11082
https://arxiv.org/abs/2212.11082
https://plato.stanford.edu/archives/spr2020/entries/structuralism-mathematics/
https://plato.stanford.edu/archives/spr2020/entries/structuralism-mathematics/
https://doi.org/10.2307/2272429
https://golem.ph.utexas.edu/category/2011/03/homotopy_type_theory_i.html
https://golem.ph.utexas.edu/category/2011/03/homotopy_type_theory_i.html
https://doi.org/10.1002/jgt.3190020402

[Swa22] A. W. Swan, On the Nielsen-Schreier Theorem in Homotopy Type Theory, Logical
Methods in Computer Science, vol. Volume 18, Issue 1, 2022, [Online]. Available:
https://doi.org/10.46298%2Flmcs- 18%281%3A18%292022 (cit. on pp. 130, 151, 152, 164,
165, 170).

[The21] The Coq Development Team, The Coq Proof Assistant, en, 2021, [Online]. Available:
https://zenodo.org/record/4501022 (cit. on pp. 4, 29).

[The23] The Agda Development Team, Agda 2.6.3 documentation, 2023, [Online]. Available:
https://agda.readthedocs.io/en/v2.6.3/ (cit. on pp. 4, 29, 134, 170).

[Tro11] A. S. Troelstra, History of constructivism in the 20th century, in Set Theory, Arith-
metic, and Foundations of Mathematics, 2011, pp. 150–179, [Online]. Available: https:
//doi.org/10.1017/cbo9780511910616.009 (cit. on pp. 1, 3, 5).

[Uni13] T. Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations
of Mathematics. https://homotopytypetheory.org/book, 2013, [Online]. Available: https:
//homotopytypetheory.org/book (cit. on pp. 13, 18, 33, 34, 36, 43, 49, 81, 106, 125, 126, 170,
177).

[VMA21] A. Vezzosi, A. Mörtberg, and A. Abel, Cubical Agda: A dependently typed program-
ming language with univalence and higher inductive types, Journal of Functional
Programming, vol. 31, e8, 2021, doi: 10.1017/s0956796821000034 (cit. on pp. 18, 170).

[Voe10] V. Voevodsky, The equivalence axiom and univalent models of type theory. (Talk at
CMU on February 4, 2010), 2010, [Online]. Available: https://arxiv.org/abs/1402.5556
(cit. on pp. 17, 33).

[vRD20] J. von Raumer and N. A. Danielsson, Paths in HITs in Lean, 2020, [Online]. Available:
https://gitlab.com/fplab/freealgstr (cit. on p. 103).

[Whi32] H. Whitney, Non-separable and planar graphs, Transactions of the American Math-
ematical Society, vol. 34, no. 2, pp. 339–339, 1932, [Online]. Available: https://doi.
org/10.1090/s0002-9947-1932-1501641-2 (cit. on p. 109).

[YNH+95] M. Yamamoto, S. Nishizaki, M. Hagiya, et al., Formalization of Planar Graphs, in
Higher Order Logic Theorem Proving and Its Applications, 8th International Work-
shop, Aspen Grove, UT, USA, September 11-14, 1995, Proceedings, vol. 971, 1995,
pp. 369–384, [Online]. Available: https://doi.org/10.1007/3-540-60275-5_77 (cit. on
pp. 30, 120, 121, 123, 124).

[Yor14] B. A. Yorgey, Combinatorial Species And Labelled Structures, Ph.D. dissertation, Uni-
versity of Pennsylvania, 2014, p. 206, [Online]. Available: https://www.cis.upenn.edu/
~sweirich/papers/yorgey-thesis.pdf (cit. on p. 34).

https://doi.org/10.46298%2Flmcs-18%281%3A18%292022
https://zenodo.org/record/4501022
https://agda.readthedocs.io/en/v2.6.3/
https://doi.org/10.1017/cbo9780511910616.009
https://doi.org/10.1017/cbo9780511910616.009
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://doi.org/10.1017/s0956796821000034
https://arxiv.org/abs/1402.5556
https://gitlab.com/fplab/freealgstr
https://doi.org/10.1090/s0002-9947-1932-1501641-2
https://doi.org/10.1090/s0002-9947-1932-1501641-2
https://doi.org/10.1007/3-540-60275-5_77
https://www.cis.upenn.edu/~sweirich/papers/yorgey-thesis.pdf
https://www.cis.upenn.edu/~sweirich/papers/yorgey-thesis.pdf

	Scientific Environment
	Abstract
	Acknowledgements
	Introduction
	Foundations of mathematics
	Set theories
	Constructive formal systems
	Type theories
	Martin-Löf type theories
	Typing rules
	Types, terms, and logic
	Formulas as types
	Dependent types
	Identity types
	Extensional and intensional type theories
	The groupoid model and the homotopy interpretation

	Exploring graph theory in univalent mathematics
	Structure identity principle
	The type of graphs and their symmetries
	Drawing graphs on surfaces
	The notion of graph maps and faces
	Planar drawings

	Formalisation of mathematics
	Formalisations of graph theory
	Short outline of this thesis

	Mathematical Foundations
	Notation
	Homotopy levels
	Handy equivalences
	Finite types
	Cyclic types

	Graphs in Univalent Mathematics
	The type of graphs
	The category of graphs
	Subtypes and structures on graphs
	Finite graphs
	Walks and strongly connected graphs
	Graph families
	Cyclic graphs
	The identity type on graphs

	Graph Maps
	Symmetrisation of graphs
	Stars and locally finite graphs
	The type of combinatorial maps
	The type of faces
	The finiteness property
	The boundary of a face

	Examples of graph maps
	Generating graph maps

	Walks and Spherical Maps
	The type of walks
	Structural induction for walks
	A well-founded order for walks
	Walk splitting

	The type of quasi-simple walks
	The finiteness property

	Normal forms for walks
	The notion of walk homotopy
	The type of spherical maps
	Discussion

	Planar Maps
	Planarity in graph theory
	A type of planar maps for a graph
	Planar extensions
	Path additions
	Planar synthesis of graphs
	Biconnected planar graphs

	Concluding Remarks
	Directions of further developments
	Formalisation

	Epilogue
	Computer Formalisation
	Proof assistants
	Agda notation
	Library
	Small excerpts from the library

	On Trees and Their Topological Realisation
	Introduction
	Computer formalisation in Cubical Agda
	Basic concepts
	The type of graphs
	The type of walks
	Rooted trees and subgraphs

	Enlarging rooted subtrees
	Oriented spanning trees

	Topological realisation of graphs
	Discussion

	Yet Another HIT for Graphs
	The 2-cell topological realisation of graphs
	Promoting walks to equalities
	Recursion principle
	Induction principle
	Eliminating into propositions
	Eliminating into sets

	Promoting walk homotopies to 2-paths

	Other Constructions

