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Abstract
In this work, we characterise in homotopy type theory the
type of rooted trees and oriented spanning trees, which are
the generalisation of the notions of a tree and spanning tree
for directed multigraphs. We state and prove the theorem
about the mere existence of oriented spanning trees for con-
nected graphs with a finite node set and a set of edges be-
tween any two nodes. In addition, we look at the topologi-
cal realisation for graphs, which in HoTT can be seen as a
coequalizer, the higher-inductive type that considers a topo-
logical space where the nodes are points and edges are paths
glued to their endpoints. In this view, a graph is connected
if its geometric realisation is a connected type. A tree is a
graph with no non-trivial loops, for which its topological
realisation is connected and contractible. Finally, a proof is
given to show that the realisation of rooted trees is a con-
nected and contractible type, as expected. We believe the
results here can help to study the fundamental group of a
graph, which requires computing a spanning tree. A formal-
isation accompanies most results in Agda using the Cubical
mode and the Cubical Agda library.
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1 Introduction
This paper is part of an ongoing effort to formalise some
concepts and results from Graph theory in Univalent math-
ematics. Here, in particular, we introduce the concept of
spanning trees, conditions for their mere existence and their
connection with the topological realisation of a graph in
Homotopy Type Theory. A spanning tree of a connected
undirected graph is a subgraph that is a tree and spans the
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graph; that is, it includes all the graph’s nodes [1]. Not every
graph has a spanning tree, at least in a constructive setting.
Only finite connected graphs have. Nevertheless, construct-
ing spanning trees plays a relevant role as an intermediate
step in computing free groups from graphs and several other
algorithms like pathfinding and network protocols. On the
former, we find Swan’s proof of the Nielsen–Schreier theo-
rem in HoTT. The development of Sections 4 and 4.1 is in-
spired by Lemma 4.16 [9, §4]. However, from the topologi-
cal point of view, Swan defines trees and spanning trees in
terms of the geometric realisation of a graph using coequal-
izers. Then, one could say our journey ends when Swan’s
work starts. Consequently, we focus on the combinatorial
aspects of graphs, constructing trees in a more familiar way
to graph theorists. Finally, we connect our constructions
with the topological view in Section 5.

Throughout the rest of the paper, we assume the reader
is familiar with our chosen mathematical foundation, ho-
motopy type theory. We follow a derived notation from
the HoTT Book [11] and one previous work [6, §2]. Ad-
ditionally, a few excerpts of the computer formalisation in
Agda [10] accompany most definitions and lemmas; how-
ever, many details are omitted. For the complete proofs, see
the Agda formalisation, available on the following website.

https://jonaprieto.github.io/synthetic-graph-
theory/cubical.

Outline. This paper is structured as follows. In Section 2,
we briefly comment on the chosen formalisation tool, Agda
and its Cubical mode. Section 3 provides a few basic defi-
nitions used throughout the rest of the paper. In Section 4,
we formally state lemmas to enlarge subtrees and prove the
mere existence of spanning trees for certain graphs. In Sec-
tion 5, we prove that the topological realisation of a rooted
tree, as introduced in Section 3, is connected and contractible.
Finally, the paper concludes with some remarks and future
work in Section 6.

2 Computer Formalisation
The formalisation of the mathematical content of this work
is carried out in Cubical Agda [12], a language extension
for Agda to support Cubical type theory. In contrast to Ho-
motopy type theory, Cubical Agda and other cubical type
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theories give computational meaning to Voevodsky’s Uni-
valence and other aspects like higher-inductive types. This
characteristic makes it possible to prove principles like func-
tion and propositional extensionality easily.

It is worth mentioning that our development could be car-
ried out in vanilla Agda with HoTT support. However, Cu-
bical Agda provides a more convenient way to formalise a
few proofs, as the results in Section 5. A distinguishing fea-
ture of Cubical Agda is its native support for a big family of
higher-inductive types (HITs), which adds judgmental com-
putation rules for all constructors. In Cubical Agda, it is
possible to define (dependent) functions on HITs by match-
ing all patterns, i.e., including point and path constructor
patterns. However, the same definitions for HITs and their
functions are genuinely rather tedious in Agda without the
Cubical Mode since it requires, for example, one to state a
set of postulates for its computational rules and elimination
principles; see Licata’s trick and the HoTT-Agda library. Al-
ternatively, in recent versions of Agda, it is possible to ex-
tend the capabilities of theAgda type-checker by adding cus-
tom rewriting rules. This feature can be used to alleviate the
lack of support for HITs in Agda without the Cubical Mode.

This document is an example of literate programming. The
Agda CLI can generate high-quality LATEX files based on a
mixture of textual content and Agda code. To start using
Cubical Agda, one needs to use the flag --cubical. The other
flag, --guardedness, is only necessary to type check the coin-
duction definition given at the end of Section 4.1. We have
also included imports to use the Cubical Agda library [5]
and one local module with a few small lemmas needed later.

{-# OPTIONS --cubical --guardedness #-}

open import Cubical.Core.Everything

open import Base

3 Basic Concepts
Let us start defining a few basic concepts needed for the rest
of this development.

3.1 The Type of Graphs
Definition 3.1 (Graph). A graph consists of a type of nodes
equipped with a binary type valued relation of edges.

Graph :≡ Σ (𝑁 :U) (𝑁 → 𝑁 → U). (3.1)

Here we define the type of graphs using a record type in
Agda for convenience.

record Graph : Type (𝓁-suc 𝓁) where

constructor graph

field

N : Type 𝓁

E : N → N → Type 𝓁

open Graph

3.2 The Type of Walks
On the other hand, the type of walks in a graph can be de-
fined as an indexed inductive data type, similarly to the poly-
morphic type for lists. Such an inductive type is sometimes
convenient in formalising results on walks [6] since it al-
lows us to define walk functions by pattern matching easily.
Unfortunately, patternmatching is not supported in Cubical
Agda for such inductive data types at the moment of writ-
ing. We, therefore, consider the following equivalent types
from where the former type is chosen for the convenience
of the lemmas stated in this document. In particular, walks
here grow by attaching edges at their ends, as in Lemma 4.3.
In what follows, we denote by𝑊 𝑛

𝐺 (𝑥,𝑦) the type of walks
from 𝑥 to 𝑦 of length 𝑛 in a graph 𝐺 .

1. Walks formed by backwards edge addition.

W : ℕ → N G → N G → Type 𝓁

W 0 x y = x ≡ y

W (suc n) a c = Σ[ b ∈ N G ] (W n a b) × (E G b c)

2. Walks formed by forward edge addition.

W' : ℕ → N G → N G → Type 𝓁

W' 0 x y = x ≡ y

W' (suc n) a c = Σ[ b ∈ N G ] (E G a b) × (W' n b c)

As typical in HoTT, once a type is defined, one would like
to characterise its identity type. One can prove that the
identity type for graphs coincides with the type of isomor-
phisms. In the case of walks, we compute the identity type
point-wise. However, since we are only interested in the
case where graphs consist of sets, the type of walks of such
graphs turns out to be a set, which follows from Lemma 3.2.

Lemma 3.2 (W-is-set). Let𝐺 be a graph such that the type of
nodes is a set and the family of edges consists of sets. Then, the
type of walks of length 𝑛 from 𝑥 to 𝑦 is a set, for any 𝑥,𝑦 : 𝑁𝐺

and 𝑛 : N.

A proof term for this lemma in Agda is the following.

module _ (V-is-set : isSet (N G))

(E-is-set : (x y : N G) → isSet (E G x y)) where

W-is-set : (n : ℕ) → (x y : N G) → isSet (W n x y)

W-is-set zero _ _ = isProp→isSet (V-is-set _ _)

W-is-set (suc n) _ _ = isOfHLevelΣ 2 V-is-set λ _ →

(isOfHLevel× 2 (W-is-set n _ _ ) (E-is-set _ _))

We often work with strongly connected graphs throughout
the following lemmas unless otherwise stated. Let us define
such a property as themere existence of a walk between any
pair of nodes.

Definition 3.3 (isGConnected). A graph 𝐺 is strongly con-
nected if the type in (3.2) is inhabited.

isGConnected(𝐺) :≡ Π (𝑥,𝑦:𝑁𝐺 ) ∥Σ (𝑛:N)𝑊
𝑛
𝐺 (𝑥,𝑦)∥ . (3.2)
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In Agda, the type above is defined as follows.
isGConnected : Graph → Type 𝓁

isGConnected G = (x y : N G) → ∥ Σ[ n ∈ ℕ ] W G n x y ∥

Lemma 3.4. Being connected for a graph is a proposition.

3.3 Rooted Trees and Subgraphs
Trees are usually defined as undirected graphs with a single
path between any pair of nodes. However, we prefer to use
a more suitable notion of a tree for working directly with
directed multigraphs. Therefore, we consider the class of
rooted trees, which are directed graphs with a single node
acting as the root of the tree and a single walk between any
pair of nodes.

The notion of trees for directed graphs can also be de-
fined in terms of zig-zags, which are walks formed by edges
of different possible orientations. In this view, a tree is
then a graph if the corresponding type of zig-zag walks is
contractible. Finally, it is worth mentioning that the defi-
nition of the type of undirected graphs and other derived
concepts, including trees and trails, can be found in Agda–
UniMath [8]. In this Agda library, an undirected graph con-
sists of a type 𝑉 of nodes and a family 𝐸 of types over the
unordered pairs of𝑉 . Lastly, an unordered pair of elements
in a type 𝐴 consists of a two-element type 𝑋 and a map of
type 𝑋 → 𝐴.
Let us now define the type of rooted trees in a directed

multigraph 𝐺 . We refer to rooted trees as trees in the rest
of this work unless otherwise stated.

Definition 3.5 (isTree). A graph 𝐺 is a tree if the type in
(3.3) is contractible. The node in the centre of contraction is
referred to as the root of the tree.

Σ (𝑟 :N𝐺 ) Π (𝑥 :N𝐺 ) isContr(Σ (𝑛:N)W𝑛
𝐺 (𝑟, 𝑥)) (3.3)

In Agda, the type of rooted trees is defined as follows.
isTree : Graph → Type 𝓁

isTree G = isContr(Σ[ r ∈ N G ] (∀ x → isContr(Σ[ n ∈ ℕ ] W G n r x)))

Lemma 3.6 (isProp-isTree). Being a tree is a proposition.

We need now to define the notions of subgraph and sub-
tree. Recall that we are interested in defining and construct-
ing spanning trees out of strongly connected graphs, which
are trees containing all nodes of the original graph. If the
graph is finite and strongly connected, such trees can be
obtained by traversing the graph using a depth-first search
or a breadth-first search (BFS)algorithm. For a more gen-
eral class of graphs, a principle of choice may be needed to
guide the search. In Section 4.1, we prove that a spanning
tree merely exists if the node set of the graph is a type in-
habited and the graph is strongly connected with a family
of discrete sets as the type of edges.

Definition 3.7 (Subgraph). A subgraph of 𝐺 is a graph 𝐻
with an embedding into𝐺 , denoted by 𝐻 ↩→ 𝐺 . The type of
subgraphs of 𝐺 is Subgraph(𝐺).
Subgraph(𝐻,𝐺) :≡ Σ ( (ℎ,𝑔) :Hom(𝐻,𝐺)) isEmbedding(ℎ)

× Π (𝑥,𝑦:N𝐻 ) , isEmbedding(𝑔(𝑥,𝑦)),
where Hom(𝐻,𝐺) is the type of graph homomorphisms

from 𝐻 to𝐺 and isEmbedding is the property that the func-
tion ap/cong is an equivalence, as defined in the HoTT Book.

Almost faithfully, we define in Agda the above structure
on graphs as follows.
module _ {𝓁 : Level} (G : Graph {𝓁}) where

record Subgraph (H : Graph {𝓁}) : Type 𝓁 where

field

h : N H → N G

g : (x y : N H) → E H x y → E G (h x) (h y)

h-is-emb : isEmbedding h

g-is-emb : (x y : N H) → isEmbedding (g x y)

Definition 3.8 (isSubtree). A (decidable) subtree of 𝐺 is a
tree and subgraph of𝐺 equippedwith amechanism for check-
ing whether a node in 𝐺 is in it or not.

record isSubtree (H : Graph {𝓁}) : Type 𝓁 where

constructor subtree

field

is-subgraph : Subgraph H

is-tree : isTree H

dec-fiber : (x : N G) → Dec (fiber (Subgraph.h is-subgraph) x)

4 Enlarging Subtrees
Let us develop a few lemmas about the notion of a subgraph
and subtree about how to construct larger subtrees out of
subgraphs. The main result of this section is Lemma 4.3,
which requires first to state the following crucial lemma.

Lemma 4.1 (∃-edgecut). Let𝐺 be a connected graph such that
its node set is partitioned into two disjoint nonempty types𝑉1
and𝑉2. Then, it merely exists an edge connecting a node of𝑉1
to some node of 𝑉2 and vice versa.

Proof. Since we want to prove a proposition, let us apply
the elimination principle of the propositional truncation to
the fact of 𝐺 being connected. One can obtain a function 𝑓 ,
which returns a walk connecting any two nodes of 𝐺 . Let
𝑣1, 𝑣2 be nodes in𝑉1 and𝑉2, respectively, and𝑤 be the walk
obtained by 𝑓 (𝑣1, 𝑣2).

Let us proceed by induction on the length of 𝑤 . We will
exhibit an edge in the walk 𝑤 that must have one node in
𝑉1 and the other node in 𝑉2, as illustrated in Figure 1. If the
walk has zero length, then there is nothing to prove since
such a case is impossible by construction. Then, we can as-
sume the induction hypothesis holds for a walk of length 𝑛.
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V1

V2

v1 v2G w

Figure 1. The walk𝑤 in Lemma 4.1’s proof.

Let 𝑝 · 𝑒 be a walk of length 𝑛 + 1 where 𝑝 is a walk from 𝑥
to 𝑦 and 𝑒 is an edge from 𝑦 to 𝑣2. Since the node set of𝐺 is
equivalent to 𝑉1 +𝑉2, the node 𝑦 is either in 𝑉1 or 𝑉2. If 𝑦 is
in𝑉1, the required edge is 𝑒 . Otherwise, we get the required
edge by induction on the walk 𝑝 . □

Figure 2. The term ∃-edgecut defined below is the Agda term
for the Lemma 4.1’s proof.
module EdgeCutLemma {𝓁 : Level} {V₁ V₂ : Type 𝓁}

(G : Graph {𝓁}) (G-is-connected : isGConnected G)

(e : N G ≃ V₁ + V₂)

(v₁ : V₁) (v₂ : V₂) where

∃-edgecut : ∥ Σ[ x ∈ V₁ ] Σ[ y ∈ V₂ ] E G (from-V₁ x) (from-V₂ y) ∥

∃-edgecut = trunc-elim isPropPropTrunc (λ {(n , w) → f v₁ v₂ n w}) w

where

isoN : Iso (N G) (V₁ + V₂)

isoN = equivToIso e

w : ∥ Σ[ n ∈ ℕ ] W G n (from-V₁ v₁) (from-V₂ v₂) ∥

w = G-is-connected _ _

f : (a : V₁) (b : V₂) (n : ℕ) → W G n (from-V₁ a) (from-V₂ b)

→ ∥ Σ[ x ∈ V₁ ] Σ[ y ∈ V₂ ] E G (from-V₁ x) (from-V₂ y) ∥

f _ _ zero w = ⊥-elim (inlinr-→-⊥ (isoInvInjective isoN _ _ w))

f v₁ v₂ (suc n) (b , w , ed)

with from-NG b | inspect from-NG b

... | inl x | [ from-NGb≡inlx ]

= ∣ x , v₂ , subst (λ o → E G o _) helper ed ∣

where

helper : b ≡ from-V₁ x

helper = sym (retEq e b) ∙ cong to-NG from-NGb≡inlx

... | inr x | [ from-NGb≡inrx ]

= f v₁ x n (subst (λ o → W G n _ o) helper w)

where

helper : b ≡ from-V₂ x

helper = sym (retEq e b) ∙ cong to-NG from-NGb≡inrx

Lemma 4.2 (decompose-image). Let 𝐴, 𝐵 : U and 𝑓 be an em-
bedding from 𝐴 to 𝐵 such that the type of fibers fib𝑓 (𝑥) is a
decidable set for any 𝑥 : 𝐵. Then, the following equivalence
holds.

𝐵 ≃ 𝐴 + Σ (𝑥 :𝐵)¬ fib𝑓 (𝑥),
where fib𝑓 (𝑏) :≡ Σ (𝑎:𝐴) 𝑓 (𝑎) = 𝑏.

Lemma 4.3 (∃-subtree). Let 𝐺 be a connected graph with a
discrete node set such that each type of edges E𝐺 (𝑥,𝑦) is a set
for any pair of nodes 𝑥,𝑦. If𝐻 is a subtree of𝐺 such that there
is a node 𝑢 in 𝐻 and a node 𝑣 in 𝐺 but not in 𝐻 , then there
merely exists a subtree of 𝐺 enlarging 𝐻 with one additional
node.

Proof. Since𝐻 is a subtree, then, there must be a pair (ℎ,𝑔) :
𝐻 ↩→ 𝐺 . We can decompose the set of nodes of𝐺 as in (4.1)
by applying Lemma 4.2 to the embedding ℎ and the fact that
the set of nodes of𝐻 is a discrete set. We write N𝐺\𝐻 for the
set Σ (𝑥 :N𝐻 ) fibℎ (𝑥).

N𝐺 ≃ N𝐻 + N𝐺\𝐻 . (4.1)
Let 𝑝 be of type ∥Σ (𝑥 :N𝐻 ) Σ (𝑦:N𝐺\𝐻 ) E𝐺 (𝑥,𝑦)∥, obtained by

applying Lemma 4.1 to the fact that 𝐺 is connected, and
the node set of 𝐺 is partitioned as the coproduct of two
nonempty sets. The sets N𝐻 and N𝐺\𝐻 are nonempty by
assumption. Now, since the goal of this proof is a proposi-
tion, by eliminating of the propositional truncation applied
to 𝑝 , we can assume that there is an edge 𝑒 from a node
in 𝐻 to some node in N𝐺\𝐻 . Finally, by Lemma 4.12, the
graph 𝐻 can be extended by adding to it the edge 𝑒 to get
the subgraph 𝐻 ∗ of 𝐺 , similarly as illustrated in Figure 4.
The definition of 𝐻 ∗ is given in Definition 4.4. The proof 𝐻 ∗

is a subtree of 𝐺 is given in Lemma 4.12. □

The remainder of this section is devoted to supporting
the construction of the extended subtree 𝐻 ∗ of 𝐺 , which is
crucial for the proof of Lemma 4.3. The definition of 𝐻 ∗ is
given in Definition 4.4. The proofs that𝐻 ∗ is a subgraph and
a subtree are given in Lemmas 4.6 and 4.12, respectively. We
assume below that 𝐻 is a subgraph of 𝐺 , defined by (ℎ,𝑔) :
𝐻 ↩→ 𝐺 . Additionally, there is a designated edge 𝑒 from 𝑥 in
𝐻 to𝑦 in𝐺 . The node 𝑦 is not in𝐻 , as illustrated in Figure 4.
As a matter of notation, the singleton graph formed by the
node 𝑥 with no edges is denoted by {𝑥}.

Definition 4.4. The graph obtained from adding to 𝐻 the
edge 𝑒 is referred as to 𝐻 ∗. Formally speaking, the set of
nodes N𝐻 ∗ is the set N𝐻 + {𝑦} and the family of edges in
𝐻 ∗ is defined below. Recall that the function ℎ, appearing
below in (4.2), is the embedding from N𝐻 to N𝐻 ∗ given by
the fact that 𝐻 is a subgraph of 𝐺 .

E𝐻 ∗ (𝑥,𝑦) :≡


E𝐻 (𝑎,𝑏) if 𝑥 ≡ inl(𝑎), 𝑦 ≡ inl(𝑏),
ℎ(𝑎) = ℎ(𝑥) if 𝑥 ≡ inl(𝑎), 𝑦 ≡ inr(𝑏),
0 otherwise.

(4.2)
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Figure 3. An excerpt of the Agda term for Lemma 4.3.
module _ (G : Graph {𝓁})

(G-is-connected : isGConnected G)

(_≟Node_ : (x y : N G) → Dec (x ≡ y))

(E-is-set : (x y : N G) → isSet (E G x y)) where

∃-subtree

: (H : Graph)

→ (H-subtree : isSubtree G H)

→ (u : N H) → (v : N G)

→ ¬ (fiber (Subgraph.h (isSubtree.is-subgraph H-subtree)) v)

→ ∥ Σ[ H* ∈ Graph ] isSubtree G H* × (N H* ≃ (N H + 𝟙)) ∥

∃-subtree H H-subtree u v v-not-in-H =

trunc-elim isPropPropTrunc helper ∃-edgecut

where

H-subgraph = isSubtree.is-subgraph H-subtree

h = Subgraph.h H-subgraph

h-is-emb = Subgraph.h-is-emb H-subgraph

h-has-dec-image = isSubtree.dec-fiber H-subtree

V₁ = N H

isoN : N G ≃ V₁ + V₂

isoN = decompose-image _ _ h h-is-emb h-has-dec-image

open EdgeCutLemma G G-is-connected

isoN u (v , v-not-in-H) hiding (E*)

helper : Σ[ x ∈ V₁ ] Σ[ y ∈ V₂ ] E G (from-V₁ x) (from-V₂ y) → _

helper (x , y , ed) = ∣ H* , H*-subtree , e' ∣

where

-- H* is the graph obtained by adding an edge to H.

-- H*-subtree is a term constructed in Lemma 4.5-4.16

x̂ ŷ

H

ê

H∗

Figure 4. The graph 𝐻 ∗, mentioned in Lemmas 4.5 to 4.12,
obtained by adding an edge 𝑒 to 𝐻 . The edge 𝑒 is given by
Lemma 4.1.

Lemma 4.5. Let 𝐻 ∗ be the graph defined in Definition 4.4.
The following properties hold for 𝑎, 𝑏 : N𝐻 and 𝑐 : N{𝑦̂ } .

1. The type E𝐻 ∗ (inl(𝑎), inr(𝑏)) is a proposition.
2. The type E𝐻 ∗ (inl(𝑥), inr(𝑐)) is contractible.
3. The type Σ (𝑎:N𝐻 )E𝐻 ∗ (inl(𝑎), inr(𝑦)) is contractible.

Lemma 4.6 (H*-subgraph). The graph 𝐻 ∗ is a subgraph of 𝐺 .

Proof. To show that 𝐻 ∗ is a subgraph of 𝐺 , it suffices to
provide an embedding ℎ∗ : N𝐻 ∗ → N𝐺 and a function
𝑔∗ : Π (𝑥,𝑦:𝑁𝐻 ) E𝐻 ∗ (𝑥,𝑦) → E𝐺 (ℎ(𝑥), ℎ(𝑦)) such that for all
𝑥,𝑦 : 𝑁𝐻 , the function 𝑔∗ (𝑥,𝑦) is an embedding.

Since 𝐻 is a subgraph of 𝐺 , let (ℎ,𝑔) : 𝐻 ↩→ 𝐺 , as stated
in Definition 3.7.

ℎ∗ (𝑥) :≡
{
ℎ(𝑎) if 𝑥 :≡ inl(𝑎) for 𝑎 : N𝐻 ,

𝑦 otherwise.
It is clear that ℎ∗ is an embedding, since when restricting
to 𝐻 , it is the embedding ℎ. Otherwise, it is a map from a
contractible domain, which is clearly an embedding.
Finally, let 𝑔∗ : Π (𝑎,𝑏:N𝐻∗ )E𝐻 ∗ (𝑎, 𝑏) → E𝐻 ∗ (ℎ∗ (𝑎), ℎ∗ (𝑏))

be the mapping on edges in 𝐻 ∗ defined as follows.

𝑔∗ (𝑥,𝑦, 𝑒) :≡


𝑔(𝑎, 𝑏, 𝑒) if 𝑥 ≡ inl(𝑎), 𝑦 ≡ inl(𝑏),
tr(apℎ (ℎ−1 (𝑒)), 𝑒) if 𝑥 ≡ inl(𝑎), 𝑦 ≡ inr(𝑏),

and 𝑒 : ℎ(𝑎) = ℎ(𝑥),
0 otherwise.

By definition, the function𝑔∗ restricted to𝐻 is the embed-
ding 𝑔. Otherwise, the next corresponding nontrivial case
is 𝑔∗ (inl(𝑎), inr(𝑏)). By Lemma 4.5-(1), it is possible to show
that any fiber of 𝑔∗ (inl(𝑎), inr(𝑏)) is a proposition, and it is
then an embedding. In any case, we conclude that 𝑔∗ (𝑥,𝑦)
is an embedding, from where the conclusion follows. □

To prove Lemmas 4.11 and 4.12, we need to show a few
intermediate results, which we now state. In Lemmas 4.7
to 4.9, let 𝑛 : N and 𝑎,𝑏 be two nodes in 𝐻 .
Lemma 4.7. The following equivalence holds.

𝑊 𝑛
𝐻 (𝑎, 𝑏) ≃𝑊𝐻 ∗ (inl(𝑎), inl(𝑏)) . (4.3)

Lemma 4.8. The following types are empty.
1. 𝑊 𝑛

𝐻 ∗ (𝑦, inl(𝑎)).
2. Π (𝑣:N𝐻 ) isContr(𝑊 𝑛

𝐻 ∗ (inl(𝑎), inl(𝑣))).
3. Σ (𝑛:N)𝑊

𝑛+1
𝐻 ∗ (𝑦,𝑦).

Lemma 4.9. The following types are contractible.
1. 𝑊 0

𝐻 ∗ (𝑦,𝑦).
2. Σ (𝑛:N)𝑊

𝑛
𝐻 ∗ (𝑦,𝑦).

Lemma 4.10. The type in (4.4) is empty.

Σ (𝑦:{𝑦̂ }) Π (𝑣:N𝐻∗ ) isContr
(
Σ (𝑛:N)𝑊

𝑛
𝐻 ∗ (inr(𝑦), 𝑣)

)
. (4.4)

Proof. It suffices to show that there is no walk from 𝑦 to
some node in 𝐻 . Let 𝑦 be a node in {𝑦} and 𝑣 be a node in
𝐻 ∗.

𝑃 (𝑦, 𝑣) :≡ isContr(Σ (𝑛:N)𝑊
𝑛
𝐻 ∗ (inr(𝑦), 𝑣)) .

Then,
Σ (𝑦:{𝑦̂ }) Π (𝑣:N𝐻∗ ) 𝑃 (𝑦, 𝑣)
≃ Π (𝑣:N𝐻∗ ) 𝑃 (𝑦, 𝑣)
≃ Π (𝑣:N𝐻 ) 𝑃 (𝑦, inl(𝑣)) × Π (𝑣:{𝑦̂ }) 𝑃 (𝑦, inr(𝑣))
≃ 0 × Π (𝑣:{𝑦̂ }) 𝑃 (𝑦, inr(𝑣))
≃ 0. □
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Lemma 4.11 (Bottleneck). Let𝐺 be a connected graph,𝐻 be
a subtree of 𝐺 with root r𝐻 . Then, there is a unique walk in
the graph 𝐻 ∗ from inl(r𝐻 ) to 𝑦.

Proof. It suffices to show that the following type is contractible.
Σ (𝑛:N)𝑊

𝑛
𝐻 ∗ (inl(r𝐻 ), 𝑦). (4.5)

Then,
Σ (𝑛:N)𝑊

𝑛
𝐻 ∗ (inl(r𝐻 ), 𝑦)

≃𝑊 0
𝐻 ∗ (r𝐻 , 𝑦) + Σ (𝑛:N)𝑊

𝑛+1
𝐻 ∗ (r𝐻 , 𝑦)

≃ 0 + Σ (𝑛:N)𝑊
𝑛+1
𝐻 ∗ (r𝐻 , 𝑦)

≃ Σ (𝑛:N)Σ (𝑣:N𝐻∗ )𝑊
𝑛
𝐻 ∗ (inl(r𝐻 ), 𝑣) × E𝐻 ∗ (𝑣,𝑦)

≃ Σ (𝑛:N)
( (
Σ (𝑣:N𝐻 )𝑊

𝑛
𝐻 ∗ (inl(r𝐻 ), inl(𝑣)) × E𝐻 ∗ (inl(𝑣), 𝑦)

)
+

(
Σ (𝑣:{𝑦̂ })𝑊

𝑛
𝐻 ∗ (inl(r𝐻 ), inr(𝑣)) × E𝐻 ∗ (inr(𝑣), 𝑦)

) )
≃ Σ (𝑛:N)

(
(Σ (𝑣:N𝐻 )𝑊

𝑛
𝐻 (r𝐻 , 𝑣) × E𝐻 ∗ (inl(𝑣), 𝑦)

+
(
𝑊 𝑛

𝐻 ∗ (inl(r𝐻 ), 𝑦) × 0
) )

≃ Σ (𝑣:N𝐻 )
(
Σ (𝑛:N)𝑊

𝑛
𝐻 (r𝐻 , 𝑣)

)
× E𝐻 ∗ (inl(𝑣), 𝑦)

≃ Σ (𝑣:N𝐻 ) 1 × E𝐻 ∗ (inl(𝑣), 𝑦)
≃ Σ (𝑣:N𝐻 ) E𝐻 ∗ (inl(𝑣), 𝑦)
≃ 1. □

Lemma 4.12 (H*-subtree). The graph 𝐻 ∗ is a subtree of 𝐺 .

Proof. To show that𝐻 ∗ is a subtree, the followingmust hold:
1. The graph 𝐻 ∗ is a connected subgraph of𝐺 , i.e., there

is an embedding from 𝐻 ∗ to𝐺 given as a pair of map-
pings (ℎ∗, 𝑔∗), as in Definition 3.7.

2. The type of fibers fibℎ∗ (𝑥) is a decidable set for any
node 𝑥 in 𝐺 .

3. The following type is contractible.
Σ (𝑟 :N𝐻∗) Π (𝑣:N𝐻∗ ) isContr

(
Σ (𝑛:N)𝑊

𝑛
𝐻 ∗ (𝑢, 𝑣)

)
. (4.7)

The first condition is satisfied by Lemma 4.6. Since 𝐻 is a
subgraph of 𝐺 , we have access to the embedding given by
(ℎ,𝑔) : 𝐻 ↩→ 𝐺 . Then, the second condition follows, since
the type in question is equivalent to the fibℎ (𝑏) + (𝑦 = 𝑏)
for any 𝑏 in 𝐺 , by the following calculation, and any equiv-
alence of types preserve any property.
fibℎ∗ (𝑏) :≡ Σ (𝑎:N𝐻∗ ) ℎ

∗ (𝑎) = 𝑏

≃
(
Σ (𝑎:N𝐻 ) ℎ

∗ (inl(𝑎)) = 𝑏
)
+ Σ (𝑎:{𝑦̂ }) ℎ

∗ (inr(𝑎)) = 𝑏

≃
(
Σ (𝑎:N𝐻 ) ℎ(𝑎) = 𝑏

)
+ (𝑦 = 𝑏)

≃ fibℎ (𝑏) + (𝑦 = 𝑏).
The mapping ℎ∗ has a decidable image inherited from ℎ,
since 𝐻 is a tree, and the nodes of 𝐻 form a discrete set.
Finally, for the third condition, we have the following calcu-
lation. For brevity, let 𝑃 be a shorthand for the type family
in (4.7).

Σ (𝑟 :N𝐻∗) Π (𝑣:N𝐻∗ ) 𝑃 (𝐻 ∗, 𝑟 , 𝑣)
≃ Σ (𝑟 :N𝐻 ) Π (𝑣:N𝐻∗ ) 𝑃 (𝐻 ∗, inl(𝑟 ), 𝑣)

+ Σ (𝑟 :{𝑦̂ }) Π (𝑣:N𝐻∗ ) 𝑃 (𝐻 ∗, inr(𝑟 ), 𝑣)
≃ Σ (𝑟 :N𝐻 ) Π (𝑣:N𝐻∗ ) 𝑃 (𝐻 ∗, inl(𝑟 ), 𝑣) + 0

≃ Σ (𝑟 :N𝐻 ) Π (𝑣:N𝐻∗ ) 𝑃 (𝐻 ∗, inl(𝑟 ), 𝑣)
≃ Σ (𝑟 :N𝐻 )

(
Π (𝑣:N𝐻 ) 𝑃 (𝐻 ∗, inl(𝑟 ), inl(𝑣))

× Π (𝑣:{𝑦̂ }) 𝑃 (𝐻 ∗, inl(𝑟 ), inr(𝑣))
)

≃ Σ (𝑟 :N𝐻 )
(
Π (𝑣:N𝐻 ) 𝑃 (𝐻, 𝑟, 𝑣) × 𝑃 (𝐻 ∗, inl(𝑟 ), 𝑦)

)
≃ Σ( (𝑟,!) :Σ (𝑎:N𝐻 ) Π (𝑣:N𝐻 ) 𝑃 (𝐻,𝑎,𝑣)) 𝑃 (𝐻

∗, inl(𝑟 ), 𝑦)
≃ 𝑃 (𝐻 ∗, inl(r𝐻 ), 𝑦)
≡ isContr

(
Σ (𝑛:N)𝑊

𝑛
𝐻 ∗ (inl(r𝐻 ), 𝑦)

)
≃ isContr(1)
≃ 1. □

4.1 Oriented Spanning Trees
In graph theory, any connected undirected graph has at least
one spanning tree. In our setting, we can prove that any
strongly connected and directed multigraph has at least one
oriented spanning tree.

Definition 4.13 (isSpannigTree). An oriented spanning tree
of 𝐺 is a subtree that contains all the vertices of 𝐺 .

record isSpannigTree (H : Graph) : Type 𝓁 where

open isSubtree; open Graph

field

is-subtree : isSubtree G H

h = Subgraph.h (is-subgraph is-subtree)

g = Subgraph.g (is-subgraph is-subtree)

field

cover-all-nodes : isEquiv h

We are ready now to prove the main result of this section.

Lemma 4.14. Let𝐺 be a nonempty strongly connected graph
such that the node set of𝐺 is finite and the family of edges of𝐺
consists of sets. Then there merely exists an oriented spanning
tree of 𝐺 .

Proof. Let 𝑛 be the cardinality of the node set of 𝐺 . We pro-
ceed by induction on 𝑛. If 𝑛 = 1, then the graph has only
one node, and its spanning tree is the same one-point graph
with no edges. Otherwise, let 𝑛 > 1. We state the induc-
tion hypothesis as the mere existence of a subtree of𝐺 with
𝑘 nodes where 𝑘 < 𝑛. Since the goal of the lemma is a
proposition, we can apply the elimination principle of the
truncation to the induction hypothesis to get a subtree of
𝐺 with 𝑛 − 1 nodes, namely, 𝐻𝑛−1. Finally, since there is a
missing node of 𝐺 not in 𝐻𝑛−1, we can apply Lemma 4.3 to
𝐺 and𝐻𝑛−1 to obtain the required spanning tree, a graph𝐻𝑛

including all the nodes of 𝐺 . □

The previous proof suggests that Lemma 4.14 can be gen-
eralized to the case where the node set of 𝐺 has a principle
of choice. One can construct a chain of subtrees, ordered
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by the subgraph relation, using a construction similar to
the argument in Lemma 4.14’s proof. Then, the spanning
tree of the infinite graph is the maximal element in such a
chain, assuming the axiom of choice, see Lemma 4.7 [9, §4].
However, we do not attempt to formalize this generalization
here.

On the other hand, one version of the Kőnig’s lemma
states that if an infinite graph is locally finite and connected,
then the graph contains a ray. A ray is a simple walk that
starts at one node and continues from it through infinitely
many nodes. It seems natural to consider a proof of this re-
sult using Lemma 4.1 and the axiom of choice. This direction
is, however, left for future work. Here we only give a first
proposal for the type of rays. A ray in the current setting
can be defined as an infinite walk starting at the node 𝑥 such
that the type of occurrences of 𝑥 in the walk is contractible.
We can define these definitions in Agda as follows.

record InfiniteWalk (x : N G) : Type 𝓁 where

coinductive

field

head : Σ[ y ∈ N G ] E G x y

tail : InfiniteWalk (fst head)

open InfiniteWalk

{-# TERMINATING #-}

_∈w_ : (x : N G) → {y : N G} → (w : InfiniteWalk y) → Type 𝓁

_∈w_ x {y} w = (x ≡ y) + (x ∈w tail w)

isRay : (x : N G) → InfiniteWalk x → Type 𝓁

isRay x w = isContr (x ∈w w)

5 Topological Realisation of Graphs
The one-cell topological realisation of a graph can be repre-
sented by the coequalizer of the corresponding source and
target functions. Every node in the graph is mapped to a
point in the space. Moreover, any edge in the graph gives
rise to a path in the space glued to the endpoints.

This topological point of view for representing graphs is
further described in type theory by Swan [9]. It is worth not-
ing that the type of graphs in this paper is equivalent to the
type of graphs in their setting, as the following equivalence
shows.

Graph : ≡ Σ (𝑁 : U) (𝑁 → 𝑁 → U)
≃ Σ (𝑁 : U) (𝑁 × 𝑁 → U)
≃ Σ (𝑁,𝐸 : U) (𝐸 → (𝑁 × 𝑁 ))
≃ Σ (𝑁,𝐸 : U) ((𝐸 → 𝑁 ) × (𝐸 → 𝑁 )) .

Therefore, one benefit of working in Univalent mathematics
is that one can transport their results to the setting of this
paper and vice versa. Now, back to Cubical Agda, let us de-
fine the topological realisation of a graph𝐺 as the following
higher inductive data type.

module realisation {𝓁 : Level} (G : Graph {𝓁}) where

data T¹ : Type 𝓁 where

n : N G → T¹

e : ∀ {a b} → E G a b → n a ≡ n b

To prove a few properties of this geometric realisation be-
low, we define two handy elimination principles into propo-
sitions.

elimProp

: {B : T¹ → Type 𝓁}

→ ((x : T¹) → isProp (B x))

→ ((a : N G) → B (n a))

→ (x : T¹) → B x

elimProp _ f (n a) = f a

elimProp B-fiber-prop f (e {a}{b} e i) =

isOfHLevel→isOfHLevelDep 1 B-fiber-prop (f a) (f b) (e e) i

For the particular case of relations, we obtain the following
elimination principle.

elimPropRel

: {R : T¹ → T¹ → Type 𝓁}

→ ((x y : T¹) → isProp (R x y))

→ ((a b : N G) → R (n a) (n b))

→ (x y : T¹) → R x y

elimPropRel Rprop f =

elimProp (λ x → isPropΠ (λ y → Rprop x y))

(λ x → elimProp (λ y → Rprop (n x) y) (f x))

The walks in the graph give rise to paths in the geometric
realisation, as shown in the following Agda code. As a con-
sequence, the connectedness of a graph implies the connect-
edness of its geometric realisation.

w : {n : ℕ} {a b : N G} → W G n a b → n a ≡ n b

w {zero} a=b = cong n a=b

w {suc _} (_ , w , e) = (w w) ∙ e e

The realisation of walks using the function w respects the
concatenation of walks. In particular, it respects backward
edge addition, as in the Agda code below.

comp-edge

: {a b c : N G} {n : ℕ}

→ (w : W G n a b) (e : E G b c)

→ w ((_ , w , e)) ≡ (w w) ∙ (e e)

comp-edge {n = zero} w e = reflc

comp-edge {n = suc n} (_ , w , e₁) e₂ =

cong (λ x → x ∙ (e e₂) ) (comp-edge w e₁)

Let us introduce the following notions to not clash with the
names of some definitions defined earlier.

Definition 5.1. A graph is topologically connected if its
geometric realisation is connected.
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isConnected : Type 𝓁 → Type 𝓁

isConnected A = (x y : A) → ∥ x ≡ y ∥

isTConnected : Graph → Type 𝓁

isTConnected G = isConnected (realisation.T¹ G)

Lemma 5.2. Being connected for the realisation of a graph is
a proposition.

isProp-isTConnected : (G : Graph) → isProp (isTConnected G)

isProp-isTConnected _ = isPropΠ λ _ → isPropΠ λ _ → isPropPropTrunc

Lemma 5.3. Being connected for a graph implies its geomet-
ric realisation is connected.

isGConnected-isTConnected

: (G : Graph) → isGConnected G → isTConnected G

isGConnected-isTConnected G G-is-connected =

elimPropRel (λ _ _ → isPropPropTrunc) helper

where

open realisation G

helper : (a b : N G) → ∥ n a ≡c n b ∥

helper a b = trunc-elim isPropPropTrunc

(λ {(_ , w) -> ∣ w w ∣})

(G-is-connected a b)

Definition 5.4. A graph is a topological tree if its geomet-
ric realisation is contractible.

isTopTree : Graph → Type 𝓁

isTopTree G = isContr (realisation.T¹ G)

Using this topological point of view for graphs, we can prove
that any tree, as in Definition 3.5 is topologically connected
and tree in a topological way. The converse is not true; see,
for example, the triangle graph, where an edge connects any
pair of nodes. The realisation of such a graph contains a non-
trivial loop and thus is not contractible.

Lemma 5.5. If the graph is tree then it is topologically con-
nected.

Proof. For this proof, we are only interested in what hap-
pens when we apply the geometric realisation on nodes and
how the nodes are glued. Since the graph is a tree, we have
access to its root node equipped with a walk to every other
node, see Definition 3.5. Finally, one can use the walks
given by the tree to connect the nodes in the geometric re-
alisation, as illustrated in Figure 5 and proved in Agda code
below. □

module _ {𝓁 : Level}(G : Graph {𝓁}) where

open realisation

open walk-concat G

•𝑟 •𝑎 n 𝑟 n𝑎

•𝑏 n𝑏

𝑝

𝑞

w𝑝

(w𝑞)−1 (w𝑞)−1 ·w𝑝

Figure 5. It is shown the walks and paths mentioned in
Lemma 5.5’s proof. The node 𝑟 on the left represents the root
of the given tree. The node 𝑎 is the node connected to 𝑟 by
the walk 𝑝 , and similarly, the node 𝑏 is the node connected
to 𝑟 by the walk 𝑞. Then, we can connect the realisation of
𝑎 and 𝑏 by the walk w(𝑞)−1 · w(𝑝).

isTree-isTConnected : isTree G → isConnected (T¹ G)

isTree-isTConnected ((r , unique-walk-from-r-to) , _) =

elimPropRel G ((λ _ _ → isPropPropTrunc)) helper

where

helper : (a b : N G) → ∥ n {G = G} a ≡c n b ∥

helper a b = ∣ (sym (w G (snd p))) ∙ w G (snd q) ∣

where

p : Σ[ n ∈ ℕ ] W G n r a

p = fst (unique-walk-from-r-to a)

q : Σ[ n ∈ ℕ ] W G n r b

q = fst (unique-walk-from-r-to b)

Lemma 5.6. If the graph is a tree and the topological reali-
sation is a set, then the graph is a topological tree.

isTree-isSet-isTopTree : isTree G → isSet (T¹ G) → isTopTree G

isTree-isSet-isTopTree

G-is-graph-tree@((r , unique-walk-from-r-to) , _)

T¹G-is-set = n r , λ y →

trunc-elim (T¹G-is-set (n r) y)

(λ nr=y → nr=y)

(isTree-isTConnected G-is-graph-tree (n r) y)

Finally, we can prove that a tree, in a combinatorial way, is
topologically a tree.

Lemma 5.7. Being a tree for a graph implies its realisation
is a contractible type.

Proof. Let𝐺 be a graph tree. Then, we must show that T(𝐺)
is a contractible type. To show that, let n(𝑟 ) be the centre of
contraction of T(𝐺), where 𝑟 is the root of𝐺 . Then, we must
construct a function that returns a path from n(𝑟 ) to 𝑎 for
any 𝑎 : T(𝐺). We do this by induction on the constructors of
T(𝐺). The first case is the point constructor n(𝑥) for 𝑥 : N𝐺 ,
for which we can just return the realisation of the unique
walk from 𝑟 to 𝑥 given by the proof that 𝐺 is a tree. The
second and last case is the path constructor case. Given a
path e(𝑒), where 𝑒 is an edge from 𝑎 to 𝑏 in 𝐺 , we must
construct a path from n(𝑟 ) to every point in the path e(𝑒).
Since 𝐺 is a tree, we have access to a unique walk from the
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root 𝑟 to the nodes 𝑎 and 𝑏, respectively. Let 𝑝 and 𝑞 be such
walks, as illustrated in Figure 6. Then, the required path can
be obtained considering the path w(𝑝) · e(𝑒).

•𝑟 •𝑎 •𝑏

n 𝑟 n𝑎 n𝑏

∃!𝑝

w𝑝

𝑒

e𝑒 𝑖

∃!𝑞

w𝑞

Figure 6. The construction of a path from n(𝑟 ) to any point
in the path e(𝑒).

However, for coherence, we must make sure that there is
a homotopy between the paths w(𝑝) · e(𝑒) and w(𝑞), which
is the right face of the cube as illustrated in Figure 7. The
back face is the whole square of deforming the path w(𝑝) to
w(𝑝) ·w(𝑞), which is precisely Lemma compPath-filler in the
Cubical Agda library. □

• •

• •

• •

• •

w𝑝 𝑗

e𝑒 𝑖

w𝑝 · e𝑒 𝑗

n 𝑟

n 𝑟 n 𝑟

n 𝑟

w𝑞 𝑗

n𝑏n𝑎

e𝑒 𝑖

w𝑝 𝑗

Figure 7. The constructed cube for Lemma 5.7’s proof.

6 Concluding Remarks
Here we present one short example of transferring some
concepts and results from graph theory in a classical setting
to Cubical type theory. As part of this process, we have
used a proof assistant to support this goal. Precisely, we
have characterised the notion of rooted trees to construct
oriented spanning trees for directedmultigraphs. These con-
cepts are the generalisation of the notion of a tree and span-
ning tree for undirected graphs, respectively. A proof is
given for the existence of an oriented rooted spanning tree
for any strongly connected graph with a finite node set and
a family of edges consisting of sets. To this end, we intro-
duce a few lemmas that suggest algorithms for constructing
spanning trees. Furthermore, we show that any rooted tree

Figure 8. An Agda term for Lemma 5.7.
isTree-isTopTree : isTree G → isTopTree G

isTree-isTopTree ((r , unique-walk-from-r-to) , _) =

n r , helper

where

walk = snd

helper : (x : T¹ G) → n r ≡c x

helper (n x) = w G (walk (fst (unique-walk-from-r-to x)))

helper (e {a}{b} e i) j

= hcomp (λ k → λ { (i = i0) → wp j

; (i = i1) → wp·ee≡wq k j

; (j = i0) → reflc {x = n r} i

; (j = i1) → e e i

})

(compPath-filler wp (e e) i j)

where

p : Σ[ n ∈ ℕ ] W G n r a

p = fst (unique-walk-from-r-to a)

length-walk-p = fst p

q : Σ[ n ∈ ℕ ] W G n r b

q = fst (unique-walk-from-r-to b)

wp : n r ≡ n a

wp = w G (walk p)

wq : n r ≡ n b

wq = w G (walk q)

q-is-unique : q ≡c (suc (length-walk-p) , _ , walk p , e)

q-is-unique = snd (unique-walk-from-r-to b) _

wp·ee≡wq : (wp ∙ e e) ≡ wq

wp·ee≡wq = w G (walk p) ∙ e e

≡⟨ sym (comp-edge G (walk p) e) ⟩

w G ((_ , walk p , e))

≡⟨ cong (λ w → w G (walk w)) (sym q-is-unique) ⟩

w G (walk q) ∎

is a tree in the topological sense, inspired by Swan’s work on
defining free groups in HoTT and using higher—inductive
types to model the topological realisation of graphs [9]. The
results here can then be used to study free groups, particu-
larly the fundamental group of a graph. In this direction,
the realisation of a graph maps any of its spanning trees to
a point in the space, and the remaining edges not in such a
tree, become loops around the point. The loop edges then
correspond to the elements of the group associated with the
graph, sometimes called the fundamental group. We left this
investigation for future work.
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Most results here are formalised in Agda [10]. Except
for proofs in Section 5, we conjecture it is only required in-
tensional Martin–Löf type theory equipped with universes,
function extensionality, and propositional truncation. To
ease theworkwith higher–inductive types, especially in Sec-
tion 5, we used the Cubical mode [12] in Agda and the Cu-
bical Agda library [5]. Nevertheless, the type theory as pre-
sented in the HoTT Book [11] suffices to prove the results
in this appendix.

Even when graph theory has been formalised before in
type theory with proof-assistants, as the formalisation of
the 4CT in Coq [2], there are still a few works in homotopy
type theory [3, 4, 6]. As far as we know, the proofs and some
types given here are original in this context. We believe this
development contributes to the project of this thesis and the
formalisation of mathematical content in type theories alike.
We expect more contributions in this direction in the future.

A notable work close to ours is the recent work in Agda–
UniMath [8], an Agda library for Univalent mathematics.
Their authors formalised the notion of trees, rooted and quasi–
rooted trees, for the case of undirected graphs. In future, we
plan to transfer the results shown here to Agda–UniMath
and make them available to a broader audience. In addition,
ongoing work explores other topics, such as the two-cell re-
alisation of a graph, where 2-cells correspond to faces [7] of
a graph embedding.
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