
Investigations in Graph-theoretical
Constructions in Homotopy Type

Theory

Jonathan Prieto-Cubides

Thesis for the Degree of Philosophiae Doctor (PhD)

University of Bergen

2024

© Copyright Jonathan Prieto-Cubides

The material in this publication is covered by the provisions of the Copyright Act.

Year: 2024

Title: Investigations in Graph-theoretical Constructions in Homotopy Type Theory

Author: Jonathan Prieto-Cubides

Print: Skipnes Kommunikasjon / University of Bergen

Scientific Environment

This thesis, a product of the Department of Informatics at the University of Bergen within

the ICT Research School, was supervised by Håkon Gylterud and co-supervised by Marc

Bezem.

Abstract

This thesis presents a constructive and proof-relevant development of graph theory con-

cepts within Homotopy Type Theory (HoTT). HoTT, an extension of Martin-Löf’s intu-

itionistic type theory, incorporates novel features like Voevodsky’s Univalence principle

and higher inductive types. Its structuralist perspective aligns with standard mathemat-

ical practise by promoting isomorphisms to equalities - inhabitants of the corresponding

Martin-identity Löf’s type. This thesis primarily delves into the foundational mathemat-

ics of graphs, with less emphasis on their practical aspects. The core contributions are

definitions, lemmas, and proofs, which often arise from a synthesis of informal presenta-

tion and formalisation within a proof assistant. We specifically work within the category

of directed multigraphs in HoTT.

Inspired by the topological and combinatorial facets of graphs on surfaces, we for-

mulate an elementary characterisation of planar graphs. This is done without defining a

surface or directly working with real numbers, as found in some literature. Our approach

hinges on graph maps and faces for locally directed and connected multigraphs. A graph

qualifies as planar if it features a graph map and an outer face, allowing any walk in the

embedded graph to be merely walk-homotopic to another.

Among our key discoveries, we ascertain that this kind of planar maps constitutes a

homotopy set, which is finite when the graph is finite. Additionally, we introduce exten-

sions of planar maps to inductively generate examples of planar graphs. We also delve

into further concepts such as spanning trees and the representation of graphs as spaces

through graph maps.

2020 Mathematics Subject Classification: 03B38, 03B70, 68V20, 68V35, 03F65, 05C10

Keywords: constructive mathematics, type theory, mathematical formalisation, univa-

lent foundations, graphs, surfaces, planar graphs, trees

Abstrakt

Denne avhandlingen presenterer en konstruktiv og bevisrelevant utvikling av grafte-

orikonsepter innen Homotopi-typeteori (HoTT). HoTT er en utvidelse av Martin-Löfs

intuisjonistiske typeteori og inkorporerer nyskapende elementer som Voevodskys uni-

valensprinsipp og høyere induktive typer. Dette strukturalistiske perspektivet er mer

i tråd med standard matematisk praksis enn tidligere formelle systemer fordi i HoTT

forfremmes isomorfier til likheter — elementer i den korresponderende Martin-Löf iden-

titetstypen. Denne avhandlingen går hovedsakelig inn i de grunnleggende aspektene av

grafteori, med mindre vekt på de praktiske sidene. Hovedbidragene er definisjoner, lem-

maer og bevis, som oppstår fra en syntese av uformell presentasjon og formalisering ved

hjelp av en bevisassistent. Vi arbeider spesifikt i kategorien av rettedemultigrafer i HoTT.

Inspirert av topologiske og kombinatoriske aspekter av grafer på overflater, for-

mulerer vi en grunnleggende karakterisering av planare grafer. Dette gjøres uten å de-

finere en overflate eller direkte arbeide med reelle tall, som man finner i annen litter-

atur. Vår tilnærming er basert på grafkart og flater for lokalt rettede og sammenhengende

multigrafer. En graf kvalifiserer som plan hvis den inneholder et grafkart og en ytre flate,

slik at enhver sti i den underliggende grafen bare er turhomotopisk til en annen.

Blant våre viktigste funn, fastslår vi at denne typen planarkart utgjør en homotopisk

mengde, som er endelig når grafen er endelig. I tillegg introduserer vi utvidelser av pla-

narkart for å induktivt generere eksempler på planære grafer. Vi ser også på konsepter

som spenntrær og representasjon av grafer som rom gjennom grafkart.

▷ “What matters in life is not what happens to you but what you re-

member and how you remember it.”

Gabriel García Márquez

Acknowledgements

For those who inspire me and do not even know it.

I would like to express my gratitude to UiB and, in particular, to my mentors Håkon

Gylterud and Marc Bezem for providing me the opportunity to pursue my research with-

out any restrictions. I extend special thanks to Håkon for his assistance, motivation, in-

triguing questions, countless hours spent at the whiteboard, calls, and much more. Also,

I am deeply thankful to Marc for his guidance, encouragement to engage in conferences

and summer schools, personal advice, and the time he devoted to reviewing and provid-

ing feedback on my manuscripts. My sincere gratitude to both of you.

I was privileged to be part of the Programming Theory Group (PUT) at UiB. My grat-

itude extends to my friends and office mates in PUT: Benjamin Chetioui, Tam Thanh

Truong, Elisabeth Bonnevier, and Knut Anders Stokke. Stimulating discussions with

Mikhail Barash, Magne Haveraaen, Erlend Raa Vågset, Uwe Wolter, Daniel Hernandez,

and Michal Walicki were greatly appreciated.

I extend special thanks to UiB’s Department of Informatics’ administrative staff, par-

ticularly Ingrid Kyllingmark, for their consistent support. In Bergen, my gratitude goes

to Camila Pachecho and Diana Piedra for numerous cooking and chatting sessions, and

the Graham Linge family for making the lockdown more bearable during the pandemic.

This thesis discusses mathematical constructions in a recent and exciting research

field in type theory where many branches of mathematics and computer science inter-

sect. Throughout the process of working on this document, I had the privilege of at-

tending conferences and summer schools, meeting many people and gaining valuable

knowledge. Also, this document has been crafted using several software tools: Agda,

Emacs, Ipe, XƎLATEX, Mathematica, VsCode, q.uiver.app, and the Pragmata and Libertinus

fonts. Thanks to their developers, whose dedication has been instrumental in my work.

I express my gratitude to the following organisations for their support:

▷ COST organisation, for funding my attendance at the EU Types Summer School

2018 (Action CA15123),

▷ Department of Informatics, University of Bergen, for covering all expenses related

https://q.uiver.app/

v

to my participation in the 2019 Midlands Graduate School in Birmingham and CMU

HoTT Summer School in Pittsburgh, and

▷ Agda Dev Team, for inviting me to join the Agda meetings in 2017 and 2019.

I am deeply grateful to numerous talented members of the community who provided

direct and indirect inspiration and assistance. My thanks extend to Andreas Abel, An-

drej Bauer, Ulrik Buchholtz, Pierre Cagne, Jesper Cockx, Bjørn Dundas, Martin Escardo,

Favonia, Nicolai Kraus, Stefano Piceghello, Egbert Rijke, Jakob von Raumer, and Noam

Zeilberger, among many others. For those not mentioned here, please see the reference

section. Your dissemination of high-quality research and generous sharing of time and

knowledge are greatly appreciated.

I am immensely grateful to my family and friends around the world for their unwa-

vering encouragement and support throughout my journey. I want to express my deepest

love and appreciation to Polis and Agdis. I also want to extend my unconditional grati-

tude to my parents, Luz Mila Cubides and Rafael Prieto, as well as my sister, Lis, for their

support in pursuing my goals, even when it meant being away from them.

Gracias a todos.

To my beloved Polis and Agdis.

Contents

Scientific Environment i

Abstract ii

Acknowledgements iv

1 Introduction 1

1.1 Foundations of mathematics . 1

1.1.1 Set theories . 2

1.1.2 Constructive formal systems . 3

1.1.3 Type theories . 4

1.1.4 Martin-Löf type theories . 5

1.1.5 Typing rules . 5

1.1.6 Types, terms, and logic . 8

1.1.7 Formulas as types . 9

1.1.8 Dependent types . 11

1.1.9 Identity types . 14

1.1.10 Extensional and intensional type theories 16

1.1.11 The groupoid model and the homotopy interpretation 17

1.2 Exploring graph theory in univalent mathematics 19

1.2.1 Structure identity principle . 20

1.2.2 The type of graphs and their symmetries 21

1.2.3 Drawing graphs on surfaces . 23

1.2.4 The notion of graph maps and faces 24

1.2.5 Planar drawings . 26

1.3 Formalisation of mathematics . 29

1.4 Formalisation of graph-theoretical concepts 30

1.5 Short outline of this thesis . 31

viii CONTENTS

2 Mathematical Foundations 33

2.1 Notation . 34

2.2 Homotopy levels . 36

2.3 Handy equivalences . 38

2.4 Finite types . 39

2.5 Cyclic types . 42

3 Graphs in Univalent Mathematics 46

3.1 The type of graphs . 46

3.2 The category of graphs . 48

3.3 Subtypes and structures on graphs . 50

3.4 Finite graphs . 51

3.5 Walks and strongly connected graphs . 51

3.6 Graph families . 52

3.7 Cyclic graphs . 53

3.8 The identity type on graphs . 54

4 Graph Maps 56

4.1 Symmetrisation of graphs . 56

4.2 Stars and locally finite graphs . 58

4.3 The type of combinatorial maps . 59

4.4 The type of faces . 61

4.4.1 The finiteness property . 67

4.4.2 The boundary of a face . 71

4.5 Examples of graph maps . 73

4.5.1 Generating graph maps . 73

5 Walks and Spherical Maps 78

5.1 The type of walks . 78

5.1.1 Structural induction for walks . 79

5.1.2 A well-founded order for walks 80

5.1.3 Walk splitting . 81

5.2 The type of quasi-simple walks . 83

5.2.1 The finiteness property . 85

5.3 Normal forms for walks . 89

5.4 The notion of walk homotopy . 92

5.5 The type of spherical maps . 94

5.6 Discussion . 101

CONTENTS ix

6 Planar Maps 104

6.1 Planarity in graph theory . 104

6.2 A type of planar maps for a graph . 105

6.3 Planar extensions . 108

6.3.1 Path additions . 108

6.3.2 Planar synthesis of graphs . 116

6.3.3 Biconnected planar graphs . 118

7 Concluding Remarks and Future Work 121

7.1 Directions of further developments . 123

7.2 Formalisation . 126

Epilogue 127

A Computer Formalisation in Agda 130

A.1 Proof assistants . 130

A.2 Agda notation . 131

A.3 Library . 133

A.4 Short excerpts from the library . 135

Appendices

B On Trees and Their Topological Realisation 148

B.1 Introduction . 148

B.2 Computer formalisation in Cubical Agda 149

B.3 Basic concepts . 149

B.3.1 The type of graphs . 149

B.3.2 The type of walks . 150

B.3.3 Rooted trees and subgraphs . 151

B.4 Enlarging rooted subtrees . 153

B.4.1 Oriented spanning trees . 160

B.5 Topological realisation of graphs . 162

B.6 Discussion . 166

C Yet Another HIT for Graphs 169

C.1 The 2-cell topological realisation of graphs 171

C.1.1 Promoting walks to equalities . 171

C.1.2 Recursion principle . 172

C.1.3 Induction principle . 173

C.1.4 Eliminating into propositions . 176

x CONTENTS

C.1.5 Eliminating into sets . 177

C.2 Promoting walk homotopies to 2-paths 178

D Other Constructions 181

1
Introduction

This introduction succinctly presents the mathematical foundation pertinent to this the-

sis, supplemented with relevant historical context and examples. It concludes with an

overview of the thesis structure.

1.1 Foundations of mathematics

Mathematics can be seen as the general study of structures such as the symmetry of ob-

jects in geometry, algebra, and category theory (Reck and Schiemer 2020). These objects

may include numbers, sets, groups, graphs, topological spaces, and more.

The study of all mathematical objects is fundamentally built upon certain entities,

often overlooked —the primitive concepts. These are not defined by other mathematical

objects, but rather provided by themathematical foundation in use. Examples include the

concept of a set in set theories and the concept of a type in type theories.

The choice of a suitable foundation depends on the nature of the objects studied

and their research goals. Over the past century, a variety of formalism proposals have

emerged (Troelstra 2011). Set theories, having attracted more attention, contrast with

type theories. The choice of Homotopy type theory (HoTT) for this thesis is motivated

by its unique features not present in set theoretic foundations, particularly, due to its in-

herently structuralist foundational language for mathematics, and the way it integrates

logic internally.

2 Introduction

1.1.1 Set theories

Set theories, initially proposed by Cantor and Dedekind in the late 19th century and later

reformulated by mathematicians such as Zermelo and Fraenkel in the Zermelo–Fraenkel

set theory (ZF), are often considered the standard approaches for conductingmathematics

in conjunction with classical logic. In set theories, the fundamental concept is that of a

set. Each mathematical object is built upon this idea. A distinguishing feature of these

theories is the external logic, governed by a first-order theory. This system forms the

basis for creating propositions about sets using an equipped binary membership relation,

denoted (∈).
A proposition in this context is a statement with a truth value —either true or false.

The existence of objects within set theory and the validity of certain propositions via

proofs may hinge on axioms such as the Axiom of Choice (AC). Furthermore, principles

like the Law of Excluded Middle (LEM) and Reductio ad Absurdum (RAA) can also play

a role in the reasoning process of these proofs.

Therefore, in the foundations of set theory, we observe a clear distinction between

the deductive system and the objects under consideration.

The emergence of paradoxes in set theory, primarily stemming from the acceptance

of impredicative statements like Richard’s and Russell’s paradoxes (Bagaria 2021), ques-

tioned the consistency of mathematics. This period, bridging the late 19th and early 20th

century, was dubbed by mathematicians and philosophers as The Foundational Crisis and

marked a pivotal moment in the history of mathematics.

In the midst of these developments, Hilbert proposed an agenda in the early 20th cen-

tury, aiming to establish a solid foundation for mathematics through formalisation and

consistency. The endeavor, termed as Hilbert’s Program, aimed to axiomatize mathe-

matics, assert its completeness and consistency, and outline the scope of mathematical

knowledge. At the core of Hilbert’s Program lay his belief in the Entscheidungsproblem,

which assumes a universal procedure for determining whether a mathematical statement

is provable or not based on a given set of axioms.

Note 1.1. Hilbert’s Program fostered the development of Mathematical Logic, particularly
proof theory, and yielded significant results that contradicted his initial intuition about the

nature of mathematics. These encompass Gödel’s incompleteness theorems, which not only

refuted the assumption of the existence of a complete and consistent set of axioms for all

mathematics but also underscored the inherent limitations of formal systems, including, no-

tably, their incapacity to affirm their own consistency. Furthermore, these theorems indi-

rectly imply the non-existence of a universal algorithm that could conclusively determine

the truth or falsehood of all mathematical statements, thereby refuting the feasibility of a

comprehensive solution to the Entscheidungsproblem.

1.1 Foundations of mathematics 3

1.1.2 Constructive formal systems

Apart from classical treatments of set theory, such as ZF and von Neumann-Bernays-

Gödel, we encounter constructive formal systems such as the Constructive Zermelo–

Fraenkel set theory (CZF), and several type theories. These alternative systems not only

present distinct philosophical perspectives and mathematical constructs, such as the pri-

mary notion of type in type theories, but they also adopt different reasoning methodolo-

gies compared to traditional mathematics.

Constructive formal systems involve moving away from the reliance on AC and its

variations like Zorn’s Lemma. Instead of merely positing the existence of an object or

employing principles such as LEM and RAA to same effect, within a constructive system,

we seek for an actual, tangible method for constructing the object in question. This aligns

with the intuitionism philosophical perspective, where only objects that one can construct

in time are considered to exist.

Note 1.2. Brouwer’s philosophy of mathematics, known as intuitionism, is the reasoning

framework of intuisionistic mathematics, one kind of constructive mathematics, such as

Kleene’s, Markov’s and Bishop’s approach. In Brouwer’s perspective, intuition is the creative
device to do mathematics. Thus, his mathematics can not conform to classical principles,

such as the proof of the existence of an infinite object, or the use of oracles such as AC. Con-

structive mathematics, on the other hand, is one branch of mathematics where the idea of

proofs as objects, and the idea of constructive proofs as algorithms are taken seriously for the

way one does mathematics.

In the context of our study, the role of intuitionistic logic is noteworthy. Contrary to sets,

proofs are not perceived as mathematical objects. Moreover, logic is often viewed not as a

mathematical object itself, but as a meta-mathematical tool —the reasoning system upon

which mathematics relies, as observed in set theoretic foundations. Brouwer’s perspec-

tive diverges here as hinted in Note 1.2, considering, among other aspects, logic as an

integral part of mathematics. This stands in contrast to the formalist approach promoted

by Hilbert and his collaborators.

However, it was not until the 1960s that intuitionistic mathematics began to gain

traction, largely due to Bishop’s work. Bishop adopted a pragmatic approach, using con-

structive methods and reevaluating Brouwer’s and Heyting’s ideas, as documented in his

seminal book Foundations of Constructive Analysis (Bishop and Bridges 1985). Bishop’s

work on constructive mathematics later inspired the development of Martin-Löf’s type

theories (Petrakis 2019), subject of the following section.

Bishop’s mathematics is primarily guided by three fundamental principles, which we

strive to adhere to in this thesis (Troelstra 2011).

▷ Avoid concepts defined negatively; also avoid negative results.

4 Introduction

▷ Avoid defining irrelevant concepts in favour of more relevant ones.

▷ Avoid pseudo-generality. Introduce any assumption if it facilitates the theory and

the examples one is interested in satisfying the assumption.

1.1.3 Type theories

While no single definition unifies all type theories, a type theory can typically be charac-

terised as a finite collection of rules relating types and terms, expressed using a formal lan-

guage with semantics that justify the constructions and prevent inconsistencies (Baren-

dregt, Dekkers, and Statman 2013; Nordström, Petersson, and Smith 1990).

In type theories, type is a primitive concept and hence, is not explicitly defined. How-

ever, to provide some intuition, a type can be viewed as a collection of values sharing a

particular property, with terms being the elements that inhabit their type. This view al-

lows us to consider other concepts such as the empty type as a type devoid of any terms

and the unit type as the type with a single term. Other examples of types include the

type of naturals, booleans, and lists, as seen in programming languages, which contain

terms such as 123, true, and nil, respectively.

Type theories are not exclusively for non-classical reasoning (A. Bauer 2017). Clas-

sical mathematics can be incorporated simply by adding necessary axioms such as AC

into the context. This approach ensures users have explicit knowledge of the axioms

in use, thereby avoiding the implicit and occasionally arbitrary application common in

non-constructive set theories.

As hinted earlier, one attractive feature of type theories, is the internalisation of logic

within the theory. This stands in contrast to set theories, where we encounter two layers:

the deduction system and the objects —sets being the domains of discourse. In type the-

ories, we have a unified layer. This is achieved by the Curry–Howard correspondence,

discussed in Section 1.1.7.

Prominent type theories include Simple Typed Lambda Calculus (STLC) , Martin-Löf’s

Intuitionistic Type Theory (MLTT) (Martin-Löf 1975), Coquand’s and Huet’s Calculus of

Constructions (CoC) (Coquand and Huet 1988), and several others present in modern pro-

gramming languages and notably in proof assistants like Agda (The Agda Development

Team 2023), Coq (The Coq Development Team 2021), and Lean (Moura, Kong, Avigad, et

al. 2015).

Here we focus on the application of HoTT for conducting constructive mathemat-

ics. HoTT extends MLTT with several additional features, some of which will discuss in

Chapter 2.

1.1 Foundations of mathematics 5

Note 1.3. Russell’s Ramified Type Theory (RTT) is a historical precursor to the type theo-

ries discussed above. While different in nature, it has influenced subsequent theories like

the Simply Theory of Types (Church 1940), see also Note 1.8. RTT was employed in Prin-
cipia Mathematica (PM), marking the first attempt at formalising mathematics within a set-

theoretic context using type theory and symbolic logic principles to avoid inconsistencies. In

RTT, mathematical objects are classified into types such as individuals, propositions, or 𝑛-ary
relations (Linsky and Irvine 2022). For a comprehensive historical account on constructive

mathematics, Troelstra’s investigation serves as an excellent reference (Troelstra 2011), and

for a detailed discussion on history of type theories prior HoTT, see (Kamareddine, Laan, and

Nederpelt 2005).

1.1.4 Martin-Löf type theories

Martin-Löf Type Theories (MLTTs) is a family of formal systems stemming from Martin-

Löf’s seminal work on intuitionistic type theories in the 1970s (Martin-Löf 1975), serving

as a foundation for constructive mathematics. MLTTs interweave terms and types via de-

pendent types, allowing types to depend on terms, thus forming type families. Moreover,

these types can be terms of other types, known as universes, denoted later by 𝒰 . These

constructs, along with other features like inductive types, not only endow MLTTs with

the expressiveness power to encode mathematical structures and other concepts, but also

facilitate the creation of new constructions, all while maintaining constructive reasoning

capabilities.

Modern constructive type theories have originated fromMLTTs, adopting or reformu-

lating the language and analysing concepts such as proposition, judgement, and equality.

MLTTs are formulated using rules that infer valid judgements, that take one of the fol-

lowing primitive forms.

▷ 𝐴 is a type denoted by 𝐴 ∶ U.

▷ 𝐴 and 𝐵 are equal types denoted by 𝐴 ≡ 𝐵.

▷ 𝑎 is of type 𝐴 denoted by 𝑎 ∶ 𝐴.

▷ 𝑎 and 𝑏 are equal terms of type 𝐴 denoted by 𝑎 ≡ 𝑏.

1.1.5 Typing rules

Typing rules in MLTTs are formulated to infer valid judgements, often presented in nat-

ural deduction style, as introduced by Gentzen (Gentzen 1964).

A typing context, denoted by a finite sequence of term-type pairs, is employed when

considering judgements, although sometimes omitted for brevity. Contexts can range

6 Introduction

from empty to containing multiple assumptions such as 𝑥 ∶ 𝐴 and 𝑦 ∶ 𝐵, symbolised by

𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵.
For instance, given an arbitrary context Γ, one could represent the four primitive

judgements introduced earlier as follows. The turnstile symbol (⊢) is used to indicate

that the judgement is established within the context Γ.
▷ Γ ⊢ 𝑎∶ 𝐴, read as 𝑎 is a well-formed term of type 𝐴 in Γ.
▷ Γ ⊢ 𝑎 ≡ 𝑏∶ 𝐴 read as 𝑎 and 𝑏 are equal terms of type 𝐴 in Γ.
Now to determine whether an arbitrary judgement is well-formed, we need to con-

sider the rules of the type theory in use. These rules are presented in natural deduction

style and share a common structure. Each rule consists of premises and conclusions, ac-

companied by a context. Premises are placed above the line, indicating implication, while

the conclusion is below it.

Consider, for example, the rule to state that if 𝑎 is of type 𝐴 in Γ, then 𝑎 remains of

type 𝐴 in the extended context Γ, 𝑦 ∶ 𝐵 for any type 𝐵; a rule called weakening. This rule

is presented as follows.

Γ ⊢ 𝑎∶ 𝐴
Γ, 𝑦 ∶ 𝐵 ⊢ 𝑎∶ 𝐴

Consider another example, the assume rule, also known as the declare rule. Given a

context containing a variable 𝑥 of type 𝐴, one can obtain 𝑥 ∶ 𝐴. The rule is represented

in the following way.

(… , 𝑥 ∶ 𝐴,⋯) ⊢ 𝑥 ∶ 𝐴
The nature of rules varies based on the specific type theory and its purpose. Some

rules guide the construction of new types and terms. Others, such as the weakening

rule or the declare rule above, are fundamental to the foundational principles, logic, and

operational semantics of the type theory.

However, in a typical presentation as for MLTT, we mostly encounter formation, in-

troduction, elimination, and computation rules. To illustrate how these rules work, we use

product type, denoted by 𝐴 × 𝐵. Here, the product type of 𝐴 and 𝐵 for pairs (𝑎, 𝑏) where

𝑎 ∶ 𝐴 and 𝑏 ∶ 𝐵. Assuming an ambient context for these rules, the context Γ and the

turnstile symbol are henceforth omitted.

Formation rules

Formation rules guide the construction of new types. These are formed from primitive

types, like the unit type, via type formers such as (co)products, Σ- and Π-types. The

formation rule for the product is given by:

𝐴 ∶ U 𝐵 ∶ U
𝐴 × 𝐵 ∶ U

1.1 Foundations of mathematics 7

Introduction rules

Introduction rules specify how to construct terms of a given type. With the product type,

we have the following introduction rule:

𝑎 ∶ 𝐴 𝑏 ∶ 𝐵
(𝑎, 𝑏) ∶ 𝐴 × 𝐵

Elimination and computational rules

Elimination rules dictate the use of types and terms, specifying functions on the type. For

the product type, there are two elimination rules. These rules allow us to take a pair of

elements with the goal of extracting either the first or the second element. We achieve

this introducing two functions, namely 𝜋1 and 𝜋2 that intend to project the parts of the

product.

𝑝 ∶ 𝐴 × 𝐵
𝜋1(𝑝) ∶ 𝐴

𝑝 ∶ 𝐴 × 𝐵
𝜋2(𝑝) ∶ 𝐵

The functions 𝜋1 and 𝜋2, previously introduced, are yet to be specified. We need

to define their behaviour under the elimination rules during term computation, which

involves introducing equalities that dictate how these functions reduce.

Consider a pair (𝑎, 𝑏) ∶ 𝐴 × 𝐵. Computation rules simplify term expressions such as

𝜋1((𝑎, 𝑏)) and 𝜋2((𝑎, 𝑏)) to 𝑎 and 𝑏, the first and second elements of the pair, respectively.

𝑎 ∶ 𝐴 𝑏 ∶ 𝐵
𝜋1(𝑎, 𝑏) ≡ 𝑎

𝑎 ∶ 𝐴 𝑏 ∶ 𝐵
𝜋2(𝑎, 𝑏) ≡ 𝑏

Remark 1.4. Types may possess multiple introduction rules, a single one, or none at all. For

instance, the empty type (0) lacks an introduction rule, while the unit type (1) has a single intro-

duction rule with one inhabitant denoted by ⋆.

⋆ ∶ 1

The natural numbers type, denoted by N, is an example of a type with multiple introduction

rules. A natural number is either the term zero or a term derived from the function suc, which

maps a natural number to its successor. These cases form the introduction rules for natural num-

bers.

zero ∶ N
𝑛 ∶ N

suc(𝑛) ∶ N

Hence, natural numbers like one and two are represented as suc(zero) and suc(suc(zero)),
respectively. The same type is often presented inductively in Agda-like notation, as shown below.

data N ∶ U

zero ∶ N

suc ∶ N → N

8 Introduction

The non-dependent elimination rule for natural numbers is known as the recursion principle,
while the dependent elimination rule is the induction principle. Since the former can be seen as a

particular case of the latter, let only present the induction principle here.

𝑃 ∶ N → U 𝑏 ∶ 𝑃(zero) 𝑓 ∶ ∏(𝑛∶N) (𝑃(𝑛) → 𝑃(suc(𝑛)))
indN(𝑃, 𝑏, 𝑓) ∶ ∏(𝑛∶N) 𝑃(𝑛)

The term computation for the induction principle is given by the following two rules.

𝑃 ∶ N → U 𝑏 ∶ 𝑃(zero) 𝑓 ∶ ∏(𝑛∶N)(𝑃(𝑛) → 𝑃(suc(𝑛)))
indN(𝑃, 𝑏, 𝑓)(zero) ≡ 𝑏 ∶ 𝑃(zero)

𝑃 ∶ N → U 𝑏 ∶ 𝑃(zero) 𝑓 ∶ ∏(𝑛∶N) (𝑃(𝑛) → 𝑃(suc(𝑛)))
indN(𝑃, 𝑏, 𝑓)(suc(𝑛)) ≡ 𝑓 (𝑛)(indN(𝑃, 𝑏, 𝑓 , 𝑛)) ∶ 𝑃(suc(𝑛))

Example 1.5. The addition function on natural numbers, denoted by add, can be defined us-

ing the induction principle above. This function is defined by induction on the first argument.

If the first argument is zero, the result is the identity function on the second argument. Con-

versely, if it is not zero, the result is the successor of the result of the function add applied to

the predecessor of the first argument and the second argument.

add∶ N → N → N.
add ∶≡ indN(𝜆𝑛.N → N⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑃
, 𝜆𝑚. 𝑚⏟

𝑏
, 𝜆𝑛. 𝜆𝑔. 𝜆𝑚. suc(𝑔(𝑚))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓
).

1.1.6 Types, terms, and logic

The close relationship between types, terms, and logic emerged during the development

of Lambda Calculus. This connection traces back to work in the 1920s by L.E.J. Brouwer,

Heyting, and Kolmogorov, who focused on a computational view of intuitionistic logic

known as the BHK interpretation.

The BHK interpretation of formulas suggests that we consider proofs as algorithms.

Let us consider this interpretation on the structure of a formula, avoiding extra notation

for the sake of simplicity.

▷ A proof of 𝐴 ∧ 𝐵 is a pair of a proof of 𝐴 and a proof of 𝐵.

▷ A proof of 𝐴 ∨ 𝐵 is either a proof of 𝐴 or a proof of 𝐵.

▷ A proof of 𝐴 → 𝐵 is a function 𝑓 that transforms a proof of 𝐴 into a proof of 𝐵.

▷ A proof of ∃𝑥∈𝐷(𝐴(𝑥)) is a pair of an element 𝑥 and a proof that the 𝐴(𝑎) is true, in
some domain 𝐷.

1.1 Foundations of mathematics 9

▷ A proof of ∀𝑥∈𝐷(𝐴(𝑥)) is a function 𝑓 that converts an element 𝑥 into a proof of

𝐴𝑥 , in some domain 𝐷.

▷ The formula ¬𝐴 is defined as 𝐴 → ⊥, so a proof of it is a function 𝑓 that converts a

proof of 𝐴 into a proof of ⊥. There is no proof of ⊥.

However, at the time of the formulations the BHK interpretation left imprecise funda-

mental concepts: What constitutes a proof? Howdowe define a function or an algorithm?

Are these primary notions, or do they stem from a more fundamental concept?

Note 1.6. The term effectively calculable, associated with computable functions and algo-
rithms, was coined by Hilbert and Ackermann in the 1920s. It emerged from their quest to

identify a mechanism determining the provability of a mathematical statement, as referenced

in Note 1.1. In pursuit of a formal definition for effectively calculable, several computational

models were proposed. These encompass Gödel’s general recursive functions (1934), Turing’s
Turing machines (1936), and Church’s lambda definability in both Lambda Calculus (1936).

Church first introduced the Lambda Calculus in 1932 (Church 1932), featuring the now

ubiquitous 𝜆-symbol to denote anonymous functions (Barendregt 1997). This innovation

inspired numerous formal systems and notations, including those used in HoTT. In particu-

lar, Lambda Calculus was conceived as an improved method for encoding mathematics and

logic, enabling every object to be represented as a higher-order function with a single ar-

gument. For instance, a natural number 𝑛 could be represented as a function mapping any

other function to its 𝑛-fold composition. In other words, if we would like to represent 3
in Lambda Calculus, we can do so by defining the term 𝜆𝑓 .𝜆𝑥.𝑓 (𝑓 (𝑓 (𝑥))). True and false

values are defined as combinators 𝜆𝑥.𝜆𝑦.𝑥 and 𝜆𝑥.𝜆𝑦.𝑦 , respectively, and used to represent

logical connectives ᵃ. However, Rosser and Kleene identified inconsistencies in the original

untyped lambda calculus, specifically the existence of a fixed point for negation and the pres-

ence of nonterminating lambda expressions. This led to the development of STT, mentioned

in Note 1.8.

ᵃhttps://plato.stanford.edu/entries/lambda-calculus/#LogLaL

1.1.7 Formulas as types

The Curry–Howard Isomorphism, initially proposed by Curry and later supplemented by

Howard, offers a formal context to address the latter questions by establishing a for-

mal relationship between logical connectives (including quantifiers) and the unspecified

meanings for concepts suggested by the BHK interpretation, such as proof and func-

tion (Howard 1980).

Oversimplifying, Curry andHoward’s contribution connects two seemingly unrelated

domains¹, namely, Intuitionistic Logic and models of computations via Lambda Calculus

(see Note 1.6). Curry and Howard’s idea involves identifying formulas with types and

¹https://www.cs.ru.nl/~herman/slidesMLNL2009.pdf

https://plato.stanford.edu/entries/lambda-calculus/#LogLaL
https://www.cs.ru.nl/~herman/slidesMLNL2009.pdf

10 Introduction

proofs of those formulas as terms of their corresponding type. This relationship, is in

fact, a bijection/isomorphism, referred to as proposition-as-types, formulas-as-types, or

The Curry–Howard–de Bruijn’s correspondence.

Via this correspondence, we are able to unify the objects and the deductive system

in one internal framework, this goes in contrast with naive set theories where there are

separated in two layers, a first-order logic layer governing our reasoning and proposi-

tions, and the other layer comprising the objects, sets in this case. In type theory, sets

and propositions, all live inside the theory. Let us consider some examples to illustrate

this correspondence.

Via propositions-as-types view, the logical implication 𝐴 → 𝐵 for propositions 𝐴 and

𝐵 aligns to the function type 𝐴 → 𝐵 in type type theory. The formation of the logical

implication 𝐴 ⟹ 𝐵 from propositions 𝐴 and 𝐵 parallels the construction of a function

that transforms a proof of 𝐴 into a proof of 𝐵.
In the following, on the left, we have the implication introduction rule in propositional

logic, and on the right the introduction rule for the function type in type theory.

[𝐴 true]
⋮

𝐵 true
𝐴 ⟹ 𝐵 true

𝑥 ∶ 𝐴 ⊢ 𝑒 ∶ 𝐵
⊢ 𝜆𝑥.𝑒 ∶ 𝐴 → 𝐵

This interpretation casts the modus ponens rule in propositional logic as function ap-

plication. Specifically, given a function 𝑓 that transforms a proof of 𝐴 into a proof of 𝐵,
and a proof 𝑝 of 𝐴, 𝑓 (𝑝) is thereby a proof of 𝐵.

𝐴 ⟹ 𝐵 true 𝐴 true
𝐵 true

𝑓 ∶ 𝐴 → 𝐵 𝑝∶ 𝐴
𝑓 (𝑝)∶ 𝐵

Also, via propositions-as-types, the logical conjunction 𝐴 ∧ 𝐵 aligns to the product

type 𝐴 × 𝐵 in type theory.

𝐴 Prop 𝐵 Prop
𝐴 ∧ 𝐵 Prop 𝐴∶ U 𝐵∶ U

𝐴 × 𝐵∶ U

Now, the introduction rule for conjunction, stating that if 𝑝 is a proof of 𝐴 and 𝑞 is a

proof of 𝐵, then, together, 𝑝 and 𝑞 form a proof of 𝐴 ∧ 𝐵, which parallels the introduction

rule for the product type, as shown below. Specifically, if 𝑝 is a term of type 𝐴 and 𝑞 is

a term of type 𝐵, then (𝑝, 𝑞) is a term of type 𝐴 × 𝐵. Such parallelism extends to other

logical rules, see Section 1.1.8.

⋮ 𝑝𝐴 true
⋮ 𝑞𝐵 true ∧-intro(𝑝, 𝑞)𝐴 ∧ 𝐵 true

𝑝∶ 𝐴 𝑞∶ 𝐵
(𝑝, 𝑞)∶ 𝐴 × 𝐵

1.1 Foundations of mathematics 11

To address the correspondence with universal and existential quantifiers, we first dis-

cuss dependent types.

1.1.8 Dependent types

Bishop’s constructive approach and the Curry–Howard correspondence jointly inspired

the development of type theories featuring dependent types, which are types parametrised

by terms of other types. This feature enables a richer language than existing systems,

such as STLC, permitting the formulation of complex concepts and relations between the

mathematical objects in use in a coherent and intuitive manner.

In dependent type theories, the concept of a type family is particularly relevant. A

type family can be regarded as a collection of types indexed by another type. For instance,

a type family 𝐵 indexed by 𝐴 means that for every 𝑥 ∶ 𝐴, there is a type 𝐵(𝑥) that may

depend on 𝑥 . Additional type formers for dependent types include Σ-types and Π-types.

▷ The dependent sum Σ𝑥∶𝐴𝐵(𝑥) represents the type of pairs (𝑎, 𝑏) where 𝑎 ∶ 𝐴 and

𝑏 ∶ 𝐵(𝑥) for types 𝐴 and 𝐵 of 𝑥 . Therefore, the type of products is a particular case

of dependent sums, where 𝐵 is a constant type family. That is, 𝐴 × 𝐵 is equivalent

to Σ𝑥∶𝐴𝐵. We, therefore, use the same notation 𝜋1 and 𝜋2 for the projections of

dependent sums and products.

▷ The dependent product Π𝑥∶𝐴𝐵(𝑥) denotes the type of functions 𝑓 such that for

𝑥 ∶ 𝐴, one has 𝑓 (𝑥) ∶ 𝐵(𝑥). The type of functions can be also seen as a particular

case of dependent products, where 𝐵 is a constant type family. That is, 𝐴 → 𝐵 is

equivalent to Π𝑥∶𝐴𝐵.

For conciseness, we exclude further details such as inductive types and pattern-

matching discussions. Nordström et al’s book elaborates on these topics along with the

rules and semantics of MLTT (Martin-Löf 1975; Nordström, Petersson, and Smith 1990).

We can now present the correspondence of formulas-as-types, specifically the con-

nection between logical quantifiers and dependent types.

12 Introduction

Table 1.1: Formula-as-types correspondence.

Formula Type

𝐴 ∧ 𝐵 𝐴 × 𝐵
𝐴 ∨ 𝐵 𝐴 + 𝐵

𝐴 ⟹ 𝐵 𝐴 → 𝐵
⟂ 0

⊤ 1

∀𝑥 ∈ 𝐷(𝐴(𝑥)) Π𝑥∶𝐷𝐴(𝑥)
∃𝑥 ∈ 𝐷(𝐴(𝑥)) Σ𝑥∶𝐷𝐴(𝑥)

▷ The formula ∀𝑥 ∈ 𝐷(𝐴(𝑥)) represents a predicate logic statement: “for all 𝑥 in 𝐷,

𝐴(𝑥) is true”. Here, 𝐷 is a domain of discourse (a set of elements under consid-

eration), 𝑥 is an element in 𝐷, and 𝐴 is a predicate on 𝐷. Thus, 𝐴(𝑥) is a truth-

assignable statement about 𝑥 . This formula corresponds, via Curry–Howard, to the

type Π𝑥∶𝐷𝐴(𝑥), where 𝐷 is a type and 𝐴 is a type family indexed by 𝐷 such that

𝐴(𝑥) is a proposition for all 𝑥 .

▷ Similarly, ∃𝑥 ∈ 𝐷(𝐴(𝑥)) represents a predicate logic statement: “there exists an 𝑥 in

𝐷 for which 𝐴(𝑥) is true”. This formula corresponds to the type Σ𝑥∶𝐷𝐴(𝑥), where

again 𝐷 is a type and 𝐴 is a type family indexed by 𝐷. Proofs of ∃𝑥 ∈ 𝐷(𝐴(𝑥)), cor-
responds to pairs (𝑎, 𝑝) presenting the witness 𝑎 that makes the proposition holds.

Remark 1.7. A choice function 𝑓 , as in set theory, is defined on a collection 𝑋 of nonempty sets.

For each set 𝐴 in 𝑋 , 𝑓 (𝐴) is an element of 𝐴 (Suppes 1972, pp. 240.). The axiom of choice can

be alternatively formulated as the existence of a choice function for every set or the ability to

interchange quantifiers freely, as follows, where 𝐴 and 𝐵 are sets, and 𝐶 is a relation on 𝐴 and 𝐵.

∀𝑥 ∈ 𝐴(∃𝑦 ∈ 𝐵(𝐶(𝑥, 𝑦))) ⟹ ∃𝑓 ∈ 𝐵𝐴(∀𝑥 ∈ 𝐴(𝐶(𝑥, 𝑓 (𝑥)))).

Using propositions-as-types and dependent types inMLTT,we can both express and derive the

logical axiom of choice (ACL²). This derivation is referred to as the type-theoretic choice principle,
permitting us to alternate between Πs and Σs. Specifically, consider 𝐴 ∶ U, 𝐵 ∶ 𝐴 → U, and

𝐶 ∶ (Σ𝑥∶𝐴𝐵(𝑥)) → U.

∏
(𝑎∶𝐴)

∑
(𝑏∶𝐵(𝑎))

𝐶((𝑎, 𝑏)) → ∑
(𝑓 ∶∏(𝑥∶𝐴) 𝐵(𝑥))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

choice function

∏
(𝑎∶𝐴)

𝐶((𝑎, 𝑓 (𝑎))).

²https://plato.stanford.edu/entries/axiom-choice/choice-and-type-theory.html

https://plato.stanford.edu/entries/axiom-choice/choice-and-type-theory.html

1.1 Foundations of mathematics 13

The type above can be inhabited by defining the function choice as follows.

ΠΣ-comm ∶ ∏(𝑎∶𝐴) ∑(𝑏∶𝐵(𝑎)) 𝐶((𝑎, 𝑏)) → ∑(𝑓 ∶∏(𝑥∶𝐴) 𝐵(𝑥)) ∏(𝑎∶𝐴) 𝐶((𝑎, 𝑓 (𝑎))).
ΠΣ-comm(ℎ) ∶≡ (𝜆𝑎.𝜋1(ℎ(𝑎)), 𝜆𝑎.𝜋2(ℎ(𝑎))).

Indeed, the converse can also be derived, demonstrating the ability to alternate Πs and Σs.

ΣΠ-comm ∶ ∑(𝑓 ∶∏(𝑥∶𝐴) 𝐵(𝑥)) ∏(𝑎∶𝐴) 𝐶((𝑎, 𝑓 (𝑎))) → ∏(𝑎∶𝐴) ∑(𝑏∶𝐵(𝑎)) 𝐶((𝑎, 𝑏)).
ΣΠ-comm(ℎ, 𝑘) ∶≡ 𝜆𝑎.(ℎ(𝑎), 𝑘(𝑎)).

In HoTT, an extension of MLTT, we derive a formulation of the axiom of choice (Univa-

lent Foundations Program 2013, §3.8). This requires the introduction of a new type constructor,

specifically, the higher inductive type for the propositional truncation of a type, as detailed in

Definition 2.2.

Note 1.8. Dependent types, to our knowledge, were first described in logical theory not by

MLTT but by de Bruijn’s Automath project. This project implemented an extended version

of Lambda Calculus with dependent types such as Σ-types and Π-types (Bruijn 1983). Here

are some related historical works.

Church’s 1940 work, The Simple Theory of Types (STT), introduced a formal system for

representing objects as lambda expressions annotated with types (Church 1940). This pro-

vided a more general and consistent presentation of the type theory initially introduced in

Principia Mathematica, albeit with limited expressive power.

This laid the groundwork for advancements starting in the 1960s, which aimed to en-

hance the expressiveness of current proof systems and other systems grounded on Gentzen’s

Natural Deduction (Prawitz 1967; Schütte 1972). These enhancements included different

forms of quantifiers, such as type abstraction bound by 𝜆, type variables, and dependent

types. Notable contributions in this direction include Girard’s System F and System F𝜔 , An-

drews’s exploration of type theory with type variables, along with the previously cited de

Bruijn’s Automath project.

Example 1.9. Let 𝐴 be the type of vector elements, and Vec(𝑛) denote vectors of length 𝑛.
The dependent type Vec is a family with each member, Vec(𝑛), representing vectors of length

𝑛 ∶ N. This can be defined either inductively, as follows.

data Vec (𝐴 ∶ U) ∶ N → U

nil ∶ Vec(𝐴, zero)
cons ∶ Π𝑛∶ N 𝐴 → Vec(𝐴, 𝑛) → Vec(𝐴, suc(𝑛))

Alternatively, we can define this type through the function Vec ∶ N → U as shown in

(1.1–1). This function can be defined by case-analysis on the natural numbers, this is referred

to as pattern-matching on N. In this approach, we define the function Vec by a collection of

clauses, equations that define the function for specific cases of its argument.

14 Introduction

Vec∶ U → N → U.
Vec(𝐴, zero) ∶≡ ⊤.
Vec(𝐴, suc(𝑛)) ∶≡ 𝐴 × Vec(𝐴, 𝑛).

(1.1–1)

We could write this type even shorter. If 𝐴𝑛 denotes the type of 𝑛-tuples of elements of

𝐴, then we could have simply written Vec(𝐴, 𝑛) ∶≡ 𝐴𝑛. Similarly, the type of list of elements

of 𝐴, is defined as below.

List∶ U → U.
List(𝐴) ∶≡ Σ𝑛∶ NVec(𝐴, 𝑛).

From now on, we denote a list of elements of 𝐴 by [𝑎1, … , 𝑎𝑛] where 𝑎𝑖 ∶ 𝐴 for 𝑖 = 1, … , 𝑛.
For example, [1, 2, 3] is a list of natural numbers of length three.

1.1.9 Identity types

One of the main focuses in the study of MLTTs is the family of identity types. Specifi-

cally, these types give rise to what is known as propositional equality, which is an equiv-

alence relation among terms or types. Notably, propositional equality is distinct from

definitional equality, the latter being a built-in notion of equality within the type theory,

based primarily on computational or definitional attributes and rules. This distinction

between propositional and definitional equality is of considerable significance. Unlike

definitional equality, propositional equality allows for more complex and intricate ex-

pressions of equivalence, thereby expanding the range of results and equality relations

that can be represented within type theory.

For every type 𝐴, there is a family of identity types relating every pair of its terms.

The identity type, Id(𝐴, 𝑎, 𝑏), frequently denoted by 𝑎 =𝐴 𝑏, or simply 𝑎 = 𝑏 when an

ambient type is present, is referred to as the propositional equality between terms 𝑎 and

𝑏 of type 𝐴. At its core, the type 𝑎 =𝐴 𝑏 represents the type of proofs that establish the

equality between 𝑎 and 𝑏.

𝐴 ∶ U 𝑎 ∶ 𝐴 𝑏 ∶ 𝐴
𝑎 =𝐴 𝑏 ∶ U

Identity types are inhabited by a canonical term, which asserts that every object is

equal to itself in a canonical manner. We denote such a term by refl(𝐴, 𝑎) for the identity

type 𝑎 =𝐴 𝑎 in a rule we will put it as follow.

𝐴 ∶ U 𝑎 ∶ 𝐴
refl(𝐴, 𝑎) ∶ 𝑎 =𝐴 𝑎

1.1 Foundations of mathematics 15

Now that we have defined the identity type, we can define the path induction rule,

which is the dependent elimination rule for the identity type. Given a family 𝐶 of types

indexed by the identity type 𝑎 =𝐴 𝑏, we can define a function 𝑓 that takes in any 𝑝 ∶
𝑎 =𝐴 𝑏 and spits out a term 𝐶(𝑝), as a rule we will put it as follow.

𝐴 ∶ U 𝐶 ∶ ∏(𝑥,𝑦∶𝐴) (𝑥 =𝐴 𝑦) → U 𝑐 ∶ ∏(𝑥∶𝐴) 𝐶(𝑥, 𝑥, refl(𝐴, 𝑥))
ind=(𝐴, 𝐶, 𝑐) ∶ ∏(𝑥,𝑦∶𝐴) ∏(𝑝∶𝑥=𝐴𝑦) 𝐶(𝑥, 𝑦 , 𝑝)

The function ind= introduced above is also known as the 𝐽 -rule. The term computa-

tion for the path induction rule is given by the following rule.

𝐴 ∶ U 𝐶 ∶ ∏(𝑥,𝑦∶𝐴) (𝑥 =𝐴 𝑦) → U 𝑐 ∶ ∏(𝑥∶𝐴) 𝐶(𝑥, 𝑥, refl(𝐴, 𝑥))
ind=(𝐴, 𝐶, 𝑐)(𝑥, 𝑥, refl(𝐴, 𝑥)) ≡ 𝑐(𝑥) ∶ 𝐶(𝑥, 𝑥, refl(𝐴, 𝑥))

Example 1.10. The identity type forms an equivalence relation. It is reflexive by definition.

𝑎

refl(𝐴,𝑎)

The symmetry can be shown by proving that for any 𝑝 ∶ 𝑎 =𝐴 𝑏, there exists a term

sym(𝐴, 𝑎, 𝑏, 𝑝) ∶ 𝑏 =𝐴 𝑎 by path induction.

sym ∶ ∏(𝐴∶U) ∏(𝑥,𝑦∶𝐴) ∏(𝑝∶𝑥=𝐴𝑦) (𝑦 =𝐴 𝑥).
sym(𝐴, 𝑎, 𝑏, 𝑝) ∶≡ ind=(𝐴, 𝜆𝑥.𝜆𝑦.𝜆𝑝. (𝑦 =𝐴 𝑥), 𝜆𝑥.refl(𝐴, 𝑥))(𝑎, 𝑏, 𝑝).

𝑎 𝑏
sym(𝐴,𝑎,𝑏)

𝑝

The transitivity of the identity type follows by defining the following function trans. Then,

given 𝑝 ∶ 𝑎 =𝐴 𝑏 and 𝑞 ∶ 𝑏 =𝐴 𝑐, trans(𝐴, 𝑎, 𝑏, 𝑐, 𝑝, 𝑞) is of type 𝑎 =𝐴 𝑐

trans ∶ ∏(𝑋∶U) ∏(𝑥,𝑦∶𝑋) ∏(𝑝∶𝑥=𝑋 𝑦) ∏(𝑧∶𝑋) (𝑦 =𝑋 𝑧) → (𝑥 =𝑋 𝑧).
trans(𝐴, 𝑎, 𝑏, 𝑐, 𝑝, 𝑞) ∶≡ ind=(𝐴, 𝜆𝑥.𝜆𝑦.𝜆𝑝.∏(𝑧∶𝐴) (𝑦 =𝐴 𝑧) → (𝑥 =𝐴 𝑧), 𝜆𝑥.𝜆𝑦.𝜆𝑟 . 𝑟)(𝑎, 𝑏, 𝑝, 𝑐, 𝑞).

𝑏

𝑎 𝑐
𝑝 𝑞

trans(𝐴,𝑎,𝑏,𝑝,𝑐,𝑞)

As we will briefly discuss, the identity type is a common topic in the modern study

of type theories. It introduces numerous complexities and poses intriguing questions.

For example, consider two elements 𝑎, 𝑏 of a type 𝐴. Suppose we establish two proofs

of equality, 𝑝 and 𝑞, both of type 𝑎 =𝐴 𝑏. Why stop here? we can consider again the

16 Introduction

equalities between 𝑝 and 𝑞, that is, the identity type 𝑝 =𝑎=𝐴𝑏 𝑞. So, this iterative process

could continue indefinitely, resulting in a tower of identity types.

𝑎

⋯

𝑏

𝑞𝑝

𝑟

𝑠

Then, at what point do we reach a state/level in this recursion where we cannot longer

distinguish between proofs of equality? The answer lies within the structure of the iden-

tity type. For certain types, like the type of natural numbers, we already know when

this iteration halts, while for others, further investigation is required. In fact, in this doc-

ument, we propose one type for a particular mathematical object, and one significant

result is precisely said when this iteration halts for this particular type. We study the

structure of the identity type to understand the structure of the mathematical object we

are studying.

1.1.10 Extensional and intensional type theories

The structure of type of proofs establishing the equality between two terms is an essen-

tial distinction between dependent type theories. On one hand, we have extensional type

theories where one assumes or derives the reflection rule, also called Axiom K. This rule

identifies the notion of propositional equality and definitional equality (Nordström, Pe-

tersson, and Smith 1990, §3.9), which implies that any identity type is a proposition. In

other words, in extensional type theories, any identity type has at most one inhabitant,

and consequently, the type 𝑎 =𝐴 𝑎 is only inhabited by refl(𝐴, 𝑎), as in the following rule.

Any other proof of 𝑎 =𝐴 𝑎 is treated, by definition, as alias of refl(𝐴, 𝑎).
𝑎 ∶ 𝐴 𝑝 ∶ 𝑎 =𝐴 𝑎

𝑝 ≡ refl(𝐴, 𝑎)
On the other hand, a more liberal approach is the intensional version of the identity

type, in which such identity types may consist of more than one element. Understanding

the structural intricacies of the identity type plays a fundamental role in the development

of type theories and the way one conducts mathematics within these theories³.

Consider the type 𝑝 =𝑎=𝐴𝑏 𝑞, where 𝑝 and 𝑞 are two proofs of the equality between

terms 𝑎 and 𝑏 in type 𝐴. In certain type theories, the Uniqueness of Identity Proofs (UIP)

principle holds, stating that for any such identity type, there is essentially only one proof

of equality —that is, the identity type is a proposition, and therefore, it is referred to as

³http://www.cs.nott.ac.uk/~psztxa/martin-19.pdf

http://www.cs.nott.ac.uk/~psztxa/martin-19.pdf

1.1 Foundations of mathematics 17

proof-irrelevant. If UIP holds, then it does not matter which proof we have: all proofs of

a proposition are indistinguishable from each other. This stands in contrast with proof-

relevant type theories, such as HoTT, where different proofs of an identity may carry

different information and hence are not necessarily interchangeable. Whether UIP holds

or not is a crucial aspect that differentiates various type theories.

1.1.11 The groupoid model and the homotopy interpretation

In 1998, Hofmann and Streicher laid the groundwork for a fundamental shift in perspec-

tive on the structure of identity types (Hofmann and Streicher 1998). They proposed a

model for type theory wherein types were not mere sets, but groupoids. In the groupoid

model, the UIP principle does not hold. The key idea is to treat equality as something

that can have structure, possibly something more complex that just being a proposition.

In other words, it embraced a framework where different proofs of equality, or paths, be-

tween the same pair of points were allowed to carry unique information and were thus

not inherently indistinguishable.

Building on this radical departure, a significant evolution occurred about a decade

later, instigated by the work of Awodey, Warren, and Voevodsky. In this approach, types

are viewed as homotopy types—objects possessing the higher-dimensional structure of an

∞-groupoid (Awodey and Warren 2009). This so-called homotopy interpretation of type

theory positioned types as analogous to spaces, terms as points within these spaces, and

equalities as homotopies between points, mirroring path spaces in homotopy theory. This

brought novel theoretical frameworks like HoTT, with their core principles frequently

grounded in the notion of homotopy, as explained by Schulman in his view of a theory of

homotopy types⁴.

Initially, the apparent connection between homotopy theory and type theory may

strike one as surprising. However, this connection may not have been so unexpected

for Voevodsky. His interest in type theory could be considered a fortunate coincidence,

likely sparked by concerns about the practice and foundations of mathematics. Voevod-

sky became deeply engaged with type theory as a promising approach to improve the

way mathematics is conducted, aimed at producing better and more reliable proofs at a

high level of abstraction, thereby preventing errors in human reasoning.

Voevodsky’s substantial contributions to HoTT include key concepts like homotopy

equivalence (Definition 2.4) and the Univalence axiom. This axiom is particularly note-

worthy as it harmonises two fundamental ideas in type theory: equivalence and iden-

tity (Ahrens, North, Shulman, et al. 2021; Awodey 2018; Voevodsky 2010).

The Univalence axiom comes in the form of a term ua, acting as the inverse of the

function idToEquiv, which maps the identity type 𝐴 =U 𝐵 to an equivalence between 𝐴
⁴https://golem.ph.utexas.edu/category/2011/03/homotopy_type_theory_i.html.

https://golem.ph.utexas.edu/category/2011/03/homotopy_type_theory_i.html

18 Introduction

and 𝐵 for any types 𝐴 and 𝐵. Therefore, the Univalence axiom extends the principle of

extensionality to the universe of types, affirming that equivalent types are equal. This

implies such types inherently share identical structures and properties.

This principle not only facilitates the transfer of constructions among equivalent

types but also enhances the creation of new constructions and proofs. Moreover, it opti-

mises the research development process by eliminating the need to prove identical results

for different equivalent formulations.

𝐴 =U 𝐵 ≃ 𝐴 ≃ 𝐵
idToEquiv

ua

Remark 1.11. In HoTT, the assumption of Univalence implies function extensionality⁵. This ex-

tensionality principle, not provable in MLTT (but introduced as an axiom), states that two func-

tions equal pointwise are indeed equal. This establishes the following equivalence that we employ,

often without explicit mention, in the forthcoming chapters.

𝑓 =Π𝑥 ∶ 𝐴𝐵(𝑥) 𝑔 ≃ ∏𝑥∶𝐴 𝑓 (𝑥) =𝐵(𝑥) 𝑔(𝑥)
happly

funext

However, utilising the Univalence axiom does present unique challenges. One such

challenge, which also drives ongoing research, is the apparent lack of computational con-

tent, as in the extraction of algorithms from proofs and statements involving Univalence.

Noteworthy efforts to tackle this issue include the development of Cubical type theo-

ries (Bezem, Coquand, and Huber 2017; Cohen, Coquand, Huber, et al. 2017; Coquand,

Huber, and Mörtberg 2018). Almost in parallel, efforts have also been made to enhance

proof assistants such as Agda, Lean, and Coq. These enhancements address the need for

better tools to interact with Univalence and explore its computational implications (Vez-

zosi, Mörtberg, and Abel 2021).

We must conclude our brief journey here from the foundations of mathematics to the

specific type theory utilised in this document — a foundation that encompasses concepts

from both homotopy theory and type theory, as well as the various interpretations of

type as propositions, sets, and groupoids. We will now transition to more focused dis-

cussions pertinent to this thesis. However, for readers intrigued by the intricate details

of (homotopy) type theory, we highly recommend reviewing at least one of the following

works.

▷ Homotopy Type Theory: Univalent Foundations of Mathematics, referred here as The

HoTT book (Univalent Foundations Program 2013),

⁵See a proof in Agda that Univalence implies function extensionality: https://gist.github.com/jonaprieto/
bf9c151d4d7ea4f30fcd598366802e8e.

 https://gist.github.com/jonaprieto/bf9c151d4d7ea4f30fcd598366802e8e
 https://gist.github.com/jonaprieto/bf9c151d4d7ea4f30fcd598366802e8e

1.2 Exploring graph theory in univalent mathematics 19

▷ An Introduction to Univalent Foundations For Mathematicians (Grayson 2018),

▷ Introduction to Univalent Foundations of Mathematics with Agda (Escardó 2019),

▷ Introduction to Homotopy Type Theory⁶ (Rijke 2021), and

▷ The Symmetry Book (Bezem, Buchholtz, Cagne, et al. 2022).

Additionally, as the interest in HoTT continues to grow, we are fortunate to find a lot of

media resources and notes these days. Some notable examples include:

▷ Video lectures on the EPIT Summer School 2020⁷,

▷ the HoTTEST Summer School 2022⁸, and

▷ various Schools and Workshops on Univalent Mathematics⁹.

Additional material can be found at https://homotopytypetheory.org/.

1.2 Exploring graph theory in univalent mathematics

As HoTT emerges as a foundational framework for mathematics, numerous domains

and innovative constructions have been investigated. This includes examining algebraic

structures as in Universal Algebra, delving into (synthetic) homotopy theory, topology,

(higher) category theory, and more. However, there is still much to be explored, and the

potential for new discoveries is vast, and combinatorics is one of these domains. Thus, in

this work, we integrate graph theory concepts to enrich examples in the combinatorics

expressed in HoTT.

In this section, we aim to provide intuition for a few related constructions to a proof-

relevant notion of planar graphs in HoTT. These constructions are derived from trans-

forming abstract topological concepts into their concrete (combinatorial) counterparts,

potentially illuminating subtle nuances of this process.

Our study of graphs adopts a distinctive approach where, for example, graph isomor-

phisms are directly promoted as equalities, compared to traditional graph theory formal-

isation, as seen in the literature (Noschinski 2015). This uniqueness primarily stems from

the adoption of Voevodsky’s Univalence Axiom and the use of HoTT constructions, like

propositional truncation, for expressing the existence of mathematical objects.

The forthcoming subsections are outlined as follows: We first discuss the structure

identity principle and its relevance to our study in Section 1.2.1. This is followed by

⁶https://ncatlab.org/homotopytypetheory/files/hott-intro.pdf
⁷https://github.com/HoTT/EPIT-2020.
⁸https://uwo.ca/math/faculty/kapulkin/seminars/hottest_summer_school_2022.html.
⁹https://hott-uf.github.io/2022/.

https://homotopytypetheory.org/
https://ncatlab.org/homotopytypetheory/files/hott-intro.pdf
https://github.com/HoTT/EPIT-2020
https://uwo.ca/math/faculty/kapulkin/seminars/hottest_summer_school_2022.html
https://hott-uf.github.io/2022/

20 Introduction

an exploration of the type of graphs, their symmetries, and the appropriate notion of

graph equivalence in Section 1.2.2. The topological concept of graph embeddings in sur-

faces is then examined to define the combinatorial notion of graph maps and faces in

Sections 1.2.3 and 1.2.4, respectively. Finally, a characterisation of planar drawings of

graphs is hinted at Section 1.2.5.

1.2.1 Structure identity principle

Finding equalities in type theory as in mathematical practice is a one common theme.

Actually, one fundamental step in conducting mathematics in HoTT involves character-

ising identity types for a structure, such as groups, rings, and other algebraic structures.

This goal relates to the question: “what does it mean for two objects to be equal?” Specif-

ically, in HoTT, we require our identity types to adhere to the structure identity principle

(SIP). This principle states that equivalent structures are considered equal. As a result, a

unique canonical method exists to convert an equivalence between two structures into

an equality, which consequently implies that their structural properties remain invariant

under equivalence. In essence, SIP is a generalisation of two principles: the identity of

indiscernibles and the equivalence principle. The first suggests that objects with identical

properties are equal. The second, in broad terms, proposes that if two objects within a

domain are equivalent, they share all properties reciprocally (Ahrens and North 2019).

However, defining the most suitable notion of equivalence for a specific structure

in HoTT is not always straightforward and may require careful consideration. In fact,

this task often presents itself as a common theme and yet rewarding challenge. So if a

structure does not adhere to SIP, we likely have to reassess the definition of the structure

or redefine its concept of equivalence.

Choosing the right definition of equivalence strongly depends on both the context

and the symmetries that interest us, that is, how we perceive their sameness or similarity

depends on the characteristics we aim to preserve. These may include, for example, some

specific order or quantity of elements, or other attributes. In type theory, this translates

to the type in which we identify-of. Consequently, as we introduce more distinctions to

differentiate our objects, the definition of equivalence becomes more complex, breaking

more symmetries.

Example 1.12. Consider the type of cyclic orders, lists up to rotations —a concept in combi-

natorics used later to define graph maps (Section 2.5 and Chapter 4). In a cyclic order, the

elements can be arranged in a circle with a defined notion of next and previous. For example,

in the cyclic order [1, 2, 3], the next of 1 is 2, and the previous of 1 is 3, and so on.

1.2 Exploring graph theory in univalent mathematics 21

1

2 3

≃
1 2

3

≃
1

2

3

In determining the appropriate equivalence for cyclic orders, we consider several poten-

tial options. Consider the following alternative possible definitions of equivalence of two

cyclic orders.

1. The cyclic orders yield identical sets of elements.

2. The lists that underpin these cyclic orders exhibit pointwise equality.

3. The list elements are merely cyclic permutations of a common list.

Unsurprisingly, the initial two options violate the Structure Identity Principle. The first

option neglects to recognise the cyclic order, focusing solely on elements without considering

their interrelations and possibly repetetions of elements in the list. On the other hand, the

second option is overly restrictive, expecting a static list of elements and ignoring any cyclic

permutation.

The critical data in a cyclic order is precisely the circular arrangement of elements, a

feature only captured by the last option. Therefore, despite presentation differences, two

cyclic orders are considered equal if they correspond to identical lists up to a specific cyclic

permutation of their elements. For instance, [1, 2, 3] and [2, 3, 1] are equivalent cyclic orders,

whereas [1, 2, 3] and [1, 3, 2] are not.

1.2.2 The type of graphs and their symmetries

Say a graph is a term of type Graph, consisting of a set of elements termed nodes. Each

node pair 𝑎 and 𝑏 is associated with a set whose elements, referred to as edges connect

𝑎 and 𝑏. So, the term graph here refers to directed multigraphs. One can define such a

type¹⁰ in type theory as follows; N is a type of nodes, and a type family twice indexed by

N, represents the edges between two nodes.

Graph ∶≡ ∑
(N ∶ U)

(N → N → U).

What does it mean for two graphs to be equal? The notion of the equivalence be-

tween graphs is embodied by what it is called graph isomorphism, a well-established

concept defined as such: two graphs are considered equivalent if and only if there is a bi-

jection between their node sets that preserves adjacency. Denoting graph isomorphism¹¹

as (≅Graph), we show it adheres to SIP (see Theorem 3.7). This enables to convert any

graph isomorphism into an equality in Graph. Given graphs 𝐺 and 𝐻 , we can define es-

tablish a canonical function idtoiso from 𝐺 =Graph 𝐻 to 𝐺 ≅Graph 𝐻 and prove that it is

¹⁰The type of graphs in the rest of the document is the set-level version as defined in Definition 3.1.
¹¹See Equation (3.2–1).

22 Introduction

an equivalence.

𝐺 = 𝐻 ≃ 𝐺 ≅ 𝐻
idtoiso

isotoeq

Remark 1.13. Under graph isomorphism, we can notice that all graphs in Figure 1.1 are equiva-

lent. This follows because ourGraph type only encapsulates node connections, disregarding node

labels. If we aim to capture additional information like these labels or shapes on nodes and edges,

a more complex identity type needs to be considered.

We could, for instance, define as in (1.2–2), 𝐿-Graph as the type of labelled graphs where each

node is associated with a label of type 𝐿, and then, consider the labels part of the equality. This

would allow us to distinguish between graph (III) and the rest of the graphs in Figure 1.1.

𝐿-Graph ∶≡ ∑
(N ∶ U)

(N → N → U) × (N → 𝐿). (1.2–2)

(I) (II) (III)

1

2 3

4 5

1

3 2

5 4

a

b c

d e

Figure 1.1: Drawing (I) represents the house graph, featuring its only symmetry line de-
picted in dark green. This graph consists of five nodes and six edges: (1, 2), (1, 3), (2, 3),
(2, 4), (3, 5), and (4, 5). Drawing (II) demonstrates the reflection of the graph (I) along its
symmetry, the vertical axis. And, in (III) we showcase a node relabelling of drawing (I).

The symmetries of a graph

The symmetries of a graph correspond to its identity type. Defined precisely by the ways

itmirrors itself, these exact symmetries are the graph’s isomorphisms to itself, also known

as automorphisms. While the identity symmetry is always present, the challenge lies in

discovering additional symmetries. The symmetries of an object forms precisely a group,

called the symmetry group of an object. If we continue this road we can define the sym-

metries of a graph as a group, where the identity automorphism serves as the group’s

identity element and the composition of isomorphisms acts as the group operation. Fre-

quently, visual representation of graphs facilitates the identification of these symmetries.

For example, consider the symmetries of regular polygon as shown in Figure 1.2. These

correspond to the dihedral group 𝐷𝑛 of order 2𝑛, where 𝑛 represents the number of poly-

1.2 Exploring graph theory in univalent mathematics 23

gon sides. We list other similar examples in Section 3.8. Returning to our house graph

example, we identify two symmetries depicted in Figure 1.1. The identity symmetry be-

ing the “do-nothing” action, while the other is a reflection along the vertical axis. As

we look for symmetries in these visual representations, akin to geometry, we search for

transformations that leave the object —in this case, the graph structure— invariant. Such

operations include reflections and rotations.

Figure 1.2: For regular polygons, symmetry lines identify the automorphisms of their
underlying graphs. Each line corresponds to a reflection, rotation, or both, forming the
dihedral group 𝐷𝑛 of order 2𝑛. Here, 𝑛 denotes the number of polygon sides. These
transformations can be represented as permutations of the nodes. Take a square, a 4-
sided polygon, as an example. It has 8 symmetries: 4 rotations and 4 reflections, which
constitute the elements of 𝐷4, a group of order 2 ∗ 4 = 8. A counterclockwise rotation of,
say, 90 degrees, is represented by the permutation (1 2 3 4), while a vertical axis reflection
is represented by (1 4)(2 3). The numbers 1, 2, 3, and 4 are the square’s nodes listed in
counterclockwise order.

1.2.3 Drawing graphs on surfaces

Graphs can be depicted on various surfaces, including a two-dimensional plane, the 2-
sphere, and the torus. Despite their visual appeal andwidespread use in science, our focus

is not on aesthetic elements such as edge lengths, angles, curvatures, or node placements.

Our primary interest lies in graph drawings on closed, orientable surfaces where edges do

not intersect and are equivalent under isotopy, that is, continuous deformation without

crossing edges. While several surfaces could serve this purpose, we will mainly focus on

the 2-sphere, which subsequently allows us to address the two-dimensional plane.

24 Introduction

(IV) (V) (VI)

12 3

4 5 1

2 3

4 5

1

2 3

4 5

Figure 1.3: Different visual representations for the same graph map of the house graph
given in Example 1.14. Note how the cyclic order of edges around each node is preserved
consistently across all representations. The first two representations correspond to draw-
ings —the result of planar maps for the house graph, while the last representation does
not, as it features an edge crossing, so it is not an embedding.

In our exploration of graph drawings on surfaces, we must concentrate on the crucial

data conveyed by their visual representations. Note that each node in a drawing, as

illustrated in Example 1.14, displays a specific cyclic order of its connected edges. This

order for each node is encapsulated within a combinatorial data structure known as a

rotation system or graph map, widely employed in topological graph theory (Gross and

Tucker 1987). These graph maps abstract the unnecessary visual aspects of drawings,

focusing solely on the combinatorial structure. Consequently, we may depict the same

graph in various ways, each giving rise to a potentially non-unique graph map.

1.2.4 The notion of graph maps and faces

A graph map ℳ for a given graph 𝐺 is a mapping from the nodes of 𝐺 to their adjacent

edges, arranged in a specific cyclic order. These are lists up to rotation, each associated

with a node in 𝐺. Each order connects a node to its edges, as they appear on the surface.

This notion is defined in type theory as in Definition 4.8. It is important to note that a

graph map inherently defines a set of regions. As illustrated in Figure 1.4 for the case

of the 2-sphere, these regions, when glued together, reconstruct the original drawing

surface. Indeed, the surface’s nature is implicitly encoded within the graph map, from

which one can derive a property known as the surface’s genus, which is the number of

“holes” in the surface. For instance, the 2-sphere has a genus of 0, while the torus has a

genus of 1.

1.2 Exploring graph theory in univalent mathematics 25

(a) (b) (c)

Figure 1.4: Figure (b) illustrates the plane-embedded graph from Figure (a), complete
with color-coded faces derived from its representation. In Figure (c), these same faces are
disassembled and used to construct the sphere. The part of the sphere not visible in (c) is
the back of the sphere with purple color.

Let us now consider two examples: a graph map yielding the surface of a plane in Ex-

ample 1.14, and another producing the surface of a torus in Example 1.15.

Example 1.14. Consider the house graph in Figure 1.1. The graph map assigns each node

a counterclockwise cycle of adjacent nodes. For instance, the graph map ℳ at node 2, i.e.,
ℳ(2) ∶≡ [1, 4, 3], signifies that edge (2, 1) is succeeded by edge (2, 4), and then (2, 3).

Node Adjacent nodes Graph map

1 2, 3 [2, 3]
2 1, 3, 4 [1, 4, 3]
3 1, 2, 5 [1, 2, 5]
4 2, 5 [2, 5]
5 3, 4 [3, 4]

2

1 3

4
ℳ(2)

Example 1.15. Consider the complete bipartite graph 𝐾3,3, a forbidden minor used in Kura-

towski’s planar graphs characterisation —embeddings of graphs in the plane. This graph

comprises two sets of three nodes each: 0, 1, 2 and 3, 4, 5. Each node in one set connects to

every other node in the opposing set. Drawing this graph on a plane inevitably leads to edge

crossings. However, these issues disappear when drawn on a torus. We provide a graph map

for 𝐾3,3 and its torus embedding below.

Node Adjacent nodes Graph map

0 3, 4, 5 [3, 5, 4]
1 3, 4, 5 [3, 4, 5]
2 3, 4, 5 [4, 3, 5]
3 0, 1, 2 [2, 0, 1]
4 0, 1, 2 [1, 0, 2]
5 0, 1, 2 [1, 2, 0]

0

5

2

3

4

1

26 Introduction

1.2.5 Planar drawings

A planar graph map, in essence, guides us how to draw a graph on a two-dimensional

plane such that there are no edge crossings. Graphs that allow for these drawings are

known as planar graphs. However, in our study of planar graphs, we circumvent any

explicit reference of the two-dimensional plane (i.e., R2), thus avoiding the complexities¹²

of working with real numbers and defining the edge-crossing property in HoTT. Instead,

we simply concentrate on characterising the type of drawing that embeds graphs in the

2-sphere. Once the graph is embedded in the 2-sphere, the edge-crossing property comes

for free.

We use the idea of a 2-sphere here as it serves as a model for the plane. Recall that

the plane can be obtained by puncturing the 2-sphere at a point representing infinity.

Therefore, drawing a graph in the plane is equivalent to embedding this into the 2-sphere,
differentiated by the puncture point. Essential details, such as where to puncture the 2-
sphere or the position of the infinity point, determine the distinguished face of the graph

map, called the outer face.

Remark 1.16. The term 2-sphere in this context does not allude to the (higher inductive type), or

the type of the 2-sphere in HoTT, it is consistently discussed within the framework of a graph

map, serving as a plane model and the graph map’s target. We do, however, mention the possible

future work using the 2-sphere in HoTT in Section 7.1.

We introduce spherical maps, characterising graph maps that embed graphs in the 2-
sphere, identified as the unique closed orientable simply connected surface. This requires

us to introduce the notion of face of a map in HoTT and a property of simple connected-

ness for graph maps via walk homotopy. The intuition behind type of faces is discussed

next, while detailed description of the latter topic is found in Chapter 5.

In the context of topology, a face is recognised as a region homeomorphic to the disk.

The faces of graph map are obtained by extracting the embedded graph from the surface

via the graph map. When all of its regions qualify as faces, the graph map is termed

as cellular. The notion of spherical maps can be seen then as cellular maps subject to

additional conditions.

Combinatorially, in HoTT, we characterise a face for a graph 𝐺 based on a graph map

ℳ. These faces are typically enclosed by edges, except by those representing unbounded

regions, such as the outer face in planar maps. This definition involves a cyclic graph

𝐴, and a graph homomorphism 𝑓 from 𝐴 to an undirected variant of 𝐺. The morphism

𝑓 cannot map distinct edges in 𝐴 to the same edge in 𝐺. Furthermore, two consecutive

edges in 𝐴 must map to two consecutive edges in 𝐺, adhering to the order stipulated by

the graph map ℳ. The exact definition of a face is provided in Definition 4.14.

¹²A similar discussion can be found in the formalisation of 2-connected planar graphs in HOL (Yamamoto,
Nishizaki, Hagiya, et al. 1995).

1.2 Exploring graph theory in univalent mathematics 27

We must pay attention to which type we characterise the identity type of a planar

map because we might get a different notion of equivalence of graph maps that do not

correspond to isotopy.

The data of a planar drawing of a fixed graph 𝐺 consists of the choosing of a map and

the outer face. Their respective type families are given by:

▷ Map ∶ Graph → 𝒰 and

▷ Face ∶ ∏𝐺∶Graph (Map(𝐺) → 𝒰).

Then, a planar drawing, denoted as the pair (𝑚, 𝑜), consists of a graph map 𝑚 for a

graph 𝐺, possessing certain additional properties, and a distinguished face 𝑜.
Remark 1.17. In the context of a fixed graph 𝐺, we consider two planar drawings, (𝑚1, 𝑜1) and

(𝑚2, 𝑜2). These can be compared using one of the following types.

1. The identity type (𝑚1, 𝑜1) = (𝑚2, 𝑜2) in the type ∑𝑥∶Map(𝐺) Face(𝐺, 𝑥), which corresponds to

having labeled the graph.

2. The identity type (𝐺, 𝑚1, 𝑜1) = (𝐺, 𝑚2, 𝑜2) in the type ∑𝐻∶Graph ∑𝑥∶Map(𝐻) Face(𝐻 , 𝑥), allow-

ing us to disregard the labeling on 𝐺 for broader identification but fewer drawings.

Example 1.18. Consider planar drawings (IV) and (V) of the house graph, denoted in Fig-

ure 1.3 as 𝑝1 ∶≡ (𝑚, 𝑜2) and 𝑝2 ∶≡ (𝑚, 𝑜2). Despite sharing the same underlying graph map

as shown in Example 1.14, the outer faces differ; 𝑜1 is defined by edges 2-1, 1-3, 3-5, 5-4
and 4-2, whereas 𝑜2 is determined by edges 1-2, 2-3, and 3-5. Thus, we deduce 𝑝1 ≠ 𝑝2 in

∑𝑥∶Map(𝐺) Face(𝐺, 𝑥).

Example 1.19. More subtle is the case of planar drawings (I) and (III) in Figure 1.1 given

by graph maps 𝑚1 and 𝑚2. Initial observation may suggest they are equal, however, as per

Remark 1.17, our equivalence definition for planar drawings fixes the graph for the graph

map (Item 1), and thus differentiates outer faces; 𝑜1 ∶≡ 1-2-4-5-3 for (I), and 𝑜2 ∶≡ 𝑎-𝑏-𝑑-𝑒-𝑐
for (III).

If there were grounds to establish equivalence for these drawings, that is admitting node

relabeling, we would need to consider identity type in ∑𝐻∶Graph ∑𝑥∶Map(𝐻) Face(𝐻 , 𝑥) as per
Item 2 in Remark 1.17. This would allow us to show that (𝐺, 𝑚1, 𝑜1) = (𝐻 , 𝑚2, 𝑜2) under the
mapping 1 ↦ 𝑎, 2 ↦ 𝑏, 3 ↦ 𝑐, 4 ↦ 𝑑 , and 5 ↦ 𝑒.

N𝐺 𝑚1

1 [2, 3]
2 [1, 4, 3]
3 [1, 2, 5]
4 [2, 5]
5 [3, 4]

N𝐻 𝑚2

𝑎 [𝑏, 𝑐]
𝑏 [𝑎, 𝑐, 𝑑]
𝑐 [𝑎, 𝑒, 𝑏]
𝑑 [𝑏, 𝑒]
𝑒 [𝑐, 𝑑]

28 Introduction

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

f1

f2

f3

(G,m, f1)

(G,m, f2)

(G,m, f3)

(G,m)

Figure 1.5: The house graph 𝐺 features six unique planar drawings, split evenly between
the two graph maps (I) and (II) as shown in Figure 1.1. We illustrate one of these graph
maps, 𝑚 of 𝐺, as in (I), also cited in Example 1.14. The three distinct planar drawings
(𝐺, 𝑚, 𝑓𝑖) for𝑚 are presented. Each drawing corresponds to an individually selected outer
face: 𝑓1, 𝑓2, and 𝑓3. These faces, enclosed by a pentagon, triangle, and rectangle respec-
tively, are differentiated by distinct shading. The unbounded region of the plane, repre-
sented as a splashed area, denotes the outer face in each planar drawing.

To summarise, our characterisation of planarity in HoTT is founded on several key

insights. Although planarity of graphs is typically defined as an inherent property of

graphs, we consider it as a structure within the category of graphs, providing a notion

of planar direct multigraph with an identity principle. This perspective stems from the

intuitive idea that a proof establishing a graph’s planarity should correspond to a witness

graph map that embeds the graph into the plane, including a designated outer face as

previously mentioned and illustrated in Section 1.2.5. Additionally, the equivalence of

planar graph maps utilised in this context builds upon the concept of isotopy for graph

maps.

Nevertheless, in order to formulate a type of planar graph maps where the identity

type coincides with isotopy, careful consideration must be given to the definitions of

graph maps and planarity. The essential information required to differentiate between

drawings is found to be:

▷ The graph consisting of nodes and edges,

▷ the graph map (combinatorial map of the graph) into the sphere, and

▷ the outer face of the graph map.

1.3 Formalisation of mathematics 29

This thesis comprehensively explores the construction of types for graphs, graph

maps, faces, and ultimately, planar maps. Before giving an overview of the thesis, we

discuss another aspect of this work, the formalisation of mathematics aid by computer

proof assistants.

1.3 Formalisation of mathematics

Dependently typed theories, such as HoTT, allow for the expression of mathematical

concepts with an appropriate level of abstraction. By utilising type theory in the formal-

isation of mathematics, concepts can be articulated using a precise and detailed language

as in programming. In fact, MLTT is one foundation of many modern high-level gen-

eral purpose programming languages such as Agda (The Agda Development Team 2023),

Coq (The Coq Development Team 2021), Idris (Brady 2013), and the recent versions of

Lean (Moura, Kong, Avigad, et al. 2015).

This means, theories such as dependently type languages and higher other logics,

among other formalisms, can enable computers to mechanically verify the correctness of

the mathematical proofs more efficiently than traditional methods, where the correctness

of the proofs is validated by a group of experts. Same as on paper, these formal develop-

ments are susceptible of errors in their theoretical formulation, and possible in computer

implementation.

A proof assistant can be employed to take advantage of the rigour provided by this

mathematical approach. In essence, a proof assistant is a computer system that offers

multiple modes of operation. These modes can be used to create programs that meet

specific requirements, streamline the proof-writing process within a formal type system,

and ensure the correctness of mathematical proofs.

The formalisation of mathematics, especially through computer proof assistants sup-

porting dependent types, presents numerous advantages compared to the traditional

method of writing proofs in natural language. Let us list some advantages of formal-

ising mathematics from our perspective without adhering to a specific order.

First, reliability. By formalising mathematics as discussed in Appendix A, we obtain

machine-checked proofs. The mathematical correctness of these proofs is guaranteed by

the formal system and the correctness of the proof-checker implementation. Traditional

written proofs are prone to errors, including unintentional mistakes such as typos and

omissions.

Second, accountability/reusability. Formal developments provide independently veri-

fied and highly accessible mathematical resources compared to documents in prose, mak-

ing it easier to share, modify, and extend the mathematical content.

Third, reproducibility. Formal developments as discussed here possess transparency

30 Introduction

and reproducibility. To replicate the reasoning steps and the outcome, one requires access

to both the formalisation and the proof assistant’s software specifications.

Finally, employing proof assistants in mathematical writing not only provides a high

level of rigour and reliability but also fosters the discovery of new objects, including

enhanced proofs and theorems. The ability tomechanically verify the correctness of these

constructs increases the likelihood of revealing previously undiscovered relationships and

insights within the mathematical domain of interest (Avigad and Harrison 2014).

1.4 Formalisation of graph-theoretical concepts

In the context of formalising mathematics, there are numerous developments of graph

theory available in different type systems presented among the most popular proof as-

sistants are Agda, Coq, Isabelle/HOL, and Lean (Moura, Kong, Avigad, et al. 2015). The

type system of Agda is an extension of Martin-Löf’s intuitionistic type theory. On the

other hand, both Coq and Lean utilise the Calculus of Inductive Constructions for their

type systems. Isabelle/HOL, however, employs higher-order logic as its basis.

Notably, related to graph theory, significant projects and extensive libraries have been

developed in the proof assistants Coq (Doczkal and Pous 2020) and Isabelle/HOL (Noschin-

ski 2015). Among these, prominent projects are Gonthier’s well-known formal proof of

the Four-Colour theorem (FCT) in Coq (Gonthier 2008), Dufourd’s proof of the discrete

form of the Jordan Curve theorem also in Coq (J.-F. Dufourd and Puitg 2000), and the

proof of Kepler’s conjecture in HOL by Bauer et al. (Hales, Adams, G. Bauer, et al. 2017).

More recently, several other libraries have emerged, including the Coq Graph Library¹³,

the Isabelle Graph Theory Library (Noschinski 2014), the Lean Mathlib library, the com-

binatorics section¹⁴, and most recently, the Agda-UniMath library (Rijke et al. 2023).

Specifically to the formalisation of planarity of graphs different methods have been

proposed, each founded on mathematical foundations that differ from HoTT, leading to

the use of distinct mathematical objects than those discussed in this document. In this

work, we employ graph maps to define the concept of planarity. Alternative approaches

involve related constructions, including root maps defined in terms of permutations by

Dubois et al. (Dubois, Giorgetti, and Genestier 2016), and the notion of hypermaps used

by Dufourd et al., and Gonthier (J. F. Dufourd 2009; J.-F. Dufourd and Puitg 2000; Gonthier

2008), among others. The notion of hypermaps, an ad-hoc generalisation of combinato-

rial maps tailored for undirected finite graphs, serves as a vital component in formalising

graph embedding mathematics within theorem provers. This concept has been effec-

tively employed in computer-checked proofs of FCT (Doczkal 2021). Additionally, Du-

¹³https://github.com/coq-community/graph-theory.
¹⁴https://leanprover-community.github.io/mathlib-overview.html#combinatorics

https://github.com/coq-community/graph-theory
https://leanprover-community.github.io/mathlib-overview.html#combinatorics

1.5 Short outline of this thesis 31

fourd states and proves Euler’s polyhedral formula and the Jordan Curve theorem using

an inductive characterisation of hypermaps (J. F. Dufourd 2009; J.-F. Dufourd and Puitg

2000). Doczkal, using a more conventional representation of finite graphs, demonstrates

that every 𝐾3,3-free graph and 𝐾5-free graph without isolating nodes is planar. This is in

accordance with his concept of a plane map, which is founded on hypermaps. Doczkal’s

result corresponds to one direction in the statement of Wagner’s theorem (Doczkal 2021).

An alternative approach to address planarity in a type-theoretical waywithout combi-

natorial maps is through iterative procedures. For instance, Yamamoto et al. (Yamamoto,

Nishizaki, Hagiya, et al. 1995) demonstrated that every finite and biconnected planar

graph can be decomposed into a finite collection of cycle graphs, with each face being

the region enclosed by a closed walk, also referred to as a circuit (Gross and Anderson

2018, §5.2, §7.3). This construction defines an inductive data type that begins with a cy-

cle graph 𝐶𝑛 serving as the base case, and by repeatedly merging new instances of cycle

graphs, one gets the final planar graph. Bauer formalises a similar construction of pla-

nar graphs from a set of faces in Isabelle/HOL (G. Bauer and Nipkow 2002; G. J. Bauer

2005). The approach described in Section 6.3 for handling planar extension is related to

this iterative procedure.

1.5 Short outline of this thesis

In this work, we propose a new approach to graph planarity in HoTT. Our method aligns

with abstract mathematical intuition, unlike traditional analytic or geometric methods

that use the two-dimensional plane (i.e., R2) to describe this concept.

In our quest to address this topic, we begin with Chapter 2, laying out the mathe-

matical foundation, terminology, notation, and basic constructions. Those familiar with

HoTT might opt to skip this chapter, except for Section 2.5, which explains cycle types.

Next, we delve into the univalent category of directed multigraphs in Chapter 3, ex-

ploring graph homomorphisms, properties, structures, and specific examples and families

of graphs. Later, we focus on graph maps and the notion of faces of a map in Chapter 4.

In Section 5.4, we introduce the types of walks and quasi-simple walks, presenting a

normal form for walks, a normalisation procedure, and the notion of walk homotopy. The

content here is significant because it serves as the foundation for our characterisation of

planarity. This characterisation employs spherical maps, and its definition can be refined

by using the normal form of walks in graphs with discrete node sets.

Finally, our characterisation of graph planarity inHoTT is presented in Chapter 6 built

on top of the aforementioned concepts. For constructing examples of planar graphs, we

present an inductive method for extending planar graphs in Section 6.3.

We summarise our findings and outline future work in Chapter 7, supplemented by

Figure 1.6: The solid arrows indicate that the starting point is a prerequisite for the ending
point. The squiggly arrows indicate that the starting point influences the ending point.
Finally, the dashed arrows establish a relationship not formally established in the text.

Chapter 3
Graphs

Chapter 4
Graph Maps

Chapter 2
Mathematical
Foundation

Chapter 5
Walks and

Spherical Maps

Chapter 6
Planar Maps

Appendix B
On Trees and their

Topological Realisation

Appendix C
Yet another HIT

for Graphs

Appendix A
Computer
Verification

Chapter 7
Concluding Remarks

the constructions in Appendices B and C.

Suggested reading order for this document can be found in Figure 1.6.

Related publications

The work presented in this thesis is based on the following manuscripts and the Agda

formalisation presented in Appendix A.

Prieto-Cubides, Jonathan (2022). On Homotopy of Walks and Spherical Maps in Homotopy Type

Theory. In: Proceedings of the 11th ACM SIGPLAN International Conference on Certified

Programs and Proofs, pp. 338–351. url: https://doi.org/10.1145/3497775.3503671.

Prieto-Cubides, Jonathan and Håkon Robbestad Gylterud (2022). On Planarity of Graphs in Ho-

motopy Type Theory. Submitted, Mathematical Structures in Computer Science. url: https :
//arxiv.org/abs/2112.06633.

https://doi.org/10.1145/3497775.3503671
https://arxiv.org/abs/2112.06633
https://arxiv.org/abs/2112.06633

“All animals are equal, but some animals are more equal than

others.”

George Orwell, Animal Farm.

2
Mathematical Foundations

In this thesis, weworkwith homotopy type theory, aMartin-Löf intensional intuitionistic

type theory extended with the Univalence Axiom (Awodey 2018; Escardó 2018; Univa-

lent Foundations Program 2013), proposed originally by Voevodsky (Voevodsky 2010),

and some higher inductive types (HITs), such as propositional truncation. The presenta-

tion of our constructions is informal, in a similar style as in the HoTT Book (Univalent

Foundations Program 2013).

HoTT emphasises the role of the identity type as a path-type. The intended interpre-

tation is that elements, 𝑎, 𝑎′ ∶ 𝐴, are points and that a witness of an equality 𝑝 ∶ 𝑎 = 𝑎′ is
a path from 𝑎 to 𝑎′ in𝐴, as illustrated in Figure 2.1. Since the identity type is again a type,

we can iterate the process, which gives each type the structure of an∞-groupoid (Awodey

2012).

𝑎
𝑎′

𝐴

𝑝

𝑞

Figure 2.1: This figure shows a representation of the homotopy between two paths 𝑝, 𝑞
of the identity type 𝑎 = 𝑎′ in a type 𝐴.

This may at first seem of little relevance when working with finite combinatorics, as

34 Mathematical Foundations

one would expect only types with trivial path-types (sets) to show up in combinatorics.

However, we will see that types with nontrivial path types do arise naturally in combina-

torics, which should come as no surprise to anyone familiar with the role of groups and

groupoids in this field, such as Joyal’s work on combinatorial species (Baez, Hoffnung,

and Walker 2009-08; Yorgey 2014) —and that the paths in these types are often various

forms of permutations.

2.1 Notation

An informal type theoretical notation derived from the HoTT book (Univalent Founda-

tions Program 2013) and the formal system Agda (Norrell 2007) is used throughout this

paper. The following list summarises the most important conventions and notations used

in this paper.

▷ Definitions are introduced by (∶≡), while judgemental equalities use (≡).

▷ The type U is a univalent universe.

▷ The notation 𝐴 ∶ U indicates that 𝐴 is a type. A term 𝑎 of type 𝐴 is denoted by

𝑎 ∶ 𝐴 and 𝐴 is referred to as a type inhabited.

▷ The equality sign of the identity type of 𝐴 is denoted by (=𝐴). The constructor

of the identity type 𝑥 =𝐴 𝑥 is denoted by relf(𝑥) for 𝑥 ∶ 𝐴. If the type 𝐴 can be

inferred from the context, we simply write (=). The equalities between 𝑥, 𝑦 ∶ 𝐴 are

of type 𝑥 = 𝑦 .

▷ The type of non-dependent functions between 𝐴 and 𝐵 is denoted by 𝐴 → 𝐵.

▷ Type equivalences are denoted by (≃). The canonical map for types is the function

idToEquiv of type 𝐴 = 𝐵 → 𝐴 ≃ 𝐵 and its inverse function is called ua. Given the

equivalence 𝑒 ∶ 𝐴 ≃ 𝐵, the application, ua(𝑒) is denoted by 𝑒, while the underlying

function of the equivalence 𝑒 of type𝐴 → 𝐵 can be also denoted by 𝑒. Moreover, the

coercion along a path 𝑝 ∶ 𝐴 = 𝐵 is the function denoted by coe(𝑝) of type 𝐴 → 𝐵.

▷ The point-wise equality for functions (also known as homotopy) is denoted by (∼).
The function happly is of type 𝑓 = 𝑔 → 𝑓 ∼ 𝑔 and its inverse function is called

funext.

▷ The co-product of two types 𝐴 and 𝐵 is denoted by 𝐴 + 𝐵. The corresponding data

constructors are the functions inl ∶ 𝐴 → 𝐴 + 𝐵 and inr ∶ 𝐵 → 𝐴 + 𝐵.

▷ Dependent product types (Π-types) are denoted byΠ𝑥∶𝐴𝐵(𝑥) for a type𝐴 and a type

family 𝐵 ∶ 𝐴 → U, while dependent sum types (Σ-types) are denoted by Σ𝑥∶𝐴𝐵(𝑥).

2.1 Notation 35

� ����
�
���� �����

������ ��

Figure 2.2: The figure shows the representation of two points, 𝑏, and tr𝐵(𝑝, 𝑏), in the fibres
of a type family 𝐵 over the points 𝑥, 𝑥′ in 𝐴 ∶ U, respectively, where tr𝐵(𝑝, 𝑏) denotes
the transport of 𝑏 along the path 𝑝 ∶ 𝑥 = 𝑥′.

If 𝑥 ∶ 𝐴 and 𝑦 ∶ 𝐵(𝑥), then the pair (𝑥, 𝑦) is of type Σ𝑥∶𝐴𝐵(𝑥). The corresponding

projection functions for a pair are denoted by 𝜋1 and 𝜋2, so that 𝜋1(𝑥, 𝑦) ∶≡ 𝑥 and

𝜋2(𝑥, 𝑦) ∶≡ 𝑦 . If the type family 𝐵 over 𝐴 is constant, then we may denote the type

Σ𝑥∶𝐴𝐵(𝑥) by 𝐴 × 𝐵, and the Π𝑥∶𝐴𝐵(𝑥) by 𝐴 → 𝐵.

▷ The empty type and the unit type are denoted by 0 and 1, respectively.

▷ The type 𝑥 ≠ 𝑦 denotes the function type (𝑥 = 𝑦) → 0.

▷ Natural numbers are of type N. 0 ∶ N. The successor of 𝑛 ∶ N is denoted by 𝑆(𝑛) or
𝑛 + 1. The variable 𝑛 is of type N, unless stated otherwise.

▷ Given 𝑛 ∶ N, the standard type with 𝑛 elements is denoted by J𝑛K.
▷ The universe U closed under the type formers considered above.

▷ The function transport/substitution is denoted by tr of type Π𝑢∶𝑥=𝑥′𝐵(𝑥) → 𝐵(𝑥′),
where 𝑥, 𝑥′ ∶ 𝐴 and 𝐵 ∶ 𝐴 → U. Furthermore, we denote by tr2 the function of

type Π𝑝∶𝑎1=𝑎2 tr
𝐵(𝑝, 𝑏1) = 𝑏2 → 𝐶(𝑎1, 𝑏1) → 𝐶(𝑎2, 𝑏2), where the type family 𝐵 is

indexed by the type 𝐴, 𝑎1, 𝑎2 ∶ 𝐴, 𝑏1 ∶ 𝐵(𝑎1), 𝑏2 ∶ 𝐵(𝑎2), and the type 𝐶 is of type

Π𝑥∶𝐴 (𝐵(𝑥) → U).

In the next sections, we will use variables 𝐴, 𝐵 and 𝑋 to denote types, unless stated

otherwise. To define some inductive types, we adopt a similar notation as in Agda, includ-

ing the keyword data and the curly braces for implicit arguments, e.g., {𝑎 ∶ 𝐴} denotes 𝑎
is of type𝐴, and it is an implicit variable. The type may be omitted in the former notation,

as they can usually be inferred from the context.

36 Mathematical Foundations

2.2 Homotopy levels

The following establishes a level hierarchy for types with respect to the nontrivial homo-

topy structure of the identity type.

Definition 2.1. Let 𝑛 be an integer such that 𝑛 ≥ −2. One states that a type 𝐴 is an 𝑛-type
and that it has homotopy level 𝑛 if the type is-level(𝑛, 𝐴) is inhabited.

is-level(−2, 𝐴) ∶≡ ∑
(𝑐 ∶ 𝐴)

∏
(𝑥 ∶ 𝐴)

(𝑐 = 𝑥),

is-level(𝑛 + 1, 𝐴) ∶≡ ∏
(𝑥,𝑦 ∶ 𝐴)

is-level(𝑛, 𝑥 = 𝑦).

For this document, the first four homotopy levels are enough to express the mathe-

matical objects we want to construct. They are referred to in order, starting from −2, as
contractible types, propositions, sets, and groupoids. For convenience, we use the fol-

lowing predicates:

▷ isContr(𝐴) ∶≡ is-level(−2, 𝐴),

▷ isProp(𝐴) ∶≡ is-level(−1, 𝐴),

▷ isSet(𝐴) ∶≡ is-level(0, 𝐴), and

▷ isGroupoid(𝐴) ∶≡ is-level(1, 𝐴).

Types that are propositions are of type hProp and similarly with the other levels. If 𝐴
is an inhabited proposition, thenwe say that𝐴 holds. Additionally, it is possible to have an

𝑛-type out of any type 𝐴 for 𝑛 ≥ −2. This can be done using the construction of a higher

inductive type called 𝑛-truncation (Univalent Foundations Program 2013, §7.3) denoted

by ‖𝐴‖𝑛. The case for (−1)-truncation is called propositional truncation (or reflection), and

is often simply denoted by ‖𝐴‖.

Definition 2.2. Propositional truncation of a type 𝐴 denoted by ‖𝐴‖−1 is the universal solution
to the problem of mapping 𝐴 to a proposition 𝑃 . The elimination principle of this construc-

tion gives rise to a map of type ‖𝐴‖ → 𝑃 , which requires a map 𝑓 ∶ 𝐴 → 𝑃 and a proof that

𝑃 is a proposition.

Propositional truncation allows us to model the mere existence of inhabitants of type

𝐴. We state that 𝑥 is merely equal to 𝑦 when ‖𝑥 = 𝑦‖ for 𝑥, 𝑦 ∶ 𝐴. Then, we can express

in HoTT by means of propositional truncation:

▷ logical conjunction (𝑃 ∨ 𝑄) ∶≡ ‖𝑃 + 𝑄‖,

2.2 Homotopy levels 37

▷ logical disjunction (𝑃 ∧ 𝑄) ∶≡ ‖𝑃 × 𝑄‖,

▷ logical quantification (∀(𝑥 ∶ 𝐴)𝑃(𝑥)) ∶≡ ‖Π𝑥∶𝐴𝑃𝑥‖,

▷ logical existential (∃(𝑥 ∶ 𝐴)𝑃(𝑥)) ∶≡ ‖Σ𝑥∶𝐴𝑃𝑥‖, and

▷ unique existence (∃!(𝑥 ∶ 𝐴)𝑃(𝑥)) ∶≡ isContr(Σ𝑥∶𝐴𝑃(𝑥)).

For clarity, let us define some conventions and constructions that will be useful in

subsequent discussions. Let 𝐴 and 𝐵 be types. A type 𝐴 is referred to as inhabited if we

have a term 𝑎 of type 𝐴. If ‖𝐴‖ is inhabited, then we say that type 𝐴 is nonempty.

Lemma 2.3. If a type 𝐴 is a proposition and 𝐴 is inhabited, then 𝐴 is a contractible type. In

this case, we say that 𝐴 holds.

Definition 2.4. A function 𝑓 ∶ 𝐴 → 𝐵 is called an equivalence if all its fibers are contractible,

i.e.,

isEquiv(𝑓) ∶≡ ∏
(𝑥∶𝑏)

isContr(fib𝑓 (𝑏))

where

fib𝑓 (𝑏) ∶≡ ∑
(𝑥∶𝐴)

‖𝑓 (𝑥) = 𝑏‖.

Definition 2.5. A function 𝑓 ∶ 𝐴 → 𝐵 is called an embedding if the type isEmbedding(𝑓) is
inhabited,

isEmbedding(𝑓) ∶≡ ∏
(𝑥,𝑦∶𝐴)

isEquiv(ap𝑓 (𝑥, 𝑦))

where ap𝑓 (𝑥, 𝑦) (sometimes refers to as cong) is the function that maps 𝑥 = 𝑦 to 𝑓 (𝑥) = 𝑓 (𝑦)
for 𝑥, 𝑦 ∶ 𝐴.

Definition 2.6. Given 𝑥 ∶ 𝐴, the connected component of 𝑥 in 𝐴 is the type Σ𝑦∶𝐴‖𝑦 = 𝑥‖.

Definition 2.7. The type 𝐴 is called connected if ‖𝐴‖ holds and each 𝑥 ∶ 𝐴 belongs to the

same connected component.

Lemma 2.8. Let 𝑃 ∶ 𝐴 → hProp and 𝑥, 𝑦 ∶ 𝐴. If ‖𝑦 = 𝑥‖, then 𝑃(𝑥) ≃ 𝑃(𝑦). Thus, terms in

the same connected component share the same propositional properties.

38 Mathematical Foundations

2.3 Handy equivalences

In the following chapters, a few calculations/chain of equivalences are presented, in

which the following equivalences are used. We present them here for the sake of com-

pleteness.

Let 𝐴 ∶ U, 𝐵 ∶ 1 → U.

∑
(𝑎∶1)

𝐵(𝑎) ≃ ∏
(𝑎∶1)

𝐵(𝑎) ≃ 𝐵(∗). (2.3–1)

∑
(𝑎∶𝐴)

(𝑎 = 𝑥) ≃ ∑
(𝑎∶𝐴)

(𝑥 = 𝑎) ≃ 1. (2.3–2a)

∑
(𝑎∶𝐴)

1 ≃ (𝐴 × 1) ≃ 𝐴. (2.3–2b)

∑
(𝑥∶0)

𝐴 ≃ (𝐴 × 0) ≃ 0. (2.3–2c)

∏
(𝑎∶𝐴)

1 ≃ ∏
(𝑥∶0)

𝐴 ≃ 1. (2.3–2d)

Let 𝐴 ∶ U, 𝐵, 𝐶 ∶ 𝐴 → U.

(∏
(𝑥∶𝐴)

𝐵(𝑥) ≃ 𝐶(𝑥)) → (∏
(𝑥∶𝐴)

𝐵(𝑥) ≃ ∏
(𝑦∶𝐴)

𝐶(𝑦)) . (2.3–3)

(∏
(𝑥∶𝐴)

𝐵(𝑥) ≃ 𝐶(𝑥)) → (∑
(𝑥∶𝐴)

𝐵(𝑥) ≃ ∑
(𝑦∶𝐴)

𝐶(𝑦)) . (2.3–4)

Let 𝐴, 𝐵 ∶ U, 𝐶 ∶ 𝐴 → U, 𝐷 ∶ 𝐵 → U.

∏
(𝑒∶𝐵≃𝐴)

(∑
(𝑥∶𝐴)

𝐶(𝑥) ≃ ∑
(𝑦∶𝐵)

𝐶(𝑒(𝑦))) . (2.3–5)

(∏
(𝑒∶𝐴≃𝐵)

∏
(𝑥∶𝐴)

𝐶(𝑥) ≃ 𝐷(𝑒(𝑥))) → (∑
(𝑥∶𝐴)

𝐶(𝑥) ≃ ∑
(𝑦∶𝐵)

𝐷(𝑦)) . (2.3–6)

Let 𝐴 ∶ U, 𝐵, 𝐶 ∶ 𝐴 → U, 𝐷 ∶ Σ(𝑎,𝑏)∶Σ𝑥∶𝐴𝐵(𝑥) 𝐶(𝑎) → U.

∑
((𝑎,𝑏)∶∑(𝑥∶𝐴) 𝐵(𝑥))

∑
(𝑐∶𝐶(𝑎))

𝐷((𝑎, 𝑏), 𝑐) ≃ ∑
((𝑎,𝑐)∶∑(𝑥∶𝐴) 𝐶(𝑥))

∑
(𝑏∶𝐵(𝑎))

𝐷(((𝑎, 𝑏), 𝑐)). (2.3–7)

2.4 Finite types 39

(𝐴 → U) ≃ ∑
(𝑃∶U)

(𝑃 → 𝐴). (2.3–8)

Let 𝐴 ∶ U, 𝐵 ∶ 𝐴 → U, and 𝐶 ∶ (Σ𝑥∶𝐴𝐵(𝑥)) → U.

∑
(𝑎∶𝐴)

∑
(𝑏∶𝐵(𝑎))

𝐶((𝑎, 𝑏)) ≃ ∑
((𝑎,𝑏)∶∑(𝑥∶𝐴) 𝐵(𝑥))

𝐶((𝑎, 𝑏)). (2.3–9)

∏
(𝑎∶𝐴)

∏
(𝑏∶𝐵(𝑎))

𝐶((𝑎, 𝑏)) ≃ ∏
((𝑎,𝑏)∶∑(𝑥∶𝐴) 𝐵(𝑥))

𝐶((𝑎, 𝑏)). (2.3–10)

∏
(𝑎∶𝐴)

∑
(𝑏∶𝐵(𝑎))

𝐶((𝑎, 𝑏)) ≃ ∑
(𝑓 ∶∏(𝑥∶𝐴) 𝐵(𝑥))

∏
(𝑎∶𝐴)

𝐶((𝑎, 𝑓 (𝑎))). (2.3–11)

Let 𝑃 ∶ N → U.

∑
(𝑛∶N)

𝑃(𝑛) ≃ 𝑃(0) + ∑
(𝑛∶N)

𝑃(𝑛 + 1). (2.3–12)

∏
(𝑛∶N)

𝑃(𝑛) ≃ 𝑃(0) × ∏
(𝑛∶N)

𝑃(𝑛 + 1). (2.3–13)

J𝑛 + 1K ≃ J𝑛K + 1. (2.3–14)

Let 𝐴 ∶ U, 𝐵, 𝐶 ∶ 𝐴 → U.

∑
(𝑥∶𝐴)

𝐵(𝑥) + 𝐶(𝑥) ≃ ∑
(𝑥∶𝐴)

𝐵(𝑥) + ∑
(𝑥∶𝐴)

𝐶(𝑥). (2.3–15)

Let 𝐴, 𝐵 ∶ U, 𝐶 ∶ 𝐴 + 𝐵 → U.

∑
(𝑥∶𝐴+𝐵)

𝐶(𝑥) ≃ (∑
(𝑥∶𝐴)

𝐶(inl(𝑥))) + (∑
(𝑥∶𝐵)

𝐶(inr(𝑥))) . (2.3–16)

∏
(𝑥∶𝐴+𝐵)

𝐶(𝑥) ≃ (∏
(𝑥∶𝐴)

𝐶(inl(𝑥))) × (∏
(𝑥∶𝐵)

𝐶(inr(𝑥))) . (2.3–17)

2.4 Finite types

In the following we make precise the intuition that a type is finite when it is equivalent

to J𝑛K for some 𝑛 ∶ N. The type J𝑛K is the standard type with 𝑛 elements, which can be

defined as the following Σ-type.

40 Mathematical Foundations

J𝑛K ∶≡ ∑
(𝑚 ∶N)

𝑚 < 𝑛, (2.4–18)

where the binary relation (<) can be defined by cases, that is, 0 < 𝑚 + 1 for all 𝑚 and for

all 𝑛 if 𝑚 < 𝑛 then 𝑚 + 1 < 𝑛 + 1.

Definition 2.9. A type 𝑋 is finite if the type isFinite(𝑋) in (2.4–19) is inhabited.

isFinite(𝑋) ∶≡ ∑
(𝑛 ∶ N)

‖𝑋 ≃ J𝑛K‖ . (2.4–19)

The finiteness of a type 𝐴 is the existence of a bijection between 𝐴 and the type J𝑛K
for some 𝑛 ∶ N. However, this description is not a structure on 𝐴, which provides it with

a specific equivalence 𝐴 ≃ J𝑛K, but rather a property, a mere proposition. This ensures

that the identity type on the total type of finite types is free to permute the elements,

without having to respect a chosen equivalence.

Lemma 2.10. The type isFinite(𝑋) is a proposition.

Proof. Let (𝑛, 𝑝), (𝑚, 𝑞) ∶ isFinite(𝑋), which we want to prove equal. Since 𝑝 and 𝑞 are

elements of a family of propositions, it is sufficient to show that 𝑛 = 𝑚. This equation is

a proposition, so we can apply the truncation-elimination principle to get 𝑋 ≃ J𝑛K and

𝑋 ≃ J𝑚K. Thus, from J𝑛K ≃ J𝑚K follows that 𝑛 = 𝑚 by a well-known result on finite

sets. □

A type 𝑋 is considered to be finite if the proposition isFinite(𝑋) holds. The natural

number 𝑛 is referred to as the cardinal number of 𝑋 , which is also denoted by #𝑋 . If 𝑋
and 𝑌 are finite and the identity type 𝑋 = 𝑌 is inhabited, then both types have the same

cardinal number and 𝑌 is a permutation of 𝑋 . Furthermore, Definition 2.9 is equivalent

to the type ∃𝑛∶N(𝑋 = J𝑛K). However, the former definition makes it easier to obtain the

cardinal number 𝑛 by projecting on the first coordinate. This is more practical for certain

proofs, such as Lemma 2.25. Additionally, any property of J𝑛K, like “being a set” and

“being discrete” can be transferred to any finite type.

Theorem 2.11 (Hedberg’s theorem). Any type 𝐴 with decidable equality, i.e., 𝑥 = 𝑦 + 𝑥 ≠ 𝑦
for all 𝑥, 𝑦 ∶ 𝐴, is a set. Types like 𝐴 are below refer to as discrete sets.

The following lemma found in Rijke’s book, Theorem 16.3.6 item (iii) has proven to

be useful for the finiteness property of types appearing, e.g., in Section 4.4.1. A proof of

this result can be found in the Agda-UniMath library.

https://unimath.github.io/agda-unimath/

2.4 Finite types 41

Lemma 2.12. Let 𝐵 be a family of a type 𝐴. Consider the following propositions.

(a) 𝐴 is finite.

(b) 𝐵(𝑥) is finite for each 𝑥 ∶ 𝐴.

(c) Σ𝑥∶𝐴𝐵(𝑥) is finite.
The following holds:

1. If (𝑎) holds, then (𝑏) holds if and only if (𝑐) holds.
2. If (𝑏) and (𝑐), then (𝑎) holds if and only if 𝐴 is a set and Σ𝑥∶𝐴¬𝐵(𝑥) is finite.
3. If (𝑏) and (𝑐) hold and there is a function of type Π𝑥∶𝐴𝐵(𝑥), then (𝑎) holds.
4. If (𝑎) and (𝑏) hold, then the type Π𝑥∶𝐴 𝐵(𝑥) is finite.

Lemma 2.13. Finite sets are closed under (co) products, type equivalences, Σ-types, and Π-

types.

The formal proof of Lemma 2.13 and other related lemmas can be found in the Coq-

HoTT library (A. Bauer, J. Gross, Lumsdaine, et al. 2017). For example, one of these

lemmas, used to demonstrate Lemma 5.24, states that the cardinality of 𝑋 is less than or

equal to the cardinality of 𝑌 if there exists an embedding from 𝑋 to 𝑌 .

Lemma 2.14. If 𝐴 is finite, then ‖𝐴‖ is finite.

Proof. We start by assuming that 𝐴 is finite and determine if its cardinality 𝑛 equals zero.

Regardless of the outcome, we can obtain an equivalence, 𝐴 ≃ J𝑛K, from applying the

propositional truncation elimination to the proposition ‖𝐴‖ is finite. We therefore can

establish an equivalence between ‖𝐴‖ and either 0 or 1, depending on whether 𝑛 equals

zero. In both cases, these are finite types. Therefore, applying Lemma 2.13, we conclude

that ‖𝐴‖ is finite. □

As the very first examples of finite sets, we have the empty type, unit type, decid-

able propositions, and the family of standard finite types J𝑛K. To prove the finiteness of

other types, as in Theorem 5.26, we use Corollary 2.15, a direct consequence of Hedberg’s

theorem and the finiteness of the empty and unit type.

Corollary 2.15. If𝐴 is a discrete set, then the identity type 𝑥 = 𝑦 is a finite set for all 𝑥, 𝑦 ∶ 𝐴.

Lemma 2.16. If 𝐴 is finite, then the identity type 𝑥 = 𝑦 is finite for all 𝑥, 𝑦 ∶ 𝐴.

http://hott.github.io/HoTT/coqdoc-html/HoTT.Spaces.Finite.Finite.html

42 Mathematical Foundations

Lemma 2.17. Let 𝑌 be a finite type, then the following type is finite.

∑
(𝑋 ∶ U)

(isFinite(𝑋) × ∑
(𝑓 ∶ 𝑋→𝑌)

isInjective(𝑓)) , (2.4–20)

where

isInjective(𝑓) ∶≡ ∏
(𝑥,𝑦 ∶ 𝑋)

𝑓 (𝑥) = 𝑓 (𝑦) → 𝑥 = 𝑦. (2.4–21)

Lemma 2.18. If there is an injective function from set 𝐴 to set 𝐵, and both 𝐴 and 𝐵 are finite,

then the number of elements in 𝐴 is less than or equal to the number of elements in 𝐵.

Corollary 2.19. Let 𝑛 ∶ N. The following type is finite.

∑
(𝑋 ∶ U)

∑
((#𝑋 ,!)∶isFinite(𝑋))

#𝑋 ≤ 𝑛. (2.4–22)

We will now introduce cyclic types, which will be used later to characterise graphs

embedded in a surface combinatorially in Definition 4.8.

2.5 Cyclic types

We want to define a notion of cyclic type to capture the idea of a finite type together

with a premutation within orbiting freely over the whole type. To do so, we use the pred

function which generates a cyclic subgroup (of order 𝑛) of the group of permutations onJ𝑛K. An equivalent cyclic subgroup can be defined by means of the suc function, where

the function suc is the inverse of pred.

Definition 2.20. Let pred be a function from J𝑛 + 1K to itself defined by induction on 𝑛 and

the following equations. If 𝑛 = 0, then pred is the trivial function. If 𝑛 > 0, then,

pred ∶ J𝑛 + 1K → J𝑛 + 1K.
pred((0, !)) ∶≡ (𝑛, 𝑝).
pred((𝑚 + 1, 𝑞)) ∶≡ (𝑚, 𝑟).

Where 𝑝 is a proof that 𝑛 < 𝑛 + 1 and 𝑟 is a proof that 𝑚 < 𝑛+1 using 𝑞, which is a proof that

𝑚 + 1 < 𝑛 + 1.

2.5 Cyclic types 43

Definition 2.21. Cyclic(𝐴) defines the type of cyclic structures on type 𝐴.

Cyclic(𝐴) ∶≡ ∑
(𝜑 ∶ 𝐴→𝐴)

∑
(𝑛 ∶ N)

‖ ∑
(𝑒 ∶ 𝐴≃ J𝑛K)(𝑒 ∘ 𝜑 = pred ∘ 𝑒) ‖ . (2.5–23)

Notice that the type Cyclic(𝐴)mirrors the structure of J𝑛K given by pred for any finite

type 𝐴 along with an endomap 𝜑 ∶ 𝐴 → 𝐴. This is reflected in (2.5–23) by establishing a

structure-preserving map between (𝐴, 𝜑) and (J𝑛K, pred). Therefore, a type 𝐴 with cyclic

structure is a triple such as ⟨𝐴, 𝑓 , 𝑛⟩ where (𝑓 , 𝑛, -) ∶ Cyclic(𝐴). Given such a triple, we

refer to 𝐴 as an 𝑛-cyclic and 𝑓 as the corresponding cyclic function. As a notation, if

𝑝 ∶ Cyclic(𝐴) and 𝑥 ∶ 𝐴, then 𝑝(𝑥) is the image of 𝑥 under the cyclic function 𝑓 .

Lemma 2.22. Let 𝑃 be a family of propositions of type Π𝑋∶U(𝑋 → 𝑋) → hProp and an

𝑛-cyclic structure ⟨𝐴, 𝑓 , 𝑛⟩. If 𝑃(J𝑛K, pred), then 𝑃(𝐴, 𝑓).

Proof. It follows from Lemma 2.8. Note that being cyclic for a type is equivalent to saying

(𝐴, 𝑓) and (J𝑛K, pred) are connected in Σ𝑋∶U(𝑋 → 𝑋). □

Lemma 2.23. Let 𝑃 be a family of propositions of type U → hProp and an 𝑛-cyclic structure

⟨𝐴, 𝑓 , 𝑛⟩. If 𝑃(J𝑛K), then 𝑃(𝐴).

Proof. Given an 𝑛-cyclic structure ⟨𝐴, 𝑓 , 𝑛⟩, we have a certain 𝑝 such that

𝑝 ∶ ‖ ∑
(𝑒∶𝐴≃J𝑛K)(𝑒 ∘ 𝑓 = pred ∘ 𝑒)‖ .

Our objective is to apply propositional truncation elimination on the proposition

𝑃(J𝑛K) to derive 𝑃(𝐴). To achieve this, we need to construct a term of type 𝑃(𝐴) from

a pair (𝑒, !), where 𝑒 ∶ 𝐴 ≃ J𝑛K and ! ∶ 𝑒 ∘ 𝑓 = pred ∘ 𝑒. The conclusion follows from

the fact that equivalences preserve propositions (Lemma 2.13), applied to 𝑒 and using the

predicate 𝑃 on J𝑛K. □

Lemma 2.24. Let 𝐴 be a type. If Cyclic(𝐴) is inhabited, then 𝐴 is a finite set.

Proof. This follows from Lemma 2.23 and the property that the standard finite type J𝑛K is
a finite set. □

In any finite type, every element is searchable. In particular, given an 𝑛-cyclic type

⟨𝐴, 𝑓 , 𝑛⟩, one can search any element by iterating the function 𝑓 on any other element at

most 𝑛 times.

44 Mathematical Foundations

Lemma 2.25. If𝐴 is an 𝑛-cyclic type, then for every 𝑎 and 𝑏 in𝐴, there exists a unique number

𝑘 with 𝑘 < 𝑛 such that pred𝑘
𝐴(𝑎) = 𝑏.

The total type, Σ𝐴∶UCyclic(𝐴), is the classifying type (Bezem, Buchholtz, Cagne, et

al. 2022, §4.6-7) of finite cyclic groups. Let us now compute the identity type between

two finite cyclic types that we use, for example, in Example 4.32 to enumerate the maps

of the bouquet graph 𝐵2.

Lemma 2.26. Given two cyclic types, A and B, defined by ⟨𝐴, 𝑓 , 𝑛⟩ and ⟨𝐵, 𝑔, 𝑚⟩, respectively,
the identity type between them is given by the following equivalence:

(A = B) ≃ ∑(𝛼 ∶ 𝐴 = 𝐵) (coe (𝛼) ∘ 𝑓 = 𝑔 ∘ coe (𝛼)).
𝐴 𝐵

𝐴 𝐵
𝑓

coe(𝛼)

𝑔

coe(𝛼)

Proof. We show the equivalence by Calculation (2.5–24). In Equivalence (2.5–24b), we ex-

pand the definition of the type of cycle for A and B. The numbers 𝑛 and 𝑚 are the cardi-

nalities of the types 𝐴 and 𝐵, respectively, and 𝑝 and 𝑞, are propositions of the truncation

appearing in the type in (2.5–23). Equivalence (2.5–24c) follows from the characterisa-

tion of the identity type between pairs in a Σ-type (Univalent Foundations Program 2013,

§3.7). In Equivalence (2.5–24c), we have the product of two propositions, the identity

types, 𝑛 = 𝑚 and 𝑝 = 𝑞. These two types are, in fact, contractible, therefore, equivalent

to the one-point type. The numbers 𝑛 and 𝑚 are equal because 𝐴 and 𝐵 are finite and

equal by 𝛼 , and 𝑝 and 𝑞 are equal because truncation of any type is also a proposition.

We can then simplify the inner Σ-type to its base in Equivalence (2.5–24d) to obtain by

the equivalence Σ𝑥∶𝐴1 ≃ 𝐴, Equivalence (2.5–24e).

(A = B) ≡ (2.5–24a)

((𝐴, (𝑓 , 𝑛, 𝑝)) = (𝐵, (𝑔, 𝑚, 𝑞))) ≃ (2.5–24b)

∑
(𝛼 ∶ 𝐴 = 𝐵)

∑
(𝛽 ∶ tr 𝜆𝑋 .𝑋→𝑋 (𝛼,𝑓) = 𝑔)

(𝑛 = 𝑚) × (𝑝 = 𝑞) ≃ (2.5–24c)

∑
(𝛼 ∶ 𝐴 = 𝐵)

∑
(𝛽 ∶ tr 𝜆𝑋 .𝑋→𝑋 (𝛼,𝑓) = 𝑔)

1 ≃ (2.5–24d)

∑
(𝛼 ∶ 𝐴 = 𝐵)

tr 𝜆𝑋 .𝑋→𝑋 (𝛼, 𝑓) = 𝑔 ≃ (2.5–24e)

∑
(𝛼 ∶ 𝐴 = 𝐵)

coe (𝛼) ∘ 𝑓 = 𝑔 ∘ coe (𝛼) . (2.5–24f)

2.5 Cyclic types 45

Finally, Equivalence (2.5–24f) is a consequence of transporting functions along the equal-

ity 𝛼 . The conclusion is that the identity type A = B is equivalent to the type of equalities

between 𝐴 and 𝐵 along with a proof that the structure of 𝑓 is preserved in the structure

of 𝑔. □

Lemma 2.27. For any finite type 𝐴, Cyclic(𝐴) is a finite set.

Proof. We unfold the definition of Cyclic(𝐴) to obtain the type Σ𝜑 ∶ 𝐴→𝐴 Σ𝑛 ∶ N ‖ 𝑃(𝐴, 𝑛) ‖
where 𝑃(𝐴, 𝑛) ∶≡ Σ𝑒∶𝐴≃ J𝑛K(𝑒 ∘ 𝜑 = pred ∘ 𝑒).

Given the finiteness of type 𝐴, it follows that 𝐴 → 𝐴 is finite. We now aim to show

that Σ𝑛∶N‖𝑃(𝐴, 𝑛)‖ is finite. We can show this by establishing the equivalence

∑
(𝑛∶N)

‖𝑃(𝐴, 𝑛)‖ ≃ ‖𝑃(𝐴, #𝐴)‖ (2.5–25)

and demonstrating that the type 𝑃(𝐴, #𝐴) is finite. Once established, we can con-

clude that the equivalence preserves the finiteness of the type ‖𝑃(𝐴, #𝐴)‖, by the closure

property of finite types under Σ-types and propositional truncation.

To establish the equivalence in (2.5–25), as both types are propositions, we only need

to construct two functions 𝑓 and 𝑔 as follows using the propositional truncation elimi-

nation principle,

𝑓 ∶ ∑(𝑛∶N) ‖𝑃(𝐴, 𝑛)‖ → ‖𝑃(𝐴, #𝐴)‖.
𝑓 ((𝑛, |𝑝|)) ∶≡ |𝑝|.
𝑔 ∶ ‖𝑃(𝐴, #𝐴)‖ → ∑(𝑛∶N) ‖𝑃(𝐴, 𝑛)‖.
𝑔(|𝑟 |) ∶≡ (#𝐴, |𝑟 |).

The Σ-type, 𝑃(𝐴, #𝐴), is finite given that the base type is an equivalence between two

finite types, 𝐴 and J#𝐴K, and each fiber is an identity type over a finite type, which is

finite. This leads us to conclude that the type Σ𝑛∶N‖𝑃(𝐴, 𝑛)‖ is finite, thereby implying

that Cyclic(𝐴) is finite. □

3
Graphs in Univalent Mathematics

Graphs are a fundamental mathematical concept that has found widespread applications

in various fields, including mathematics and computer science. They are used to mod-

elling relationships between objects or entities, making them a versatile tool for analysing

complex systems. However, the definition of a graph can vary depending on the context

in which it is used. The choice of a specific notion of a graph in a given context depends

on the application, such as power graphs in computational biology, quivers in category

theory, and networks in network theory. In some settings, graphs are undirected, while

in others, they are directed. Additionally, the inclusion of self-edges may be allowed or

prohibited. In this chapter, we define the notion of graphs in type theory that we con-

sider in this thesis. Additionally, we briefly present concepts such as the homomorphism

between graphs, finite graphs, and cyclic graphs, among others. The following chapters

will use these concepts unless otherwise stated.

3.1 The type of graphs

The objective of this thesis is to present a thorough characterisation of graph planarity.

In pursuit of this objective, we employ a broader set-level concept of graphs that encom-

passes directed multigraphs, including those with self-edges, in contrast to the conven-

tional practise of working solely with undirected graphs. The decision to adopt a set-level

structure for this type of graph is informed by the observation that the objects and re-

3.1 The type of graphs 47

lations studied in the graph theory literature typically involve sets. Nevertheless, this

constraint can be readily relaxed for other applications, as seen in Appendix B.

Definition 3.1. A graph is an object of type Graph. The corresponding data of a graph is a

set 𝑁 , elements of which we call points/vertices/nodes. Additionally, for every pair of nodes

𝑎 and 𝑏, there is a family of sets 𝐸, each of which corresponds to the edges connecting 𝑎 and

𝑏. The elements of these sets are referred to as edges.

Graph ∶≡ ∑
(N ∶ U)

∑
(E ∶ N→N→U)

isSet(N) × ∏
(𝑥,𝑦 ∶ N)

isSet(E(𝑥, 𝑦)).

Given a graph 𝐺, for brevity, the set of nodes and the family of edges are denoted by

N𝐺 and E𝐺 , respectively. In this way, the graph 𝐺 is defined as (N𝐺 , E𝐺 , (𝑝𝐺 , 𝑞𝐺)) where

𝑝𝐺 ∶ isSet(N𝐺) and 𝑞𝐺 ∶ ∏𝑥,𝑦∶N𝐺 isSet(E𝐺(𝑥, 𝑦)). We may refer to 𝐺 only as the pair

(N𝐺 , E𝐺), unless we require showing the remaining data, the propositions 𝑝𝐺 and 𝑞𝐺 . For
example, we define the empty graph and the unit graph, respectively, as (0, 𝜆 𝑢 𝑣 .0) and
(1, 𝜆 𝑢 𝑣 .0). We will use variables 𝐺 and 𝐻 as graphs, and variables 𝑥 , 𝑦 , and 𝑧 as nodes

in 𝐺, unless otherwise specified.

Remark 3.2. Our primary objective is to provide a comprehensive characterisation of graph pla-

narity. To achieve this, we utilise a set-level concept of graphs, which includes directed multi-

graphs and those with self-edges, diverging from the traditional focus on undirected graphs. The

choice of a set-level structure is based on the common use of sets in the objects and relations

studied within graph theory. However, this constraint can be easily modified for different appli-

cations.

Definition 3.3. A graph homomorphism from 𝐺 to 𝐻 is a pair of functions (𝛼, 𝛽) such that

𝛼 ∶ N𝐺 → N𝐻 and 𝛽 ∶ ∏𝑥,𝑦∶N𝐺 E𝐺(𝑥, 𝑦) → E𝐻 (𝛼(𝑥), 𝛼(𝑦)). We denote by Hom(𝐺, 𝐻) the

type of these pairs.

���� ��
�

�� �

�

�

����

����
We denote by id𝐺 , for any graph 𝐺, the identity graph homomorphism where the

corresponding 𝛼 and 𝛽(𝑥, 𝑦) are the corresponding identity functions.

48 Graphs in Univalent Mathematics

Lemma 3.4. The type Hom(𝐺, 𝐻) forms a set.

Proof. Since sets are closed under Π- and Σ-types, and given that both N𝐺 → N𝐻 and

∏𝑥,𝑦∶N𝐺 E𝐺(𝑥, 𝑦) → E𝐻 (𝛼(𝑥), 𝛼(𝑦)) are function types with set codomains, it follows

that Hom(𝐺, 𝐻), being comprised of these types, is a set. □

3.2 The category of graphs

Graphs as objects and graph homomorphisms as the corresponding arrows form a small

pre-category. In fact, the type of graphs is a small univalent category in the sense of the

HoTT Book (Univalent Foundations Program 2013, §9.1). This fact follows from Theo-

rem 3.7 and, morally, because the Graph type is a set-level structure.

In a (pre-) category, an isomorphism is a morphism which has an inverse. In the

particular case of graphs, this can be formulated in terms of the underlying maps being

equivalences.

Lemma 3.5. Let ℎ be a graph homomorphism given by the pair-function (𝛼, 𝛽). The claim ℎ is

an isomorphism, denoted by isIso(ℎ), is a proposition equivalent to stating that the functions

𝛼 and 𝛽(𝑥, 𝑦) for all 𝑥, 𝑦 ∶ N𝐺 , are all bijections.

isIso(ℎ) ∶≡ isEquiv(𝛼) × ∏
(𝑥,𝑦∶N𝐺)

isEquiv(𝛽(𝑥, 𝑦)).

The type of all isomorphisms between 𝐺 and 𝐻 is denoted by 𝐺 ≅ 𝐻 and defined as

𝐺 ≅ 𝐻 ∶≡ ∑
(ℎ∶Hom(𝐺,𝐻))

isIso(ℎ) (3.2–1)

or equivalently, as the following type,

∑
(𝛼∶N𝐺≃N𝐻)

∏
(𝑥,𝑦∶N𝐺)

E𝐺(𝑥, 𝑦) ≃ E𝐻 (𝛼(𝑥), 𝛼(𝑦)).

If the type 𝐺 ≅ 𝐻 is inhabited, it is said that 𝐺 and 𝐻 are isomorphic.

Lemma 3.6. The type 𝐺 ≅ 𝐻 forms a set.

Proof. Given 𝐺 ≅ 𝐻 as a subtype of Hom(𝐺, 𝐻), and by Lemma 3.4 asserting that

Hom(𝐺, 𝐻) is a set, it immediately follows from (3.2–1) that 𝐺 ≅ 𝐻 inherits the set struc-

ture. □

We define a type to compare the sameness in graphs in Lemma 3.5; the type of graph

isomorphisms. In HoTT, the identity type (=) serves the same purpose, and one expects

3.2 The category of graphs 49

the two notions to coincide (Coquand and Danielsson 2013). In Theorem 3.7, we prove

that they are, in fact, homotopy equivalent. The same correspondence for graphs also

arises for many other structures, for example, groups and topological spaces (Ahrens and

North 2019; Ahrens, North, Shulman, and Tsementzis 2020).

Theorem 3.7 (Equivalence principle). The canonical map

idtoiso ∶ (𝐺 = 𝐻) → (𝐺 ≅ 𝐻)

is an equivalence and its inverse function is denoted by isotoid.

Proof. It is sufficient to show that (𝐺 = 𝐻) ≃ (𝐺 ≅ 𝐻). Remember that being an equiva-

lence for a function constitutes a proposition. We consider the following type families to

shorten the presentation.

▷ 𝐹1(𝑋) ∶≡ 𝑋 → 𝑋 → U and

▷ 𝐹2(𝑋 , 𝑅) ∶≡ Π𝑥,𝑦∶𝑋 isSet(𝑅(𝑥, 𝑦)) where 𝑅 is of type 𝐹1(𝑋).
The required equivalence follows from Calculation (3.2–2).

(𝐺 = 𝐻) ≡ (3.2–2a)

((N𝐺 , E𝐺 , (𝑝𝐺 , 𝑞𝐺)) = (N𝐻 , E𝐻 , (𝑠𝐻 , 𝑡𝐻))) ≃ (3.2–2b)

∑
(𝛼∶N𝐺=N𝐻)

∑
(𝛽∶tr𝐹1(𝛼,E𝐺)=E𝐻)

(trisSet(𝛼, 𝑝𝐺) = 𝑠𝐻) × (tr2𝐹2(𝛼, 𝛽, 𝑞𝐺) = 𝑡𝐻) ≃ (3.2–2c)

∑
(𝛼∶N𝐺=N𝐻)

∑
(𝛽∶tr𝐹1(𝛼,E𝐺)=E𝐻)

1 × 1 ≃ (3.2–2d)

∑
(𝛼∶N𝐺=N𝐻)

tr𝐹1(𝛼, E𝐺) = E𝐻 ≃ (3.2–2e)

∑
(𝛼∶N𝐺=N𝐻)

∏
(𝑥,𝑦∶N𝐺)

E𝐺(𝑥, 𝑦) = E𝐻 (coe(𝛼)(𝑥), coe(𝛼)(𝑦)) ≃ (3.2–2f)

∑
(𝛼∶N𝐺≃N𝐻)

∏
(𝑥,𝑦∶N𝐺)

E𝐺(𝑥, 𝑦) ≃ E𝐻 (𝛼(𝑥), 𝛼(𝑦)) ≃ (3.2–2g)

(𝐺 ≅ 𝐻). (3.2–2h)

We first unfold definitions in (3.2–2b). The equivalence in (3.2–2c) follows from the char-

acterisation of the identity type between pairs in a Σ-type (Lemma 3.7 in HoTT book).

The equivalence in (3.2–2d) stems from the fact that being a set is a mere proposition

and, thus, equations between proofs of such are contractible, similarly as in (2.26). To

get (3.2–2f), we apply function extensionality twice in the inner equality in (3.2–2e). By

the Univalence axiom, we replace in (3.2–2g) equalities by equivalences. Finally, (3.2–2h)

follows from (3.5) completing the calculation from which the conclusion follows. □

50 Graphs in Univalent Mathematics

Lemma 3.8. The type of graphs is a groupoid.

Proof. Consider graphs 𝐺 and 𝐻 . We want to show that the identity type 𝐺 = 𝐻 is a set,

for which we apply Theorem 3.7. This yields an equivalence between the type 𝐺 = 𝐻
and the set of isomorphisms 𝐺 ≅ 𝐻 (refer to Lemma 3.6). Since equivalences preserve set

structures, it follows that 𝐺 = 𝐻 is indeed a set. □

3.3 Subtypes and structures on graphs

In graph theory, graphs are often classified according to their structure in different graph

classes. This can be mirrored in type theory by considering type families over the type

Graph. These type families result in a subtype of graphs if they are propositions; other-

wise, they might provide a structure on graphs.

A notable example of such a structure is our characterisation of planar graphs. We

define a type family Planar over Graph and establish that Planar(𝐺) is a set, not a propo-

sition, for any graph 𝐺. More details can be found in Chapter 6.

Here are some informal examples of graph subtypes that one can define in type theory.

▷ Simple graphs: The edge relation is propositional.

▷ Undirected graphs: The edge relation is symmetric.

▷ Connected graphs: A walk exists between any two nodes.

▷ Complete graphs: Each node is connected to every other node by an edge.

▷ Trees: These are connected graphs without cycles (refer to Appendix B).

▷ Regular graphs: Each node has the same number of connected edges.

▷ Bipartite graphs: Nodes can be split into two disjoint sets with all edges connecting

a node in one set to a node in the other.

Now, since any construction in HoTT respects the structure of its constituents, graph

subtypes are invariant under graph isomorphisms. Specifically, given a graph isomor-

phism, we can transport any property on graphs along the equality obtained by Theo-

rem 3.7. Equivalence induction, a related principle, is discussed in (Escardó 2019, §3.15).

Lemma 3.9 (Leibniz principle). Isomorphic graphs hold the same properties.

3.4 Finite graphs 51

Lemma 3.10 (Equivalence induction). Given a graph 𝐺 and a family of properties 𝑃 of type

Σ𝐻∶Graph(𝐺 ≅ 𝐻) → hProp, if the property 𝑃(𝐺, id𝐺) holds then the property also holds for

any isomorphic graph 𝐻 to 𝐺, i.e., 𝑃(𝐻 , 𝜑) holds for all 𝜑 ∶ 𝐺 ≅ 𝐻 .

Lastly, of importance for this work is the subtype of connected finite graphs. We will

assume any graph in the remaining of this document, as connected and finite, unless

stated otherwise.

3.4 Finite graphs

A graph is finite if its node set and each edge-set are finite sets, as stated in Definition 3.11.

Like finite types, a finite graph has an associated cardinal number for the count of nodes

and edges. Hence, we can demonstrate that equality is decidable on both the node set

and each edge set for finite graphs.

Definition 3.11. Agraph𝐺 is said to befinitewhen the following proposition isFiniteGraph(𝐺)
holds.

isFiniteGraph(𝐺) ∶≡ isFinite(N𝐺) × isFinite(∑
(𝑥,𝑦 ∶ N𝐺)

E𝐺(𝑥, 𝑦)) .

For a finite graph 𝐺, the cardinality of the node set and edge set are represented as #N𝐺 and

#E𝐺 respectively.

3.5 Walks and strongly connected graphs

A graph 𝐺 is considered to be strongly connected or (connected for short) when for any

pair of nodes 𝑥 and 𝑦 , there is a walk from 𝑥 to 𝑦 in 𝐺. Intuitively, a walk in a graph is a

sequence of edges that forms a chain; of the type stated in Definition 3.12.

Definition 3.12. A walk in 𝐺 from 𝑥 to 𝑦 is a sequence of connected edges that we construct

using the following inductive data type:

data W ∶ N𝐺 → N𝐺 → U

⟨_⟩ ∶ (𝑥 ∶ N𝐺) → W𝐺(𝑥, 𝑥)
(_⊙_) ∶ Π {𝑥 𝑦 𝑧 ∶ N𝐺} . (𝑒 ∶ E𝐺(𝑥, 𝑦))

→ (𝑤 ∶ W𝐺(𝑦 , 𝑧))
→ W𝐺(𝑥, 𝑧)

Let 𝑤 be a walk from 𝑥 to 𝑦 , i.e., of typeW𝐺(𝑥, 𝑦). We will denote by 𝑥 the head of 𝑤 and

by 𝑦 the end of 𝑤 . If 𝑤 is ⟨𝑥⟩ then we refer to 𝑤 as trivial or one-point walk. If 𝑤 is of the

form (𝑒 ⊙ ⟨𝑥⟩), then 𝑤 is the one-edge walk 𝑒. Non-trivial walks are of the form, (𝑒 ⊙𝑤) and a

52 Graphs in Univalent Mathematics

loop is a walk with the same head and end. An equivalent notion of walk is path, which we

hinted in Section 3.6.

Definition 3.13. A graph 𝐺 is said to be connected when the propositionConnected(𝐺) holds.

Connected(𝐺) ∶≡ ∏
(𝑥,𝑦 ∶ N𝐺)

‖E𝑊(𝐺)(𝑥, 𝑦)‖.

3.6 Graph families

Let us define a few graph families indexed by the type of natural numbers.

Definition 3.14. The path graph with 𝑛 nodes is the non-connected graph 𝑃𝑛, defined as

𝑃𝑛 ∶≡ (J𝑛K, 𝜆 𝑢 𝑣 .toNat(𝑢) + 1 = toNat(𝑣)),

where
toNat ∶ J𝑛K → N.
toNat(𝑘, !) ∶≡ 𝑘.

The length of path graph 𝑃𝑛 is defined as the number of edges in 𝑃𝑛. Graphs 𝑃0 and 𝑃1 have

zero length, 𝑃2 has one edge. Hence, for 𝑛 > 0, 𝑃𝑛 has length 𝑛 − 1.

Remark 3.15. The path graph definition allows us to alternatively define graphwalks. Specifically,

a walk in a connected graph 𝐺 of length 𝑛 between nodes 𝑎 and 𝑏 can be defined as a graph

homomorphism from 𝑃𝑛+1 to 𝐺 for 𝑛 > 0. This homomorphism maps node 0 to 𝑎 and 𝑛 to 𝑏. A

trivial walk is a graph homomorphism from 𝑃1 to 𝐺, selecting only one node 𝑎 in 𝐺. If 𝑎 equals

𝑏, the walk is closed. Closed walks, also known as cycles, are introduced using an alternative

definition in Definition 3.19 that reflects cyclic types.

Definition 3.16. An 𝑛-cycle graph denoted by 𝐶𝑛 is a graph with 𝑛 edges defined as

𝐶𝑛 ∶≡ (J𝑛K, 𝜆 𝑢 𝑣 .𝑢 = pred(𝑣)),

when 𝑛 ≥ 1. Otherwise, 𝐶0 is the one-point graph with one trivial loop. The function pred is

defined in Definition 2.20. Similar to path graphs, the length of an 𝑛-cycle graph is 𝑛.

C1 C2 C3 C4 C5C0

In the treatment of embeddings of graphs on surfaces, we found that bouquet graphs,

besides their simple structure, have nontrivial embeddings, see Section 4.5.

3.7 Cyclic graphs 53

Definition 3.17. The family of bouquet graphs 𝐵𝑛, given by

𝐵𝑛 ∶≡ (1, 𝜆 𝑢 𝑣 .J𝑛K),
consists of graphs obtained by considering a single point with 𝑛 self-loops.

B2 B3 B4 B5B1

Definition 3.18. A graph of 𝑛 nodes is called complete when every pair of distinct nodes is

joined by an edge. The complete standard graph with node set J𝑛K is denoted by 𝐾𝑛.

𝐾𝑛 ∶≡ (J𝑛K, 𝜆 𝑢 𝑣 .𝑢 ≠ 𝑣).

K3 K4 K5K2K1

For brevity, we will use a double arrow in the pictures from now on to denote a pair

of edges of opposite directions.

3.7 Cyclic graphs

Similarly, as for cyclic types, we introduce a type of graphs with a cyclic structure. A

graph is cyclic when it is in the connected component of an 𝑛-cycle graph in the Graph

type.

𝑛 − 1 0 1

𝑖 𝑖 − 1
rot𝑛−𝑖−1

rot rot

rot

rot𝑖−2

Let us consider the homomorphism rot ∶ Hom(𝐶𝑛, 𝐶𝑛) that acts similarly as the func-

tion pred in Definition 2.21. The homomorphism rot is an isomorphism on 𝐶𝑛, and then

we can iterate it 𝑘 times to obtain the isomorphism denoted by rot𝑘 . Any of these iso-

morphisms can be used to define what it means for a graph to be cyclic.

In particular, the cyclic structure for graphs can be defined as the property of pre-

serving the structure in 𝐶𝑛 induced by the morphism rot. We will make use of the same

notation as for cyclic sets to refer to cyclic graphs.

54 Graphs in Univalent Mathematics

Definition 3.19. A graph 𝐺 is considered to be cyclic if the type CyclicGraph(𝐺) is inhabited.

CyclicGraph(𝐺) ∶≡ ∑
(𝜑 ∶ Hom(𝐺,𝐺))

∑
(𝑛 ∶ N)

isCyclic(𝐺, 𝜑, 𝑛),

where

isCyclic(𝐺, 𝜑, 𝑛) ∶≡ ‖(𝐺, 𝜑) = (𝐶𝑛, rot)‖.

3.8 The identity type on graphs

For any element, 𝑥 of a groupoid type, 𝑋 , the type Aut𝑋 (𝑥) ∶≡ (𝑥 = 𝑥) has a group

structure given by reflexivity, symmetry, and path composition. Applying this definition

to the groupoid of graphs, the equivalence principle of Theorem 3.7 gives that for any

graph 𝐺, we identify Aut(𝐺) with its automorphisms, 𝐺 ≅ 𝐺. This allows us to compute

Aut(𝐺) ∶≡ 𝐺 ≅ 𝐺 in the examples which follow.

1. Aut(𝐵2) is the group of two elements. With only two edges in 𝐵2 and one node, we

can only have, besides the identity function, the function that swaps the two edges.

In general, the identity type 𝐵𝑛 = 𝐵𝑛 is equivalent to the group 𝑆𝑛, the group which

contains the permutations of 𝑛 elements.

2. Any isomorphism in Aut(𝐶𝑛) is completely determined by how it acts on a fixed

node in 𝐶𝑛, stated in the following lemma.

Lemma 3.20. Let 𝑛 ∶ N. If 𝑛 > 0, then there exists an equivalence between the type Aut(𝐶𝑛)
and the type J𝑛K.

Proof. The result follows from considering the isomorphism rot as introduced in Defini-

tion 3.19 and the isomorphisms rot𝑘 for 𝑘 < 𝑛. The equivalence between the type J𝑛K and
the collection of isomorphisms 𝐶𝑛 ≅ 𝐶𝑛 is then given by the following function 𝑓 and its

inverse 𝑔.

𝑓 ∶ J𝑛K → (𝐶𝑛 ≅ 𝐶𝑛). 𝑔 ∶ (𝐶𝑛 ≅ 𝐶𝑛) → J𝑛K.
𝑓 (𝑘, !) ∶≡ (rot𝑘 , 𝑝). 𝑔(ℎ, !) ∶≡ (𝑟 , 𝑠).

The term 𝑝 used to define 𝑓 is the proof that rot𝑘 is an isomorphism. The term 𝑟 is the

solution to the equation rot𝑟 = ℎ, and 𝑠 is the proof that 𝑟 < 𝑛. Now, since J𝑛K is a set, we

obtain a homotopy 𝑔 ∘ 𝑓 ∼ idJ𝑛K. The other homotopy condition, i.e. 𝑓 ∘ 𝑔 ∼ id(𝐶𝑛≅𝐶𝑛),
can be derived from the intermediate result stating that if rot𝑝 = rot𝑞 and 𝑝, 𝑞 < 𝑛, then
𝑝 = 𝑞. The elaboration of this proof is given in Example A.2. □

3.8 The identity type on graphs 55

The family of graphs 𝐶𝑛 is presented intentionally, serving as a crucial component

in defining a combinatorial map’s face, referenced in Section 4.4. The previous lemma

contributes to the proof that any graph’s combinatorial map face type is a set, further

detailed in Lemma 4.18.

4
Graph Maps

In this chapter, we explore the use of graph maps as an alternative approach to directly

working with surfaces on which graphs are embedded. Our aim is to characterise graphs

with no edge-crossing in the two-dimensional plane without needing to represent the

surface explicitly. This is motivated by the fact that the concept of surface is not well-

defined in homotopy type theory, and working with the real numbers can be laborious.

To avoid the complexities associated with the explicit notion of the surface in type

theory, we focus on representing the drawings of graphs in a more abstract way, which

is defining the type of graph maps, also called cellular embeddings, using their combi-

natorial characterisation (Stahl 1978). By leveraging the power of combinatorial repre-

sentation of graph maps, we provide a more comprehensive framework for analysing

graph planarity, rather than focussing exclusively on the geometric properties and how

two-edges cross in the plane, which can be more challenging to study.

4.1 Symmetrisation of graphs

Here we introduce the symmetrisation construction which allows us to establish two

key concepts related to graph maps, stars, and faces. The symmetrisation of a graph 𝐺,

denoted by Sym(𝐺), is one solution used here to encode how the edges are oriented in a

graph map. This construction is similar to the concept of half-edges for signed rotation

maps in the literature of embedded undirected graphs (Ellis-Monaghan and Moffatt 2013,

4.1 Symmetrisation of graphs 57

§1.1.8).

Definition 4.1. The symmetrisation of a graph 𝐺 is the graph Sym(𝐺) defined as follows.

Sym ∶ Graph → Graph.
Sym (𝐺) ∶≡ (N𝐺 , 𝜆𝑥𝑦.E𝐺(𝑥, 𝑦) + E𝐺(𝑦 , 𝑥), 𝑝𝐺 , 𝑟 (𝑞𝐺)),

where 𝑟 is a proof that the coproduct E𝐺(𝑥, 𝑦) + E𝐺(𝑦 , 𝑥) is a set using 𝑞𝐺 as a proof that

E𝐺(𝑥, 𝑦) is a set for all 𝑥, 𝑦 ∶ N𝐺 .

Every edge 𝑎 ∶ E𝐺(𝑥, 𝑦) in 𝐺 induces two edges in Sym(𝐺). The first is inl(𝑎) keeping
the same direction as 𝑎. This edge is denoted by ⃖⃖𝑎 for short. The second is inr(𝑎), which

goes in the opposite direction of 𝑎. This edge is denoted by ⃖⃗𝑎 for short. Since the nodes

of Sym(𝐺) are the same as the nodes of 𝐺, we will use the same notation for the nodes of

both graphs. The following is an immediate consequence of the induced edges in Sym(𝐺)
by the edges in 𝐺.

Lemma 4.2. Consider a graph 𝐺. For every walk 𝑤 in 𝐺, we can induce a corresponding walk

in the symmetrisation Sym(𝐺), denoted by sym(𝑤).

Proof. The function sym generates the induced walk in Sym(𝐺) from a walk 𝑤 in 𝐺.

sym ∶ ∏
(𝑥,𝑦∶N𝐺)

W𝐺(𝑥, 𝑦) → WSym(𝐺)(𝑥, 𝑦).

sym(𝑥, _, ⟨𝑥⟩) ∶≡ ⟨𝑥⟩.
sym(𝑥, 𝑦 , 𝑒 ⊙ 𝑤) ∶≡ inl(𝑒) ⊙ sym(_, 𝑦 , 𝑤). □

Lemma 4.3. The Sym operation on a graph 𝐺 preserves the following properties:

▷ connectedness of 𝐺 and

▷ finiteness of 𝐺.

Proof. Let us begin by proving the first property. Assume that 𝐺 is connected, and our

objective is to show that Sym(𝐺) is also connected. This can be established by showing

the existence of a function of type

‖ ∏
(𝑥,𝑦∶N𝐺)

W𝐺(𝑥, 𝑦)‖ → ‖ ∏
(𝑥,𝑦∶NSym(𝐺))

WSym(𝐺)(𝑥, 𝑦)‖ .

Since the fact that 𝐺 is connected is a proposition, we can construct such a function

using the elimination rule for propositional truncation and the function sym defined in

58 Graph Maps

Lemma 4.2 when applied to a walk in 𝐺. In general, for 𝐴 and 𝐵 types, a function of type

𝐴 → 𝐵 can be lifted ‖𝐴‖ → ‖𝐵‖ by similar reasoning.

On the other hand, to prove that Sym(𝐺) is finite when 𝐺 is finite, we only need to

consider the family of edges in Sym(𝐺). This family consists of finite coproducts, as it is

the coproduct of two finite sets. Furthermore, the set of nodes in Sym(𝐺) is identical to

the set of nodes in 𝐺, which is finite by assumption. □

G

x

a

b Sym(G)

←−a

←−
b

−→a

−→
b

y

z

x

y

z

Figure 4.1: On the left we show a part of a graph 𝐺 with two distinguished edges, 𝑎 and
𝑏. On the right we show the corresponding symmetrisation, Sym(𝐺), including the two
edges, ⃖⃖𝑎 and ⃖⃗𝑎 induced by 𝑎, and similarly, ⃖⃖𝑏 and ⃖⃗𝑏 induced by 𝑏. For brevity, we will only
draw a segment representing related edges in the symmetrisation, as in Figure 4.2 (b).

4.2 Stars and locally finite graphs

Definition 4.4. The star at a node 𝑥 in a graph 𝐺 is the type Star𝐺(𝑥).

Star𝐺(𝑥) ∶≡ ∑
(𝑦 ∶ N𝐺)

ESym(𝐺)(𝑥, 𝑦). (4.2–1)

Let 𝑦 be a node in𝐺. If 𝑒 ∶ E𝐺(𝑥, 𝑦), then the pair (𝑦 , inl(𝑒)) is referred to as an outgoing

edge in the start at 𝑥 . Similarly, if 𝑒 ∶ E𝐺(𝑦 , 𝑥), then the pair (𝑦 , inr(𝑒)) is referred to as

an incoming edge in the start at 𝑥 . An incident edge of 𝑥 is either an outgoing or an

incoming edge in the star at 𝑥 . The cardinality of the set of incident edges at 𝑥 is known

as the valency of 𝑥 .

Example 4.5. The graph 𝐶𝑛 is a basic example of a planar graph and a building block to

construct more complex planar graphs. To enable this construction, we need to characterise

the stars at any node in 𝐶𝑛 for 𝑛 > 0. The case when 𝑛 is zero is trivial, as the star at any node

in the empty graph is empty.

As 𝐶𝑛 is a graph consisting of 𝑛 nodes in J𝑛K arranged in a polygon/cycle, one can asso-

ciate the previous and the next node in the cycle, pred(𝑥) and suc(𝑥), for each node 𝑥 in 𝐶𝑛,
respectively. We will prove that the valency of any node in 𝐶𝑛 is 2 by proving that there ex-

ists an equivalence 𝑓𝑥 from Star𝐶𝑛(𝑥) to J2K for every node 𝑥 in 𝐶𝑛. The candidate to be the

inverse of 𝑓𝑥 is the function 𝑔𝑥 defined below.

4.3 The type of combinatorial maps 59

𝑓𝑥 ∶ Star𝐶𝑛(𝑥) → J2K. 𝑔𝑥 ∶ J2K → Star𝐶𝑛(𝑥).
𝑓𝑥 (𝑦 , inl(𝑝)) ∶≡ (0, !). 𝑔𝑥 (0, !) ∶≡ (suc(𝑥), inl(𝑎+)).
𝑓𝑥 (𝑦 , inr(𝑝)) ∶≡ (1, !). 𝑔𝑥 (1, !) ∶≡ (pred(𝑥), inr(𝑎)).

(4.2–2)

One can easily prove that both E𝐶𝑛(pred(𝑥), 𝑥) and E𝐶𝑛(𝑥, suc(𝑥)) are contractible types.

Therefore, without loss of generality, we write 𝑎+ to denote the edge from 𝑥 to suc(𝑥) and 𝑎
to denote the edge from pred(𝑥) to 𝑥 in 𝐶𝑛.

To complete the proof that 𝑓𝑥 is an equivalence, we need to show that 𝑓𝑥 ∘ 𝑔𝑥 ∼ idJ2K and

𝑔𝑥 ∘ 𝑓𝑥 ∼ idStar𝐶𝑛 (𝑥). The first is immediate by case analysis. For example, (𝑓𝑥 ∘ 𝑔𝑥)((0, !)) ≡
𝑓𝑥(𝑔𝑥((0, !))) ≡ 𝑓𝑥(suc(𝑥), inl(𝑝)) ≡ (0, !), and one can similarly show that 𝑓𝑥 ∘𝑔𝑥((1, !)) = (1, !).

To prove the second part, we show that 𝑔𝑥 ∘ 𝑓𝑥 ∼ idStar𝐶𝑛(𝑥) by performing a case analysis

on the second component of a term (𝑦 , 𝑧) ∶ Star𝐶𝑛(𝑥). Specifically, we consider whether 𝑧 is

either inl(𝑢) or inr(𝑣). For the first case, we need to prove that 𝑔𝑥(𝑓𝑥((𝑦 , inl(𝑢)))) = (𝑦, inl(𝑢)).
Evaluating the expression of the composite, we obtain an equality with the question mark

below, which we need to show one can inhabit.

𝑔𝑥(𝑓𝑥((𝑦 , inl(𝑢)))) ≡ 𝑔𝑥((0, !)) ≡ (suc(𝑥), inl(𝑎+)) ?= (𝑦, inl(𝑢)).

However, we can establish the required equality by noting that E𝐶𝑛(𝑥, suc(𝑥)) is con-

tractible. This implies that ESym(𝐶𝑛)(𝑥, suc(𝑥)) is a proposition, which in turn implies that

𝑎+ = 𝑢 and that we have 𝑦 = suc(𝑥). Similarly, we can show that 𝑔𝑥(𝑓𝑥((𝑦 , inr(𝑣)))) =
(𝑦, inr(𝑣)). This completes the proof that 𝑓𝑥 is an equivalence and shows that Star𝐶𝑛(𝑥) has
only two elements.

Lemma 4.6. If 𝐺 is a (finite) graph, then the type Star𝐺(𝑥) is (finite) set.

Proof. The conclusion follows since the base type in Definition 4.4 is the set of edges in

the graph, and each of the fibres of the Σ-type is a set since they are coproducts of sets.

In particular, if the graph is finite, then all the types appearing in the type Star𝐺(𝑥) are
finite sets, and then our conclusion follows. □

Definition 4.7. A graph 𝐺 is locally finite if the set of incident edges at the star at any node 𝑥
in 𝐺, is a finite set.

4.3 The type of combinatorial maps

A combinatorial map is a specific type of data structure that is used to represent a graph

that is embedded in a surface. This data structure offers a powerful substitute to tradi-

tional analytic/geometric techniques for representing such embeddings. Unlike geomet-

ric methods, combinatorial maps allow us to represent the combinatorial structure of the

60 Graph Maps

topological embedding without the need to explicitly work with the surface in which the

graph is embedded.

In this work, we focus on defining the type of combinatorial maps in type theory;

see Definition 4.8. We then turn our attention to a particular kind of embedding, cel-

lular embeddings. The reason for this focus is that all graph embeddings in the two-

dimensional plane are cellular embeddings. Therefore, drawing graphs in the plane with-

out edge crossings can be represented by cellular embeddings.

Cellular embeddings are particularly interesting because they can be characterised

combinatorially up to isotopy by the cyclic order they induce in the set of nodes around

each node in the graph (Gross and Tucker 1987), as illustrated in Figure 4.2 (b). This

characterisation is minimal as no additional information is required beyond the cyclic

orders.

One observation is that not all finite graphs can be drawn in the plane, but all finite

graphs can be drawn on some orientable surface (Stahl 1978). The literature in graph

theory has proven that a graph cannot have a cellular embedding on any surface if it has

at least one node of infinite valency (Mohar 1988, Proposition §3.2). As our focus is on

cellular embeddings, wewill only examine locally finite graphs throughout the document.

a

d

x

b

i

y

g

h

f

e

(a) Graph 𝐺.

�� �� ����
� � �

���
���

��
���

(b) Embedded graph Sym(𝐺).

�
�
� �

(c) Rotation system at 𝑎.
Figure 4.2: We show in (a) the drawing of a graph 𝐺 with edge crossings. A representation
of the graph 𝐺 embedded in the sphere is shown in (b). The corresponding faces of the
graph embedding shaded in (b) are named 𝐹𝑖 for 𝑖 from 1 to 6. It is shown in (c) with
fuchsia colour the incident edges at the node 𝑎 in Sym(𝐺). The rotation system at 𝑎,
that is, the cyclic set denoted by (𝑏𝑎 𝑎𝑑 𝑎𝑥), is shown in green colour. The dashed lines
represent edges not visible to the view.

Definition 4.8. Map(𝐺) is the type of combinatorial maps (maps for short) for a graph 𝐺
defined as follows:

Map(𝐺) ∶≡ ∏
(𝑥 ∶N𝐺)

Cyclic(Star𝐺(𝑥)).

4.4 The type of faces 61

Lemma 4.9. If the type Map(𝐺) is inhabited, then the graph 𝐺 is locally finite.

Lemma 4.10. The type of maps for a (finite) graph forms a (finite) set.

Proof. The type Map(𝐺) is a set using the closure property of Π-types under (finite) sets.

The type Cyclic(Star𝐺(𝑥)) is a finite set by Lemma 2.27. □

For brevity, we use from now the variable M to denote a map of the graph 𝐺.

Example 4.11. The possible maps for the cycle 𝐶𝑛 for 𝑛 > 0 can be listed considering the cyclic

structures of the two-point type. These correspond to the cyclic structures of the stars of 𝐶𝑛,
see the correspondence exhibited in Example 4.5. The two maps are given by the following

functions.

▷ 𝑐1 ∶≡ ⟨J2K, pred, 2⟩ and
▷ 𝑐2 ∶≡ ⟨J2K, suc, 2⟩.

4.4 The type of faces

In the context of cellular embeddings, faces correspond to regions homeomorphic to the

open disk. Combinatorially, a face associated to a graph map consists of a cyclic walk

in the embedded graph where no edges are inside the cycle, and no node occurs twice.

Definition 4.14 is our attempt to make this intuition formal.

The first component of a face, as in Definition 4.14, captures the concept that its edges

form a cyclic walk in the embedded graph. While working with such walks would typ-

ically necessitate a fixed starting point, as illustrated in Figure 4.3, this point does not

contribute to the face’s combinatorial structure. Hence, we can employ a cyclic graph to

represent all such cyclic walks, thereby obviating the need for any distinguished starting

point in such walks.

Figure 4.3: Example of cyclic walks on a face with different starting points.

The second component, the map-compatibility property, explicitly defines the “no

edges on the inside” criterion for a face. This criterion is captured by the fact that each

pair of consecutive edges on the face is a successor-predecessor pair in the cyclic order of

the edges around their common node. In other words, when we move along the edges

62 Graph Maps

of the face either clockwise or counterclockwise, we will never come across an edge that

goes through the inside of the face. As our graphs are directed, we must traverse the

edges in the symmetrisation of the graph rather than the graph itself.

The following two definitions are used in the definition of the type of faces.

Definition 4.12. A graph homomorphism ℎ from 𝐺 to 𝐻 given by (𝛼, 𝛽) is edge-injective,
denoted by isEdgeInj(ℎ), if the function 𝑓 defined below is an embedding.

𝑓 ∶ ∑
(𝑥,𝑦 ∶ N𝐺)

E𝐺(𝑥, 𝑦) → ∑
(𝑥,𝑦 ∶ N𝐻)

E𝐻 (𝑥, 𝑦).

𝑓 (𝑥, 𝑦 , 𝑒) ∶≡ (𝛼(𝑥), 𝛼(𝑦), 𝛽(𝑥, 𝑦 , 𝑒)).

Definition 4.13. The function flip swaps the direction of an edge in Sym(𝐺).

flip ∶ ∏
(𝑥,𝑦 ∶N𝐺)

ESym(𝐺)(𝑥, 𝑦) → ESym(𝐺)(𝑦 , 𝑥).

flip (𝑥, 𝑦 , inl(𝑒)) ∶≡ inr(𝑒).
flip (𝑥, 𝑦 , inr(𝑒)) ∶≡ inl(𝑒).

(4.4–3)

Since the first two arguments of the function flip are inferrable from the third argument, we

will omit them below.

Definition 4.14. The type Face(𝐺,M) is the type of faces of a combinatorial map M of a

graph 𝐺. A face of type Face(𝐺,M) consists of:
1. a cyclic graph 𝐴,

2. a graph homomorphism ℎ given by (𝛼, 𝛽) of type Hom(𝐴, Sym(𝐺)), such that

(a) ℎ is edge-injective,

(b) ℎ ismap-compatible, denoted by isMapComp(ℎ), meaning that ℎ is star-compatible

and corner-preserving, properties defined below, respectively.

▷ ℎ is star-compatible, if the condition in (4.4–4) holds for every 𝑥 ∶ N𝐴,

isStarComp(ℎ)(𝑥) ∶≡ ‖Star𝐺(𝛼(𝑥))‖ → ‖Star𝐴(𝑥)‖. (4.4–4)

▷ ℎ is corner-compatible, if there is evidence that ℎ is compatible with the edge-

ordering given by the map M at the node 𝛼(𝑥) and the edge ordering coming

from the star at that node 𝑥 in 𝐴. To state this property, let us consider the

following notation.

– The previous edge at 𝑥 is the edge 𝑎 ∶ EN𝐴(pred(𝑥), 𝑥),
– the edge after 𝑎𝑥 is the edge denoted by 𝑎+𝑥

of type EN𝐴(𝑥, suc(𝑥)), as illustrated in Figure 4.4, and

4.4 The type of faces 63

– since M(𝛼(𝑥)) is a triple like ⟨𝑓 , 𝑚, !⟩ of type

Cyclic(Star𝐺(𝛼(𝑥)))

for some function 𝑓 ∶ Star𝐺(𝛼(𝑥)) → Star𝐺(𝛼(𝑥)) and some number 𝑚
(the cardinality of the star at 𝛼(𝑥)), we abuse notation and use M(𝛼(𝑥))
to denote the function 𝑓 . See more on the cyclic type in Definition 2.21.

isCornerComp(ℎ)(𝑥) ∶≡M(𝛼(𝑥))((𝛼(pred(𝑥)), flip(𝛽(pred(𝑥), 𝑥, 𝑎))))
=Star𝐺 (𝛼(𝑥)) (𝛼(suc(𝑥)) , 𝛽(𝑥, suc(𝑥), 𝑎+)).

(4.4–5)

It should be noted that the truncation in (4.4–4) is intentional. By incorporating this,

we aim to emphasise that if graph 𝐺 has at least one edge at a given node, then a face

covering that node, represented by the cyclic graph 𝐴, must have at least one edge at the

corresponding node as well. Without this condition, the type of faces could be inhabited

with empty faces using𝐴 as the cyclic graphwithout edges (𝐶0) at every node of the graph

𝐺. In Figure 4.4, we illustrate a portion of the required data to define a face 𝐹1 for the map

of graph 𝐺 given in Figure 4.2 (b).

a

x

suc(x)

pred(x)
A Sym(G)

α(suc(x))

α(pred(x))

α(x)

a+

β(a)

β(a+)
(α, β)

F
h

Figure 4.4: On the right side, we shade the face 𝐹 of the graph 𝐺 embedded in the sphere
given in Figure 4.2. We have the cycle graph 𝐶3 and ℎ ∶ Hom(𝐶3, Sym(𝐺)) given by (𝛼, 𝛽)
on the left side. 𝐶3 and ℎ can be used to define the face 𝐹 using 𝐶3 as the graph 𝐴 in
Definition 4.14.

Lemma 4.15. For a graph homomorphism, being edge-injective is a proposition.

Proof. Edge-injectivity is a proposition by iteratively applying the closure of Π-types to

propositions. Ultimately, we need to show that for any two terms (𝑥, 𝑦 , 𝑒1) and (𝑥′, 𝑦 ′, 𝑒2)
in Σ𝑥,𝑦 ∶ N𝐺E𝐺(𝑥, 𝑦), the identity type (𝑥, 𝑦 , 𝑒1) = (𝑥′, 𝑦 ′, 𝑒2) is a proposition. This is true

because the Σ-type in question is a set, and sets are closed under Σ-types, given that both

N𝐺 and E𝐺(𝑥, 𝑦) are sets. □

64 Graph Maps

Lemma 4.16. For a graph homomorphism, being map-compatible is a proposition.

Proof. For a graph homomorphism ℎ, map-compatibility decomposes into star-compatibility

and corner-compatibility. We must show each type in this product is a proposition. Star-

compatibility is a proposition as it involves a function type with a propositional codomain

—the propositional truncation of a set. Corner-compatibility is also a proposition, being

a function type whose codomain is the identity type on Star𝐺(𝛼(𝑥)) at 𝛼(𝑥). This identity
type is a proposition since stars are sets, as established in Lemma 4.6. □

We devote the rest of this section to proving that the type of faces forms a set in

Lemma 4.18. This claim rests on the fact that (i) the type of cyclic graphs forms a set,

(ii) the type of graph homomorphisms forms a set, and (iii) the conditions, edge-injective

andmap-compatible in, Definition 4.14 are propositions. Onemight suspect that this type

forms a groupoid from the previous facts. However, the edge-injectivity property of the

underlying graph homomorphism of each face suffices to show that the type of faces is a

set.

Lemma 4.17. Let 𝑓 and 𝑔 be edge-injective graph homomorphisms from 𝐶𝑛 to a graph 𝐺 and

𝑛 > 0. Then the type Σ𝑒∶𝐶𝑛=𝐶𝑛 (tr𝜆𝑋 .Hom(𝑋 ,𝐺)(𝑒, 𝑓) = 𝑔) is a proposition.

𝐶𝑛 𝐶𝑛

𝐺
𝑓

𝑒

𝑔

Proof. The result follows from the proof that the Σ-type in question is equivalent to a

proposition. The corresponding equivalence is given by Calculation (4.4–6), in which we

use some known results about Univalence and Lemma 3.20, as in the very last step.

∑
(𝑒 ∶ 𝐶𝑛 = 𝐶𝑛)

(tr𝜆𝑋 .Hom(𝑋 ,𝐺)(𝑒, 𝑓) = 𝑔) ≃ ∑
(𝑒 ∶ 𝐶𝑛 = 𝐶𝑛)

(𝑓 = 𝑔 ∘ coe (𝑒)) (4.4–6a)

≃ ∑
(𝑒 ∶ 𝐶𝑛 ≃ 𝐶𝑛)

(𝑓 = 𝑔 ∘ 𝑒) (4.4–6b)

≃ ∑
(𝑘 ∶ J𝑛K)(𝑓 = 𝑔 ∘ rot𝑘). (4.4–6c)

It remains to show that the last equivalent type is a proposition. Let (𝑘1, 𝑝1), and
(𝑘2, 𝑝2) be of type Σ𝑘∶J𝑛K(𝑓 = 𝑔 ∘ rot𝑘). We must show that (𝑘1, 𝑝1) is equal to (𝑘2, 𝑝2).
Since Hom(𝐶𝑛, 𝐺) is a set, we only need to prove that 𝑘1 is equal to 𝑘2. To show that,

Lemma 3.20 is used in the proof. By computing the identity type of graph isomorphisms,

we obtain that 𝑝−11 ⋅ 𝑝2 of type 𝑔 ∘ rot𝑘1 = 𝑔 ∘ rot𝑘2 is equivalent to having two equalities,

4.4 The type of faces 65

▷ 𝑝 ∶ 𝜋1(𝑔 ∘ rot𝑘1) = 𝜋1(𝑔 ∘ rot𝑘2) and

▷ 𝑞 ∶ tr
𝜆𝑒.∏𝑥,𝑦 ∶ N𝐶𝑛 E𝐶𝑛 (𝑥,𝑦)→E𝐺(𝑒(𝑥),𝑒(𝑦))(𝑝, 𝜋2(𝑔 ∘ rot𝑘1)) = 𝜋2(𝑔 ∘ rot𝑘2).

By characterising the identity of the Σ-types and with the previous equalities, 𝑝 and

𝑞, one can get another equality 𝑟 of the type in (4.4–7) for 𝑥, 𝑦 ∶ N𝐶𝑛 and 𝑒 ∶ E𝐶𝑛(𝑥, 𝑦).

((𝜋1(𝑔 ∘ rot𝑘𝑖))(𝑥), (𝜋1(𝑔 ∘ rot𝑘𝑖))(𝑦), (𝜋2(𝑔 ∘ rot𝑘𝑖))(𝑥, 𝑦 , 𝑒)) =
((((𝜋1(𝑔))(𝜋1(rot𝑘𝑖)))(𝑥)), (((𝜋1(𝑔))(𝜋1(rot𝑘𝑖)))(𝑦)), (((𝜋2(𝑔))(𝜋2(rot𝑘𝑖)))(𝑥, 𝑦 , 𝑒))).

(4.4–7)

Now since the graph homomorphism 𝑔 is edge-injective, applying Definition 4.12 to the

equality 𝑟 , one gets an equality 𝑟 ′ of the type below in (4.4–8). By applying Lemma 3.20

to 𝑟 ′, we conclude that 𝑘1 is equal to 𝑘2 from which the required conclusion follows.

((𝜋1(rot𝑘1))(𝑥), (𝜋1(rot𝑘1))(𝑦), (𝜋2(rot𝑘1))(𝑥, 𝑦 , 𝑒)) =
((𝜋1(rot𝑘2))(𝑥), (𝜋1(rot𝑘2))(𝑦), (𝜋2(rot𝑘2))(𝑥, 𝑦 , 𝑒)). □

(4.4–8)

Lemma 4.18. The type of faces for a graph map forms a set.

Proof. Let 𝐹1 and 𝐹2 be two faces of a map M. We will show that the type 𝐹1 = 𝐹2 is a

proposition in Calculation (4.4–9), with the following conventions.

▷ A is the cyclic graph related to the face 𝐹1,

A ∶≡ (𝐴, (𝜑𝐴, 𝑛, isCyclic(𝐴, 𝜑𝐴, 𝑛))).

▷ B is the cyclic graph related to the face 𝐹2,

B ∶≡ (𝐵, (𝜑𝐵, 𝑚, isCyclic(𝐵, 𝜑𝐵, 𝑚))).

We first unfold the definitions of 𝐹1 and 𝐹2 in (4.4–9a), and simplifying the propo-

sitions in Equivalence (4.4–9b), namely isEdgeInj, isMapComp, and isCyclic. Then, by

expanding the definitions of A and B in (4.4–9c), and simplifying the propositions in

terms such as being a cyclic graph, one gets Equivalence (4.4–9d). Next, we reorder in

Equivalence (4.4–9d) the tuple equalities to create an opportunity for path induction to-

ward the application of Lemma 4.17. Now, since we want to prove that the type of faces

is a set, and that itself is a proposition, the truncation elimination principle is applied to

the propositions isCyclic(𝐴, 𝜑𝐴, 𝑛) and isCyclic(𝐴, 𝜑𝐴, 𝑛). Then, the graphs 𝐴 and 𝐵 be-

come, respectively, 𝐶𝑛 and 𝐶𝑚 in Equivalence (4.4–9e). Equivalence (4.4–9f) follows from

the characterisation of the identity type between tuples in a nested Σ-type.

66 Graph Maps

(𝐹1 = 𝐹2) ≡
((A, 𝑓 , isEdgeInj(𝑓), isMapComp(𝑓)) = (B, 𝑔, isEdgeInj(𝑔), isMapComp(𝑔))) ≃

(4.4–9a)

((A, 𝑓) = (B, 𝑔)) ≡ (4.4–9b)

((𝐴, (𝜑𝐴, 𝑛, isCyclic(𝐴, 𝜑𝐴, 𝑛))), 𝑓) = ((𝐵, (𝜑𝐵, 𝑚, isCyclic(𝐵, 𝜑𝐵, 𝑚))), 𝑔) ≃ (4.4–9c)

((𝐴, (𝜑𝐴, 𝑛)), 𝑓) = ((𝐵, (𝜑𝐵, 𝑚)), 𝑔) ≃ (4.4–9d)

((𝑛, ((𝐶𝑛, 𝑓), 𝜑𝐶𝑛)) = (𝑚, ((𝐶𝑚, 𝑔), 𝜑𝐶𝑚))) ≃ (4.4–9e)

∑
(𝑝∶𝑛=𝑚)

∑
((𝑒′,−)∶∑(𝑒∶𝐶𝑛=𝐶𝑚) tr𝜆𝑋 .Hom(𝑋 ,Sym(𝐺))(𝑒,𝑓)=𝑔)

tr𝜆𝑋 .Hom(𝑋 ,𝑋)(𝑒′, 𝜑𝐶𝑛) = 𝜑𝐶𝑚 . (4.4–9f)

It only remains to show that Equivalence (4.4–9f) is a proposition. We show this by

proving that each type in Equivalence (4.4–9f) is a proposition. First, we unfold the cyclic

graph definition for 𝐶𝑛 and 𝐶𝑚, using Definition 3.19. Second, a case analysis on 𝑛 and

𝑚 is performed. This approach creates four cases where 𝑛 and 𝑚 can be zero or positive.

However, we only keep the cases where 𝑛 and 𝑚 are structurally equal. One can show

that the other cases are imposible with an equality between 𝑛 and 𝑚.

1. If 𝑛 and 𝑚 are zero, then, by definition, 𝐶𝑛 and 𝐶𝑚 are the one-point graph. In

this case, the conclusion follows easily. The base type 𝑛 = 𝑚 of the total space

in Equivalence (4.4–9f) is a proposition because N is a set. The type 𝐶0 = 𝐶0 is

a proposition, since it is contractible. The identity graph homomorphism is the

unique automorphism of 𝐶0. Lastly, because Hom(𝐶𝑛, 𝐶𝑛) is a set, the remaining

type of the Σ-type is a proposition, completing the proof obligations.

2. If 𝑛 and 𝑚 are positive, we reason similarly. The type 𝑛 = 𝑚 is a proposition. By

path induction on 𝑝 ∶ 𝑛 = 𝑚, the second base type of the Σ-type becomes the type

in (4.4–10)

∑
(𝑒 ∶ 𝐶𝑛=𝐶𝑛)

(tr𝜆𝑋 .Hom(𝑋 ,Sym(𝐺))(𝑒, 𝑓) = 𝑔), (4.4–10)

which is a proposition by Lemma 4.17. The remaining type of the Σ-type is a propo-

sition, because Hom(𝐶𝑛, 𝐶𝑛) is a set. Therefore, the Σ-type in Equivalence (4.4–9f)

is a proposition as required. □

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.isSet.html#860
https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.isSet.html#2790

4.4 The type of faces 67

4.4.1 The finiteness property

In the previous section, we showed that the type of faces for any graphwith amap forms a

set; see Lemma 4.18. The type of faces for any finite graph forms a finite set. Surprisingly,

our proof for this fact is somewhat technical and involves repeatedly applying finiteness

results and finding some convenient equivalences. Therefore, we have split the result

into several lemmas below to ease the length of the proof. In short, the following lemmas

primarily focus on massaging the inner types in the type of faces to find opportunities to

apply results such as Lemmas 2.12 and 2.13.

Here and below, let 𝐺 be a finite graph and M be a graph map for 𝐺. The number of

nodes and edges of 𝐺 are denoted by 𝑛 and 𝑚, respectively. The type of faces of 𝐺 given

by M has been spelled out in (4.4–11). The names of the variables in the type are chosen

to match the names used in Definition 4.14.

Face(𝐺,M) ∶≡

∑
⎛
⎜
⎜
⎜
⎝

(𝐴,(𝑝,(ℎ,!)))∶ ∑
(𝐴∶Graph)

(CyclicGraph(𝐴) × ∑
(ℎ∶Hom(𝐴,Sym(𝐺)))

isEdgeInj(ℎ))
⏟⏟⏟

𝐶

⎞
⎟
⎟
⎟
⎠

𝐵((𝐴,(𝑝,(ℎ,!))))
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∏
(𝑥∶N𝐴)

isMapComp(ℎ)(𝑥).

(4.4–11)

The notion of faces of graph maps yields an alternate approach to proving results

concerning graphs, such as the formulation of Euler’s characteristic number for finite

graphs, see Section 6.3. Here, we prove the finiteness of the type of faces for any finite

graph, from where one, in principle, can compute its cardinality, and therefore the Euler

characteristic number associated to the graph.

Lemma 4.19. Suppose 𝐴 is a cyclic graph according to the definition provided in Defini-

tion 3.19. Then, 𝐴 is a finite graph. Furthermore, it follows that the set of nodes N𝐴 and the

set of nodes N𝐵 have the same cardinality.

Lemma 4.20. Let 𝑚 ∶ N and 𝐴 be a finite graph of at most 𝑚 nodes. Then, CyclicGraph(𝐴)
is a finite type.

Proof. Unfolding the main definition for cyclic graphs and considering that the set of

nodes of 𝐴 is upper bounded by 𝑚, one obtains an equivalent nested Σ-type as illustrated

in (4.4–12).

68 Graph Maps

CyclicGraph(𝐴) ≃ ∑
((𝑛,!)∶J𝑚K) ∑

(𝜑∶Hom(𝐴,𝐴))
‖ (𝐶𝑛, rot) = (𝐴, 𝜑) ‖ (4.4–12)

≃ ∑
((𝑛,!)∶J𝑚K) ∑

(𝜑∶Hom(𝐴,𝐴))
‖ ∑
(𝛼∶𝐶𝑛≅𝐴)

tr 𝜆𝑋 .Hom(𝑋 ,𝑋)(𝛼, rot) = 𝜑 ‖ .

(4.4–13)

The two base types in the Σ-types above are clearly finite, namely, the 𝑚 point type and

the set of graph endo homomorphisms on 𝐴. However, less obvious is the finiteness of

the type truncated. To see that, we unfold the type inside the truncation, which is a

subtype of the finite type of isomorphisms between 𝐶𝑛 and 𝐴. There are only finitely

many isomorphisms between 𝐶𝑛 and 𝐴, one for each node in 𝐴. Therefore, the type

truncated in (4.4–13) is finite. □

Lemma 4.21. Let 𝐺 and 𝐴 be two finite graphs, then the type of edge injective homomor-

phisms in (4.4–14) is finite.

∑
(ℎ ∶ Hom(𝐴, Sym(𝐺)))

isEdgeInj(ℎ). (4.4–14)

Proof. The set of graph homomorphisms between the finite graph 𝐴 and Sym(𝐺) is fi-

nite by Lemma 3.4. The functor Sym preserves the finiteness of 𝐺, then Sym(𝐺) is also

finite. On the other hand, to see that each proposition isEdgeInj(ℎ) is finite, we should

unfold its definition to check every inner type is finite. Let ℎ be the pair (𝛼, 𝛽) of type

Hom(𝐴, Sym(𝐺)).

isEdgeInj((𝛼, 𝛽)) ∶≡ ∏
(𝑥,𝑦 ,�̂� , ̂𝑦 ∶𝑁𝐴)

∏
(𝑒 ∶ E𝐴(𝑥,𝑦))

∏
(̂𝑒 ∶ E𝐴(�̂� , ̂𝑦))

((𝛼(𝑥), 𝛼(𝑦), 𝛽(𝑥, 𝑦 , 𝑒)) = ∑
(𝑥,𝑦∶N𝐺)

ESym(𝐺)(𝑥, 𝑦)(𝛼(�̂�), 𝛼(̂𝑦), ̂𝑒))

→ ((𝑥, 𝑦 , 𝑒) = ∑
(𝑥,𝑦∶N𝐺)

E𝐴(𝑥, 𝑦)(�̂� , ̂𝑦 , ̂𝑒)).

(4.4–15)

Since 𝐺 is a finite graph, the type N𝐺 is finite, and consequently, the type E𝐺(𝑥, 𝑦) is
finite for any pair of nodes 𝑥, 𝑦 . Similarly, we consider the nodes and edges of the graph

𝐴. The other types in (4.4–15) are finite since they are decidable equalities on the naturals

and Π-types preserve finiteness. □

4.4 The type of faces 69

Lemma 4.22. Let 𝐴 be a cyclic graph, 𝐵 be a finite graph with 𝑛 nodes and 𝑚 edges, and ℎ be

an edge-injective graph homomorphism from 𝐴 to 𝐵. Then, the following type is inhabited.

∑
(((#N𝐴 ,!),(#E𝐴 ,!))∶isFiniteGraph(𝐴))

(#N𝐴 ≤ 𝑛) × (#E𝐴 ≤ 𝑚).

Consider the following types for the remainder of this section. The type 𝐶 as intro-

duced in (4.4–11) and the type family 𝐷 over 𝐶 are defined below in (4.4–17).

𝐶 ∶≡ ∑
(𝐴∶Graph)

(CyclicGraph(𝐴) × ∑
(ℎ∶Hom(𝐴,Sym(𝐺)))

isEdgeInj(ℎ)) . (4.4–16)

𝐷((𝐴, -)) ∶≡ ∑
(((#N𝐴,!),(#E𝐴,!))∶isFiniteGraph(𝐴))

#N𝐴 ≤ 𝑚 × #E𝐴 ≤ 𝑚, (4.4–17)

where #N𝐴, #E𝐴 denotes the cardinality of the sets of nodes and edges in 𝐴 and 𝑚 is the

number of edges in 𝐺.

Lemma 4.23. The total space Σ𝑥∶𝐶 𝐷(𝑥) in Lemma 4.24 is finite.

Proof. The type Σ𝑥∶𝐶𝐷(𝑥) is equivalent to the type given in (4.4–18), which is obtained

by a convenient rearrangement of the inner types in Σ𝑥∶𝐶𝐷(𝑥).

∑
((𝐴,-) ∶ 𝑃)

∑
(ℎ ∶ Hom(𝐴,Sym(𝐺)))

isEdgeInj(ℎ). (4.4–18)

Where

𝑃 ∶≡ ∑
((𝐴,−) ∶𝑄)

CyclicGraph(𝐴) (4.4–19)

and

𝑄 ∶≡ ∑
(𝐴∶Graph)

𝐷((𝐴, −)). (4.4–20)

We must break down the proof into three parts and apply previous lemmas. First, we

prove that the type 𝑄 is finite. Second, the type 𝑃 is finite. Finally, we show that the

remaining type in (4.4–18) is finite, completing the proof, which follows from the closure

of Σ-types under finite types.

70 Graph Maps

(i) The type 𝑄 is equivalent to the type

∑
(((𝑉𝐴,!),(𝐸𝐴,!))∶(∑

(𝑉𝐴 ∶ U)
∑

((#𝑉𝐴,!)∶isFinite(𝑉𝐴))
#𝑉𝐴≤𝑚)×(∑

(𝐸𝐴 ∶ U)
∑

((#𝐸𝐴,!)∶isFinite(𝐸𝐴))
#𝐸𝐴≤𝑚))

(𝐸𝐴 → 𝑉𝐴) × (𝐸𝐴 → 𝑉𝐴), (4.4–21)

considering the equivalence in (4.4–22) which allows us to replace the type Graph

(visible as the base type in (4.4–20)) by the type of set-level displayed graphs.

Graph ≃ ∑
(𝑉 ,𝐸∶𝒰)

(𝐸 → 𝑉) × (𝐸 → 𝑉) × isSet(𝑉) × isSet(𝐸). (4.4–22)

The resulting Σ-type in (4.4–21) has as its basis the product of two types, which are

finite types by Corollary 2.19. The remainder type, (𝐸𝐴 → 𝑉𝐴) × (𝐸𝐴 → 𝑉𝐴), is
finite since 𝑉𝐴 and 𝐸𝐴 are finite sets. We conclude that the type 𝑄 is finite.

(ii) The type 𝑃 can be seen as the type of all cyclic graphs with a number of edges

bounded by 𝑚. Since the Σ-types are closed under finite types, the type 𝑃 is finite

because 𝑄 is finite and CyclicGraph(𝐴) is a finite type by Lemma 4.20.

(iii) The remainder type to be shown is finite of Σ𝑥∶𝐶𝐷(𝑥) is

∑
((𝐴,-) ∶ 𝑃)

∑
(ℎ ∶ Hom(𝐴,Sym(𝐺)))

isEdgeInj(ℎ) (4.4–23)

which is finite by Lemma 4.21. □

Lemma 4.24. The type 𝐶 in (4.4–16) is finite.

Proof. The finiteness of 𝐶 can be shown by applying Lemma 2.12-(𝑖𝑣) using as the input

the type 𝐶 and the type family 𝐷 over 𝐶 defined below in (4.4–17). The type 𝐶 is then

finite if we show that the following three conditions are satisfied:

(i) the type family 𝐷 over 𝐶 is a family of finite types,

(ii) the type Σ𝑥∶𝐶 𝐷(𝑥) is finite, and
(iii) there exists a section of type Π𝑥∶𝐶 𝐷(𝑥).

To show (i), let (𝐴, −) be of type 𝐶 . Then, 𝐴 is a cyclic graph and so the type

isFiniteGraph(𝐴) is contractible by Lemma 4.19. Therefore, each type in (4.4–17) is a

decidable proposition, including the two inequalities related to the cardinality of the sets

N𝐴 and E𝐴. By closure of the Σ-types into finite types, the type 𝐷((𝐴, −)) is a finite type.

To show (𝑖𝑖) and (𝑖𝑖𝑖), refer to Lemmas 4.22 and 4.23, respectively. □

4.4 The type of faces 71

Lemma 4.25. The type family 𝐵 over 𝐶 is a type family of finite types.

𝐵((𝐴, (𝑝, (ℎ, !)))) ∶≡ ∏
(𝑥∶N𝐴)

isMapComp(ℎ)(𝑥).

Proof. Let (𝐴, (𝑝, (ℎ, !))) be of type 𝐶 . Then, the graph 𝐴 is finite because is cyclic, and

so is the set of nodes 𝑁𝐴. It remains to show that each proposition isMapComp(ℎ)(𝑥) is
finite. However, such propositions are precisely the product of the two following finite

types:

(i) isStarComp(ℎ)(𝑥) ∶≡ ‖ Star𝐺(𝛼(𝑥))‖ → ‖Star𝐴(𝑥) ‖, and

(ii) isCornerComp(ℎ)(𝑥) as defined in (4.4–5).

Since, both graphs, 𝐺 and 𝐴, are locally finite, then, each star in 𝐺 and 𝐴, is finite. Then,

the type (i) is finite because Π-types are closed by finite types and because ‖𝑋 ‖ is finite

if 𝑋 is finite. Lastly, the type (ii) is finite as it is a decidable equality between edges in a

finite type —the star at 𝑥 in 𝐴. □

Theorem 4.26. The type of faces of a finite graph forms a finite set.

Proof. All the components of the Σ-type in the type (4.4–11) are finite types:

1. The base type 𝐶 is finite by Lemma 4.24.

2. The type family 𝐵 is a family of finite types according to Lemma 4.25. □

4.4.2 The boundary of a face

Each face F of a map M consisting of a cyclic graph 𝐴, a homomorphism ℎ and some

extra data as described in Definition 4.14 induced a closed walk that follows the edges of

its defining polygon, which we refer to as its boundary.

Definition 4.27. Let F be a face for a map of the graph 𝐺, the boundary of 𝜕F is the subgraph

of the image of the associated function, ℎ, given in the definition of the type of F.

𝜕F ≡ 𝜕((𝐴, (ℎ, −))) ∶≡ Img(ℎ).

Here, Img(ℎ) is the induced subgraph of 𝐺 by the image of ℎ. More specifically, it is defined

as:

Img(ℎ) ∶≡ (Σ𝑥∶N𝐴 , (𝜋1(ℎ))(𝑥), 𝜆𝑥.𝜆𝑦.𝜆𝑒.(𝜋2(ℎ))(𝑥, 𝑦 , 𝑒)).

72 Graph Maps

The degree of a face F is the length of 𝜕F, which is the number of nodes in 𝐴. The

boundary 𝜕F can be walked in two directions with respect to the orientation given by its

map.

𝑥

𝑦
𝐹

cwℱ (𝑥, 𝑦)Sym(𝐺)

ccwℱ (𝑥, 𝑦)

Figure 4.5: It is shown a face F given by ⟨𝐴, 𝑓 ⟩ for the graph embedding Sym(𝐺) given in
Figure 4.2. Two quasi-simple walks exist in the underlying cyclic graph 𝐴 between two
different nodes 𝑥 and 𝑦 . Such walks are clockwise and counterclockwise closed walks in
Sym(𝐺), denoted by cwF(𝑥, 𝑦) and ccwF(𝑥, 𝑦), respectively.

As illustrated by Figure 4.5, given two different nodes 𝑥 and 𝑦 in 𝜕F, we can connect 𝑥
to 𝑦 using the walk in the clockwise direction, cwF(𝑥, 𝑦). Similarly, one can connect 𝑥 to

𝑦 using the walk in the counterclockwise direction, ccwF(𝑥, 𝑦). Such walks are induced

by the walks in the cyclic graph 𝐴, see Lemma 4.29.

Lemma 4.28. Supposing 𝑥, 𝑦 ∶ N𝐶𝑛 , the following claims hold for the cycle graph 𝐶𝑛.

1. The type E𝐶𝑛(𝑥, 𝑦) is a proposition.

2. For 𝑛 > 0, there exists an edge of type E𝐶𝑛(pred(𝑥), 𝑥) and an edge of type E𝐶𝑛(𝑥, suc(𝑥)).
3. For 𝑛 > 0, there exists a walk going in the clockwise direction denoted by cw𝐶𝑛(𝑥, 𝑦)

from 𝑥 to 𝑦 .

Lemma 4.29. Supposing 𝑥, 𝑦 ∶ N𝐶𝑛 , the following claims hold for the graph Sym(𝐶𝑛).
1. If 𝑛 > 1, then the type ESym(𝐶𝑛)(𝑥, 𝑦) is a proposition.

2. There exists an edge of type ESym(𝐶𝑛)(pred(𝑥), 𝑥) and of type ESym(𝐶𝑛)(𝑥, suc(𝑥)).
3. There exist two walks from 𝑥 to 𝑦 in Sym(𝐶𝑛), denoted by cwSym(𝐶𝑛)(𝑥, 𝑦) and

ccwSym(𝐶𝑛)(𝑥, 𝑦), respectively.
(a) The walk cwSym(𝐶𝑛)(𝑥, 𝑦) represents the walk in the clockwise direction from 𝑥 to

𝑦 .
(b) On the other hand, the walk ccwSym(𝐶𝑛)(𝑥, 𝑦) represents the walk in the counter-

4.5 Examples of graph maps 73

clockwise direction from 𝑥 to 𝑦 . In case 𝑥 = 𝑦 , the walk ccwSym(𝐶𝑛)(𝑥, 𝑦) corre-
sponds to the trivial walk ⟨𝑥⟩.

4.5 Examples of graph maps

Similarly to the discussion in Section 1.2, we will explore some examples of graph maps

in this section to enhance our understanding of their structure and visual representation.

Occasionally, we may deviate from type theory to provide a more comprehensible expla-

nation of these instances. For instance, we will analyse various cases using Mathematica

to enumerate different graph maps for some of these examples.

Example 4.30. For cycle graphs 𝐶𝑛, only one combinatorial map exists. Cyclic structures of

two-point type 𝑐1 and 𝑐2, defined in Example 4.5, precisely induce the maps of 𝐶𝑛. In other

words, one can obtain a map M can be obtained using 𝑐1 by (4.5–24) and

(pred, 2, |(ideqv, reflpred)|) ∶ Cyclic(J2K).
Moreover, using function extensionality, Lemma 2.26 implies that the map induced by 𝑐2 and
the map M are equal.

Map(𝐶𝑛) ≡ ∏
(𝑥∶J𝑛K)Cyclic(Star𝐶𝑛(𝑥))

≃ ∏
(𝑥∶J𝑛K)Cyclic(J2K).

(4.5–24)

4.5.1 Generating graph maps

In this section, the experiments were conducted using Mathematica v13 and the third-

party package IGraph v0.6.5. A graph map is represented in Mathematica as associations

(also known as dictionaries), where keys are associated with the graph’s nodes and values

consist of lists of nodes that form the star edges for the corresponding node (regardless

of direction).

It is crucial to mention that while the illustrations display directed graphs, we have

streamlined the analysis and map generation process by focussing on connected undi-

rected graphs without loops or multiple edges in the outputs. We employ the allMaps

function to generate graph maps, which returns a list of all possible maps for a given

graph. Although the allMaps function can be extended to include simple directed graphs,

the resulting output might be more difficult to interpret, and we put it here. Neverthe-

less, we provide a small example of a directed multigraph with loops in Example 4.32 to

give a sense of how the allMaps function should be modified to include such graphs.

allMaps[graph_] With[
{emb = getInitialMap[graph]},

74 Graph Maps

Map[
Function[comb,
Association[
Table[i -> combi,
{i, 1, Length@VertexList@graph}] ,

Distribute[
Table[
#1, 1 & /@ Union@Map[

Cycles[{#}] &,
Permutations@emb[v,

{v, VertexList@graph}], List]]
];

Where

getInitialMap[graph_] With[{
ledges = EdgeList[graph], nodes = VertexList@graph},
Association@Map[
Function[node,
node ->
Select[
Flatten[Select[

Map[Union[{#1, #2}] &,
ledges], #1 node || #2 node &], 1],

node &, nodes]
];

For a given graph𝐺, it is possible to determine the number ofmaps for𝐺 without using

the function allMaps on 𝐺 and then calculating the length of the resulting list. Instead,

we can directly compute that number by using the formula in (4.5–25), which utilises

the valencies for all nodes in 𝐺 and takes into account the possible cyclic orderings. The

valency of a node refers to the number of edges present at its star.

∏
(𝑥∶N𝐺)

(valency(𝑥) − 1)!. (4.5–25)

Example 4.31. House graph. We previously examined the house graph in Section 1.2 and

made a number of observations related to its maps and drawings, as showcased in Figure 1.3.

We now use Mathematica to generate all the maps.

HouseGraph = Graph[{

1 -> 2,

1 -> 3,

2 -> 3,

2 -> 4,

3 -> 5,

4 -> 5

}];

Figure 4.6: On the left, we define the house graph. On the right, there are two pictures
depicting two possible drawings of this graph in the two-dimensional plane.

4.5 Examples of graph maps 75

In allMaps[HouseGraph]
Out {
 1 -> {2, 3}, 2 -> {1, 3, 4}, 3 -> {1, 2, 5}, 4 -> {2, 5}, 5 -> {3, 4} , (* (a) *)
 1 -> {2, 3}, 2 -> {1, 3, 4}, 3 -> {1, 5, 2}, 4 -> {2, 5}, 5 -> {3, 4} , (* (b) *)
 1 -> {2, 3}, 2 -> {1, 4, 3}, 3 -> {1, 2, 5}, 4 -> {2, 5}, 5 -> {3, 4} , (* (c) *)
 1 -> {2, 3}, 2 -> {1, 4, 3}, 3 -> {1, 5, 2}, 4 -> {2, 5}, 5 -> {3, 4} } (* (d) *)

The total number for the house graph is 4, calculated as (2!/2) ⋅ (3!/3) ⋅ (3!/3) ⋅ (2!/2). We

find four embeddings: two non-planar and two planar, drawings (a) and (d), and (b) and (c),

respectively, in Figure 4.7. The two planar maps correspond to the following combinatorial

maps.

In Select[allMaps[HouseGraph], IGPlanarQ]
Out {
1 -> {2, 3}, 2 -> {1, 3, 4}, 3 -> {1, 5, 2}, 4 -> {2, 5}, 5 -> {3, 4},
1 -> {2, 3}, 2 -> {1, 4, 3}, 3 -> {1, 2, 5}, 4 -> {2, 5}, 5 -> {3, 4} }

(a) (b) (c) (d)

1

2

4

3

5

Figure 4.7: From top to bottom, we demonstrate a step-by-step approach to visualise
graphmaps for the house graph. We use the initial embedding at the top as a skeleton,
and in each step, we consider adding new edges to complete the drawing.

Example 4.32. Bouquet 𝐵2. A graph consisting of a single node and 𝑛 loop edges is referred

to as an 𝑛-bouquet, denoted by 𝐵𝑛. To enumerate the maps of 𝐵2, we can label the edges of

its sole star as (xin, xout, yin, yout). It is important to note that reflection is not treated as

symmetry here. Consequently, we identify six distinct combinatorial maps for 𝐵2, as depicted
in Figure 4.8.

76 Graph Maps

x y x y x
y

(a)

(d)

(b) (c)

(f)

x x
y

(e)

x

yy

Figure 4.8: The six possible maps of the bouquet 𝐵2.

For the 4-element set (xin, xout, yin, yout), each distinct cyclic permutation generates a

map. Therefore, we should employ the Cycles function in Mathematica to explicitly indicate

that all these permutations are cyclic.

CP = Union[Cycles[{#}] & /@ Permutations@Range[4;

The six distinct cyclic permutations corresponding to the illustrations in Figure 4.8 are

presented below.

{ Cycles[{{xin, xout, yin, yout}}], (* (a) *)

Cycles[{{xin, xout, yout, yin}}], (* (b) *)

Cycles[{{xin, yin, xout, yout}}], (* (c) *)

Cycles[{{xin, yin, yout, xout}}], (* (d) *)

Cycles[{{xin, yout, xout, yin}}], (* (e) *)

Cycles[{{xin, yout, yin, xout}}]} (* (f) *)

Example 4.33. 2-Grid graph. The grid graph is usually presented as an undirected graph with

𝑛 nodes arranged in a regular 𝑛-gon, with each node connected to its two neighbours. Here,

we consider the directed grid graph with 𝑛 nodes arranged in a regular 𝑛-gon, as illustrated

for 𝑛 = 6 in Figure 4.9. The following Mathematica code generates all the maps associated

with this graph.

In[] grid2 = Graph[{

1 -> 2,

2 -> 3,

1 -> 4,

4 -> 3,

4 -> 5,

5 -> 6,

3 -> 6

}

];

Figure 4.9: The grid graph with 6 nodes and 7 edges.

4.5 Examples of graph maps 77

In[] allMaps[grid2]

Out[]

{1 -> {2, 4}, 2 -> {1, 3}, 3 -> {2, 4, 6}, 4 -> {1, 3, 5}, 5 -> {4, 6}, 6 -> {3, 5},

1 -> {2, 4}, 2 -> {1, 3}, 3 -> {2, 4, 6}, 4 -> {1, 5, 3}, 5 -> {4, 6}, 6 -> {3, 5},

1 -> {2, 4}, 2 -> {1, 3}, 3 -> {2, 6, 4}, 4 -> {1, 3, 5}, 5 -> {4, 6}, 6 -> {3, 5},

1 -> {2, 4}, 2 -> {1, 3}, 3 -> {2, 6, 4}, 4 -> {1, 5, 3}, 5 -> {4, 6}, 6 -> {3, 5}}

5
Walks and Spherical Maps

In Chapter 4, we work with combinatorial maps to represent graph embeddings in sur-

faces up to isotopy. The surface in which the graph is embedded remains implicit in this

approach, eliminating the need for explicit specification in HoTT. This chapter presents

a refinement of one characterisation of graph maps in the sphere, called spherical maps,

for connected and directed multigraphs with discrete node sets. A combinatorial notion

of homotopy for walks and the normal form of walks under a reduction relation are intro-

duced. The first characterisation of spherical maps states that a graph can be embedded

in the sphere if any pair of walks with the same endpoints are merely walk-homotopic.

The refinement of this definition filters out any walk with inner cycles. As we prove in

one of the lemmas, if a spherical map is given for a graph with a discrete node set, then

any walk in the graph is merely walk homotopic to a normal form.

5.1 The type of walks

The notion of walks, as introduced in Definition 3.12, plays an essential role in graph

theory. Many algorithms using graph data structures are based on this concept. This

section provides the necessary tools to develop two normalisation algorithms for walks,

as seen in Theorems 5.48 and 5.38. These algorithms are used, for example, in Lemma

5.49.

5.1 The type of walks 79

5.1.1 Structural induction for walks

By structural induction or pattern matching on a walk, we will refer to the elimination

principle of the inductive type in Definition 3.12. An induction principle allows us to de-

fine outgoing functions from a type to a type family. For example, if wewant to use the in-

duction principle to inhabit a predicate on the type of walks, 𝑃 ∶ Π{𝑥 𝑦 ∶ N𝐺}.W𝐺(𝑥, 𝑦) →
U, one can inhabit (5.1–1). Given a walk 𝑤 ∶ W𝐺(𝑥, 𝑦), to construct a term of type 𝑃(𝑤),
the base case must first be constructed, i.e., give a term of type 𝑃(⟨𝑥⟩), for every 𝑥 ∶ N𝐺 .
Subsequently, we must prove the case for composite walks, i.e., 𝑃(𝑒 ⊙ 𝑤). To show this,

𝑃(𝑤) is assumed for any walk 𝑤 , and we construct a term of type 𝑃(𝑒 ⊙ 𝑤) from this as-

sumption. Thus, one gets 𝑃(𝑤) for any walk 𝑤 . Another induction principle for walks is

stated in Theorem 5.4.

∏
(𝑥∶N𝐺)

𝑃(⟨𝑥⟩) × ∏
(𝑥,𝑦 ,𝑧∶N𝐺)

∏
(𝑒∶E𝐺(𝑥,𝑦))

∏
(𝑤∶W𝐺(𝑦 ,𝑧))

𝑃(𝑤) → 𝑃(𝑒 ⊙ 𝑤)

→ ∏
(𝑥,𝑦∶N𝐺)

∏
(𝑤∶W𝐺(𝑥,𝑦))

𝑃(𝑤).
(5.1–1)

The composition, also called concatenation, of walks is an associative binary operation

on walks defined by structural induction on its left argument. Given walks 𝑝 ∶ W𝐺(𝑥, 𝑦)
and 𝑞 ∶ W𝐺(𝑦 , 𝑧), we refer to their composition as the composite denoted by 𝑝 ⋅ 𝑞. The

node 𝑦 is called the joint of the composition. The length of the walk 𝑤 is denoted by

length(𝑤) and represents the number of edges used to construct 𝑤 . A trivial walk has

length zero, whilst a walk (𝑒 ⊙ 𝑤) has one more length than 𝑤 . We display a point to

represent trivial walks and with a normal arrow to represent positive length walks, as

illustrated in Figure 5.1.

Lemma 5.1. The type of walks forms a set.

Proof. One can show that the typeW(𝑥, 𝑦) is equivalent to Σ𝑛∶N �̂� (𝑛, 𝑥, 𝑦)with �̂� defined

as follows.

�̂� ∶ N → N𝐺 → N𝐺 → U (5.1–2a)

�̂� (0, 𝑥, 𝑦) ∶≡ (𝑥 = 𝑦), (5.1–2b)

�̂� (𝑆(𝑛), 𝑥, 𝑦) ∶≡ ∑
(𝑘∶N𝐺)

E𝐺(𝑥, 𝑘) × �̂� (𝑛, 𝑘, 𝑦). (5.1–2c)

It suffices to show that the type �̂� (𝑛, 𝑥, 𝑦) forms a set for 𝑛 ∶ N, which will be proven

by induction on 𝑛. If 𝑛 = 0, one obtains the proposition 𝑥 = 𝑦 which is a set. Conse-

quently, we must now show that the type in (5.1–2c) is a set. By the graph definition, the

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-walks.Walk.SigmaWalks.html

80 Walks and Spherical Maps

base type N𝐺 and E𝐺 are both sets. Thus, one only requires that �̂� (𝑛, 𝑘, 𝑦) forms a set,

which is precisely the induction hypothesis. □

Although it is not included in the formalisation of this work, one can show that the

type of walks forms a category. If Graph is the category of graphs using Definition 3.1

and C is the category of small categories, there is a functor 𝑅 ∶ Graph → C mapping

every graph 𝐺 to its free pre-category. The object set of 𝑅(𝐺) is N𝐺 , and the morphisms

correspond to the collection of all possible walks in 𝐺. By Lemma 5.1, it follows that

𝑅(𝐺) is a small category. Let 𝐿 be the forgetful functor from C to Graph. Then, 𝐿 is

the left adjoint of 𝑅. The graph of walks of 𝐺 is generated by using the endofunctor

𝑊 ∶ Graph → Graph, the monad from the composite 𝐿 ∘ 𝑅.

5.1.2 A well-founded order for walks

Structural induction is a particular case of a more general induction principle to define

recursive programs called well-founded or Noetherian induction. Note that, for the struc-

tural induction principle, one must always guarantee that every argument in a recursive

call in the program is strictly smaller than its arguments. However, there is no reason to

believe that this will always be the case.

In constructive mathematics, a binary relation 𝑅 on a set 𝐴 is well-founded if every

element of 𝐴 is accessible. An element 𝑎 ∶ 𝐴 is accessible by 𝑅, if 𝑏 ∶ 𝐴 is accessible

for every 𝑏𝑅𝑎 (Nordström 1988; Univalent Foundations Program 2013, §10.3). Then, if 𝑎
has the property that there is no 𝑏 such that 𝑏𝑅𝑎, then 𝑎 is vacuously accessible. If (≤)
represents the less or equal than relation on the natural numbers, then the number zero

is vacuously accessible by ≤ on N.

Let us define a well-founded order for walks in a graph by considering their lengths,

from where the well-founded induction for walks follows, see Theorem 5.4.

Definition 5.2. Given 𝑝, 𝑞 ∶ W𝐺(𝑥, 𝑦) for 𝑥, 𝑦 ∶ N𝐺 , the relation (≼) states that 𝑝 ≼ 𝑞 when

length(𝑝) ≤ length(𝑞).

Lemma 5.3. The relation (≼) on Σ𝑥,𝑦∶N𝐺W𝐺(𝑥, 𝑦) is well–founded.

Proof. It follows from the fact that the poset (N, ≤) is well-founded. □

We refer to the following lemma as the well-founded induction principle for walks in-

duced by Definition 5.2.

Theorem 5.4. Suppose the following is given,

1. a predicate 𝑃 of type Σ𝑥,𝑦∶N𝐺W𝐺(𝑥, 𝑦) → U such that,

https://jonaprieto.github.io/synthetic-graph-theory/CPP2022-paper.html#1298

5.1 The type of walks 81

2. given (𝑎, 𝑏, 𝑞) of type Σ𝑥,𝑦∶N𝐺W𝐺(𝑥, 𝑦), if 𝑃(𝑝) for each walk 𝑝 ∶ W𝐺(𝑥 ′, 𝑦 ′)with 𝑥 ′, 𝑦 ′ ∶
N𝐺 and 𝑝 ≼ 𝑞, then 𝑃(𝑎, 𝑏, 𝑞).

Then, given any walk 𝑤 ∶ W𝐺(𝑥, 𝑦) and 𝑥, 𝑦 ∶ N𝐺 , we have 𝑃(𝑥, 𝑦 , 𝑤).

Remark 5.5. The induction principle stated in Theorem 5.4 using Lemma 5.3 is equivalent to per-

forming induction on the length of the walk.

Theorems 5.38 and 5.48 define algorithms for which many of their recursive calls are

on subwalks of the input walk. A subwalk of a walk 𝑤 is a contiguous subsequence of

edges in 𝑤 . Subwalks are not structurally smaller than their corresponding walk unless

one takes, for example, the subwalk 𝑤 or 𝑒 for the composite walk (𝑒 ⊙𝑤). Excluding the

previous case, to deal with other subwalk cases, we can use the well-founded induction

principle given in Theorem 5.4.

5.1.3 Walk splitting

In this subsection, a function to split/divide a walk 𝑤 from 𝑥 to 𝑧 into subwalks, 𝑤1 and

𝑤2, is given. Such a division of 𝑤 , of (5.1–3), is handy e.g., for proving statements where

the induction is not on the structure but on the length of the walk.

Let 𝑥, 𝑦 , 𝑧 be variables for nodes in 𝐺 and let 𝑤 be a walk from 𝑥 to 𝑧, unless stated

otherwise. We refer to the walk 𝑤1 in (5.1–3) as a prefix of 𝑤 and 𝑤2 as the corresponding

suffix given 𝑤1.

∑
(𝑦∶N𝐺)

∑
(𝑤1∶W𝐺(𝑥,𝑦))

∑
(𝑤2∶W𝐺(𝑦 ,𝑧))

(𝑤 = 𝑤1 ⋅ 𝑤2). (5.1–3)

Definition 5.6. Given two walks 𝑝 and 𝑞 with the same head, one says that 𝑝 is a prefix of 𝑞
if the type Prefix(𝑝, 𝑞) is inhabited.

data Prefix ∶ Π {𝑥, 𝑦 , 𝑧} .W𝐺(𝑥, 𝑦) → W𝐺(𝑥, 𝑧) → U

by-head ∶ Π {𝑥 𝑦} . Π {𝑤 ∶ W𝐺(𝑥, 𝑦)} .Prefix(⟨𝑥⟩, 𝑤)
by-edge ∶ Π {𝑥 𝑦 𝑧 𝑘} . Π {𝑒 ∶ E𝐺(𝑥, 𝑦)}. Π {𝑝 ∶ W𝐺(𝑦 , 𝑧)} . Π {𝑞 ∶ W𝐺(𝑦 , 𝑘)}.

Prefix(𝑝, 𝑞) → Prefix(𝑒 ⊙ 𝑝, 𝑒 ⊙ 𝑞)

Lemma 5.7. Given a prefix 𝑤1 for a walk 𝑤 , we can prove that there is a term of (5.1–4) named

suffix(𝑤1, 𝑤 , 𝑡), referring to as the suffix of 𝑤 given 𝑤1, where 𝑡 ∶ 𝑤 = 𝑤1 ⋅ 𝑤2.

∑
(𝑤2∶W𝐺 (𝑦 ,𝑧))

(𝑤 = 𝑤1 ⋅ 𝑤2). (5.1–4)

82 Walks and Spherical Maps

Proof. For brevity, we skip the trivial cases for 𝑤1 and 𝑤 . The remaining cases are proved

by induction; first, on 𝑤1, and second, on 𝑤 . The resulting non-trivial case occurs when

𝑤1 = 𝑒 ⊙ 𝑝, 𝑤 = 𝑒 ⊙ 𝑞 and 𝑡 ∶ Prefix(𝑝, 𝑞) for two walks 𝑝 and 𝑞. By the induction

hypothesis applied to 𝑝, 𝑞, and 𝑡 , the term suffix(𝑝, 𝑞, 𝑡) is obtained, from which one gets

the suffix walk 𝑤2 along with a proof 𝑖 ∶ 𝑞 = 𝑝 ⋅ 𝑤2. Thus, the required term is the pair

(𝑤2, ap(𝑒 ⊙ -, 𝑖)). □

We now encode the case where the walk 𝑤 is divided at the first occurrence of the

node 𝑦 , using the type family SplitAt(𝑤, 𝑦) defined in Definition 5.8. The corresponding

method to inhabit the type SplitAt(𝑤, 𝑦) is the function given in Lemma 5.9, assuming

the node set in the graph is discrete. This walk-splitting encoding is implicitly used in

several parts of the proof of Theorem 5.48.

Definition 5.8. The type SplitAt(𝑤, 𝑦) is the inductive type defined as:

data SplitAt {𝑥 𝑧}(𝑤 ∶ W𝐺(𝑥, 𝑧)) (𝑦 ∶ N𝐺) ∶ U

nothing ∶ Π {𝑥 𝑦} . Π {𝑤 ∶ W𝐺(𝑥, 𝑦)} . (𝑦 ∉ 𝑤) → SplitAt(𝑤, 𝑦)
just ∶ Π {𝑥 𝑦} . Π {𝑤 ∶ W𝐺(𝑥, 𝑦)} . (𝑝 ∶ W𝐺(𝑥, 𝑦))

→ Prefix(𝑝, 𝑤) → (𝑦 ∉ 𝑝) → SplitAt(𝑤, 𝑦)

Lemma 5.9. The type SplitAt(𝑤, 𝑦) is inhabited if the node set of the graph is discrete.

Proof. By induction on the structure of the walk.

1. If the walk is trivial, then the required term is nothingid, as by definition, 𝑦 ∉ 0.

2. If the walk is the composite (𝑒 ⊙ 𝑤) with 𝑒 ∶ E𝐺(𝑥, 𝑦 ′) and 𝑤 ∶ W𝐺(𝑦 ′, 𝑧), we ask

whether 𝑦 is equal to 𝑥 or not.

(a) If 𝑦 = 𝑥 , then the required term is just(⟨𝑦⟩, head, id).
(b) If 𝑦 ≠ 𝑥 , then, by the induction hypothesis on 𝑤 and 𝑦 , the following cases

need to be considered.

i. If the case is nothing, then there is enough evidence that 𝑦 ∉ 𝑤 and we

use for the required term the nothing constructor.

ii. Otherwise, there is a prefix 𝑤1 for 𝑤 and a proof 𝑟 ∶ 𝑦 ∉ 𝑤1. Using 𝑟 and
the fact 𝑥 ≠ 𝑦 , we can construct 𝑟 ′ ∶ 𝑦 ∉ (𝑒 ⊙ 𝑤1). Then, the term that we

are looking for is just(𝑒 ⊙ 𝑤1, by-edge(𝑝), 𝑟 ′) of type SplitAt(𝑒 ⊙ 𝑤, 𝑦), as
required in the conclusion. □

5.2 The type of quasi-simple walks 83

5.2 The type of quasi-simple walks

In this subsection, we characterise walks with shapes as in Figure 5.1 and refer to such as

quasi-simple walks in Definition 5.12.

•𝑥 •𝑥 •𝑦 •𝑥 •𝑥 •𝑦𝑤1

𝑤2
𝑤3

𝑤4

Figure 5.1: The arrows in the picture can represent edges or walks of a positive length.
In the sense of Definition 5.12, a quasi-simple walk can only be one of these kinds: i)
one-point walk ii) path iii) loop without inner node repetitions, or iv) composite walk
between a path and a quasi-simple walk of kind iii. The walks 𝑤3 and 𝑤4 only share the
occurrence of 𝑦 that is explicitly shown.

•𝑥

𝑤1

𝑤2 •𝑥 •𝑦

𝑤3
𝑤4

•𝑥 •𝑦 •𝑧𝑤5

𝑤6
𝑤7

Figure 5.2: These are three examples of walks that are not quasi-simple in the sense of
Definition 5.12. The walks 𝑤1 and 𝑤2 only share the node 𝑥 , and the same happens with
the walks 𝑤3 and 𝑤4. The walks 𝑤5, 𝑤6 and 𝑤7 only share the node 𝑦 . The walks 𝑤𝑖 for 𝑖
from 1 to 7 are nontrivial walks.

The notion of a quasi-simple walk will be used to introduce a reduction relation on the

set of walks to remove their inner loops; see Definition 5.29. A notion related to the defi-

nition of a quasi-simple walk is that of a path (Diestel 2012). The usual graph-theoretical

notion of a (simple) path is a walk without repeated nodes. Here, quasi-simple walks are

introduced, since paths are not suitable in our description of graph maps in Section 5.5.

There, the totality of walks is considered, which includes closed walks, also called loops.

For graph maps in the sphere, we found out that the type of quasi-simple walks can re-

place the type of walks under certain conditions. Quasi-walks are conveniently defined

in a way that permits their end to appear at most twice in the walk.

To define quasi-simpleness for walks, we introduce an unconventional relation, de-

noted by (𝑥 ∈ 𝑤), meaning that the node 𝑥 is in the walk 𝑤 , and it is not the last, see

Definition 5.10. (𝑥 ∈ 𝑤) is a proposition, and decidable if the walks belong to graphs with

a discrete node-set. Consequently, Lemma 5.17 shows that being quasi-simple is also a

decidable proposition on such graphs. Quasi-simple walks play an important role in this

work. They are required to give an alternative definition of graph maps in the sphere, as

84 Walks and Spherical Maps

stated in Definition 5.44.

Definition 5.10. Let 𝑥, 𝑦 , 𝑧 ∶ N𝐺 and 𝑤 ∶ W𝐺(𝑥, 𝑧). The relation (∈) on a walk 𝑤 for a node 𝑦
is defined as the node 𝑦 that is not 𝑧 but belongs to 𝑤 , that is, whenever the type (𝑦 ∈ 𝑤) is
inhabited.

1. 𝑦 ∈ ⟨𝑧⟩ ∶≡ 0.

2. 𝑦 ∈ (𝑒 ⊙ 𝑤) ∶≡ (𝑦 = source(𝑒)) + (𝑦 ∈ 𝑤).

Lemma 5.11. If the node set of the graph 𝐺 is discrete, then the type (𝑥 ∈ 𝑤) is decidable

proposition for any node 𝑥 and walk 𝑤 in 𝐺.

Definition 5.12. Given 𝑥, 𝑦 ∶ N𝐺 , a walk in 𝐺 from 𝑥 to 𝑦 is quasi-simple if isQuasi(𝑤) holds.

isQuasi(𝑤) ∶≡ ∏
(𝑧∶N𝐺)

isProp(𝑧 ∈ 𝑤). (5.2–5)

Lemma 5.13. Being quasi-simple is a proposition.

Proof. It follows since isProp(𝑧 ∈ 𝑤) is a proposition. □

Thus, Definition 5.12 presents a quasi-simple walk as a path where the end could only

be present at most twice. Examples of walks that are not quasi-simple are illustrated in

Figure 5.2.

Lemma 5.14. Given 𝑥, 𝑦 , 𝑧 ∶ N𝐺 , 𝑒 ∶ E𝐺(𝑥, 𝑦) and a quasi-simple walk 𝑤 ∶ W𝐺(𝑦 , 𝑧), if 𝑥 ∉ 𝑤
then the walk (𝑒 ⊙ 𝑤) is quasi-simple.

Proof. Given a node 𝑟 , wemust show that 𝑟 ∈ (𝑒⊙𝑤) is a proposition. That is equivalent to
showing that the type (𝑟 = 𝑥)+(𝑟 ∈ 𝑤) is a proposition. The coproduct of mutually exclu-

sive propositions is a proposition. Then, remember that 𝑟 = 𝑥 is a given proposition and

that the type (𝑟 ∈ 𝑤) is also a proposition, since the walk 𝑤 is quasi-simple by hypothesis.

Thus, it remains to show that there is no term (𝑝, 𝑞) where 𝑝 ∶ (𝑟 = 𝑥) and 𝑞 ∶ (𝑟 ∈ 𝑤).
A contradiction arises, since by hypothesis 𝑥 ∉ 𝑤 but from tr𝜆𝑧→𝑧∈𝑤 (𝑝)(𝑞) ∶ 𝑥 ∈ 𝑤 . □

Lemma 5.15. Given 𝑥, 𝑦 , 𝑧 ∶ N𝐺 , 𝑒 ∶ E𝐺(𝑥, 𝑦), and a walk 𝑤 ∶ W𝐺(𝑦 , 𝑧), if the walk (𝑒 ⊙ 𝑤)
is a quasi-simple walk then 𝑤 is also a quasi-simple walk.

Proof. Given any node 𝑢 ∶ N𝐺 and two proofs 𝑝, 𝑞 ∶ 𝑢 ∈ 𝑤 , we must show that 𝑝 = 𝑞.
By definition, inr(𝑝) and inr(𝑞) are proofs of that 𝑢 ∈ (𝑒 ⊙ 𝑤). Because (𝑒 ⊙ 𝑤) is a

quasi-simple walk, the equality inr(𝑝) = inr(𝑞) holds. The constructor inr is an injective

function, and one therefore obtains 𝑝 = 𝑞 as required. □

5.2 The type of quasi-simple walks 85

Corollary 5.16. Trivial and one-edge walks are quasi-simple walks.

Lemma 5.17. If the node set of the graph is discrete, then being quasi-simple for a walk is a

decidable proposition.

Proof. Let 𝑥, 𝑧 ∶ N𝐺 and 𝑤 ∶ W𝐺(𝑥, 𝑧), we want to show that isQuasi(𝑤) is decidable.

The proof is by induction on the structure of 𝑤 .

1. If 𝑤 is trivial then, by Corollary 5.16, the walk 𝑤 is quasi-simple.

2. If𝑤 is the composite walk (𝑒⊙𝑤 ′) for 𝑒 ∶ E𝐺(𝑥, 𝑦) and𝑤 ′ ∶ W𝐺(𝑦 , 𝑧), we recursively

ask whether the walk 𝑤 ′ is quasi-simple or not.

(a) If 𝑤 ′ is not quasi-simple, then 𝑤 is not quasi-simple by the contrapositive of

Lemma 5.15.

(b) If 𝑤 ′ is quasi-simple, then we ask if 𝑥 ∈ 𝑤 ′. If so, then 𝑤 is not quasi-simple.

Otherwise, that would contradict the definition of quasi-simpleness, as the

node 𝑥 would appear twice in 𝑤 . Now, if 𝑥 ∉ 𝑤 ′, one obtains that 𝑤 is quasi-

simple by Lemma 5.14. □

5.2.1 The finiteness property

This subsection presents a proof that the collection of quasi-simple walks in a finite graph

𝐺 constitutes a finite set (Theorem 5.26). The proof hinges on demonstrating the finite-

ness of an equivalent type to (5.2–6).

For clarity, we define the standard type with 𝑛 elements, denoted by J𝑛K, inductively
as follows:

▷ J0K ∶≡ 0

▷ J1K ∶≡ 1

▷ J𝑛 + 1K ∶≡ J𝑛K + 1

To establish the desired equivalence (Lemma 5.25), it is necessary first to derive some

intermediate results.

∑
(𝑤∶W𝐺(𝑥,𝑦))

isQuasi(𝑤). (5.2–6)

86 Walks and Spherical Maps

Lemma 5.18. Given any walk 𝑤 ∶ W𝐺(𝑥, 𝑧) of length 𝑛, then

J𝑛K ≃ ∑
(𝑦∶N𝐺)

(𝑦 ∈ 𝑤). (5.2–7)

Proof. By induction on the structure of 𝑤 .

1. If the walk is trivial, the required equivalence follows from the type equivalence

between 0 and Σ𝑧∶N𝐺0.

2. If thewalk is (𝑒⊙𝑤) for 𝑒 ∶ E𝐺(𝑥, 𝑦) and𝑤 ∶ W𝐺(𝑦 , 𝑧), the equivalence is established
by the following calculation. Let 𝑛 be the length of 𝑤 .

∑
(𝑦∶N𝐺)

(𝑦 ∈ (𝑒 ⊙ 𝑤)) ≡ ∑
(𝑦∶N𝐺)

(𝑦 = 𝑥) + (𝑦 ∈ 𝑤) (5.2–8a)

≃ ∑
(𝑦∶N𝐺)

(𝑦 = 𝑥) + ∑
(𝑦∶N𝐺)

(𝑦 ∈ 𝑤) (5.2–8b)

≃ 1 + ∑
(𝑦∶N𝐺)

(𝑦 ∈ 𝑤) (5.2–8c)

≃ 1 + J𝑛K (5.2–8d)

≡ J𝑛 + 1K. (5.2–8e)

Equivalence (5.2–8a) is accomplished by Definition 5.10. Σ-type distributes coprod-

ucts as in Equivalence (5.2–8b). We can simplify in Equivalence (5.2–8c) because

the type Σ𝑦∶N𝐺 (𝑦 = 𝑥) is contractible. Note that the inner path is fixed, and it is

then equivalent to the unit type. Equivalence (5.2–8d) is by the induction hypothe-

sis applied to 𝑤 . Equivalence (5.2–8e) is accomplished by the definition of J𝑛K using
the coproduct definition. □

Lemma 5.19. Given 𝑥, 𝑦 , 𝑧 ∶ N𝐺 , and 𝑤 ∶ W𝐺(𝑥, 𝑦) the type (𝑧 ∈ 𝑤) is a finite set if the node

set of 𝐺 is discrete.

Proof. By induction on the structure of𝑤 : in case thewalk is trivial, the type in question is

finite as it is equal to the empty type by definition. In the composite walk case, 𝑧 ∈ (𝑒⊙𝑤),
we must prove that the type (𝑧 = 𝑥) + (𝑧 ∈ 𝑤) is finite. Note that the former is finite

by Corollary 2.15. By the induction hypothesis, the type 𝑧 ∈ 𝑤 is finite. The required

conclusion then follows, since finite sets are closed under coproducts. □

We can now prove that for finite graphs, there exists a finiteness property for the

collection of all quasi-simple walks, derived from the finiteness of the set of quasi-simple

walks of a fixed length 𝑛 for 𝑛 ∶ N.

5.2 The type of quasi-simple walks 87

Definition 5.20. Given 𝑥, 𝑦 ∶ N𝐺 and 𝑛 ∶ N, the type qswalk collects all quasi-simple walks

of a fixed length 𝑛.

qswalk(𝑛, 𝑥, 𝑦) ∶≡ ∑
(𝑤∶W𝐺 (𝑥,𝑦))

isQuasi(𝑤) × (length(𝑤) = 𝑛).

Lemma 5.21. Given a graph 𝐺, 𝑛 ∶ N, and 𝑥, 𝑧 ∶ N𝐺 , the following equivalence holds.

qswalk(𝑆(𝑛), 𝑥, 𝑧) ≃∑
(𝑦∶N𝐺)

∑
(𝑒∶E𝐺 (𝑥,𝑦))

∑
(𝑤∶qswalk(𝑛,𝑦 ,𝑧))

(𝑥 ∉ 𝑤). (5.2–9)

Proof. The back-and-forth functions are extensions of the functions derived from Lem-

mas 5.14 and 5.15. □

Lemma 5.22. Given a finite graph 𝐺, 𝑥, 𝑦 ∶ N𝐺 and 𝑛 ∶ N, the type qswalk(𝑛, 𝑥, 𝑦) in Defini-

tion 5.20 is a finite set.

Proof. It suffices to show that the type qswalk(𝑛, 𝑥, 𝑦) is finite. The proof is made by

induction on 𝑛.

1. If 𝑛 = 0, the type defined by qswalk(0, 𝑥, 𝑧) is equivalent to the identity type 𝑥 = 𝑦 ,
as the only walks of length zero are the trivial walks. Given that the set of nodes is

discrete, the path space 𝑥 = 𝑦 is finite by Corollary 2.15.

2. Otherwise, given 𝑥, 𝑧 ∶ N𝐺 , we must prove that the type qswalk(𝑆(𝑛), 𝑥, 𝑧) is finite,
for 𝑛 ∶ N, assuming that qswalk(𝑛, 𝑥, 𝑧) is finite. This is equivalent to showing that

the equivalent type given by Equivalence (5.2–9) is finite. The required conclusion

follows by Lemma 2.13, as each type of the Σ-type in the right-hand side of the

equivalence in Equivalence (5.2–9) is finite. The set N𝐺 and the sets by E𝐺 are

each finite, as 𝐺 is a finite graph. The type qswalk(𝑛, 𝑦 , 𝑧) is finite by induction

hypothesis. Lastly, any decidable proposition is finite i.e., (𝑥 ∉ 𝑤 ′) is finite. □

Lemmas 5.24 and 5.25 prove the fact mentioned earlier on the node repetition condi-

tion in a quasi-simple walk. A node can only appear once in a quasi-simple walk, unless

the node is the end of the walk. From now on, unless otherwise stated, we will refer to

𝑛 as the cardinality of N𝐺 whenever the node set of the graph 𝐺 is finite. The number of

nodes in any quasi-simple walk is bounded by 𝑛 + 1.

88 Walks and Spherical Maps

Lemma 5.23. Let 𝐺 be a finite graph. Then (5.2–10) is a finite set.

∑
(𝑥,𝑦∶N𝐺)

∑
(𝑚∶J𝑛+1K) qswalk(𝑚, 𝑥, 𝑦). (5.2–10)

Proof. The conclusion follows since finite sets are closed under Σ-types. N𝐺 is finite, since

𝐺 is a finite graph. J𝑛 + 1K is finite. The type qswalk(𝑚, 𝑥, 𝑦) is finite by Lemma 5.22. □

Lemma 5.24. Given a graph 𝐺 with finite node set of cardinality 𝑛, 𝑥, 𝑦 ∶ N𝐺 and a quasi-

simple walk 𝑤 ∶ W𝐺(𝑥, 𝑦) of length 𝑚, then it holds that 𝑚 ≤ 𝑛.

Proof. It suffices to generate an embedding between the finite set J𝑚K and the finite node

set in 𝐺. Such an embedding is the projection function 𝜋1 ∶ Σ𝑥∶N𝐺 (𝑥 ∈ 𝑤) → N𝐺 . Note

that the domain of the function 𝜋1 is equivalent to J𝑚K by Lemma 5.18. □

Now, even when the type of walks forms an infinite set, thanks to Lemma 5.24

and Theorem 5.26, we will be able to prove that for any nodes 𝑥 and 𝑦 , the collection

of quasi-simple walks from 𝑥 to 𝑦 forms a finite set as long as the graph is finite.

Lemma 5.25. Given a graph 𝐺 with a finite node set of cardinality 𝑛 and 𝑥, 𝑦 ∶ N𝐺 , the
following equivalence holds.

∑
(𝑤∶W𝐺 (𝑥,𝑦))

isQuasi(𝑤) ≃ ∑
(𝑚∶J𝑛+1K) qswalk(𝑚, 𝑥, 𝑦). (5.2–11)

Proof. Apply Lemma 5.24. □

It is not immediately clear that quasi-simple walks forms a finite set, even when the

graph is finite. A quasi-simple walk can contain a loop at its terminal node. One might

think there are infinitely many walks if each walk loops at its terminal nodes. However,

by constraining walks to be quasi-simple, we obtain the finiteness property.

Theorem 5.26. The quasi-simple walks of a finite graph 𝐺 forms a finite set. In other words,

the following type is inhabited.

isFinite(∑
(𝑥,𝑦∶N𝐺)

∑
(𝑤∶W(𝑥,𝑦))

isQuasi(𝑤)) . (5.2–12)

Proof. The conclusion clearly follows from Lemmas 5.23 and 5.25, since finite sets are

closed under type equivalences and Σ-types by Lemma 2.13. □

5.3 Normal forms for walks 89

•𝑥 •𝑥

•𝑥 •𝑦 •𝑧 •𝑦 •𝑧𝑒

𝑝

𝑞 𝑞

𝜉1

𝜉3

Figure 5.3: The rules 𝜉1 and 𝜉3 of the loop-reduction relation in (5.3–13).

5.3 Normal forms for walks

In this subsection, a reduction relation in Definition 5.29 is established on the set of walks

of equal endpoints. Some cases considered by such a relation are illustrated in Figure 5.3.

This relation provides a way to remove loops from walks in a graph with a discrete set of

nodes. The notion of normal form for walks presented in this work is based on the loop

reduction relation in Definition 5.34.

The following definitions establish a few type families to encode walks of a certain

basic structure. For example, nontrivial walks and loops which are necessary for the

formalisation.

Definition 5.27. Let 𝑥, 𝑦 ∶ N𝐺 and 𝑤 ∶ W𝐺(𝑥, 𝑦).
1. The walk 𝑤 is a loop whenever the head is equal to the end, i.e., Loop(𝑤).

data Loop ∶ Π {𝑥, 𝑦} .W𝐺(𝑥, 𝑦) → U

is-loop ∶ Π{𝑥 𝑦}. Π{𝑤 ∶ W𝐺(𝑥, 𝑦)} . 𝑥 = 𝑦 → Loop(𝑤)

2. The walk 𝑤 is trivial if its length is zero, i.e., Trivial(𝑤).

data Trivial ∶ Π {𝑥, 𝑦} .W𝐺(𝑥, 𝑦) → U

is-trivial ∶ Π{𝑥 𝑦}. Π{𝑤 ∶ W𝐺(𝑥, 𝑦)} . length(𝑤) = 0 → Trivial(𝑤)

3. A walk 𝑤 is not trivial, if it has one edge at least, i.e., NonTrivial(𝑤).

data NonTrivial ∶ Π {𝑥, 𝑦} .W𝐺(𝑥, 𝑦) → U

has-edge ∶ Π{𝑥 𝑦 𝑧}. Π{𝑤 ∶ W𝐺(𝑦 , 𝑧)} . (𝑒 ∶ E𝐺(𝑥, 𝑦))
→ NonTrivial(𝑒 ⊙ 𝑤)

4. A walk 𝑤 does not reduce if NoReduce(𝑤).

data NoReduce ∶ Π {𝑥, 𝑦} .W𝐺(𝑥, 𝑦) → U

is-dot ∶ Π{𝑥} .NoReduce(⟨𝑥⟩)
is-edge ∶ Π{𝑥 𝑦}. Π {𝑒 ∶ E𝐺(𝑥, 𝑦)} . (𝑥 ≠ 𝑦) → NoReduce(𝑒 ⊙ ⟨𝑦⟩)

90 Walks and Spherical Maps

5. A walk 𝑤 is not a trivial loop if NonTrivialLoop(𝑤).
data NonTrivialLoop ∶ Π {𝑥, 𝑦} .W𝐺(𝑥, 𝑦) → U

is-loop ∶ Π{𝑥 𝑦 𝑧} .{𝑒 ∶ E𝐺(𝑥, 𝑦)} . (𝑝 ∶ 𝑥 = 𝑧) → (𝑤 ∶ W𝐺)
→ NonTrivialLoop(𝑒 ⊙ 𝑤)

Lemma 5.28. Given 𝑥, 𝑦 ∶ N𝐺 and 𝑢 ∶ W𝐺(𝑥, 𝑦), the following claims hold.

1. If 𝑥 ≠ 𝑦 then NonTrivial(𝑢).
2. If NonTrivial(𝑢) then 𝑥 ∈ 𝑢.
3. Given 𝑧 ∶ N𝐺 , if NonTrivial(𝑢) and 𝑣 ∶ W𝐺(𝑦 , 𝑧) then NonTrivial(𝑢 ⋅ 𝑣).

Remember that a reduction relation 𝑅 on a set 𝑀 is an irreflexive binary relation on 𝑀 . If

𝑅 is a reduction relation, we use 𝑥𝑅𝑦 to refer to the pair (𝑥, 𝑦) in 𝑅. If 𝑥𝑅𝑦 then one says

that 𝑥 reduces to 𝑦 or simply 𝑥 reduces.

Definition 5.29. The loop-reduction relation (⇝) on walks is (5.3–13).

data (⇝) ∶ Π {𝑥, 𝑦 ∶ N𝐺}.W𝐺(𝑥, 𝑦) → W𝐺(𝑥, 𝑦) → U

𝜉1 ∶ Π {𝑥 𝑦} . (𝑝 ∶ W𝐺(𝑥, 𝑦)) (𝑞 ∶ W𝐺(𝑥, 𝑦))
→ NonTrivialLoop(𝑝) → Trivial(𝑞)
→ 𝑝 ⇝ 𝑞

𝜉2 ∶ Π {𝑥 𝑦 𝑧} . (𝑒 ∶ E𝐺(𝑥, 𝑦)) (𝑝, 𝑞 ∶ W𝐺(𝑦 , 𝑧))
→ ¬ Loop(𝑒 ⊙ 𝑝) → 𝑥 ≠ 𝑦
→ (𝑝 ⇝ 𝑞) → (𝑒 ⊙ 𝑝) ⇝ (𝑒 ⊙ 𝑞)

𝜉3 ∶ Π {𝑥 𝑦 𝑧} . (𝑒 ∶ E𝐺(𝑥, 𝑦)) (𝑝 ∶ W𝐺(𝑦 , 𝑥))
→ (𝑞 ∶ W𝐺(𝑥, 𝑧))
→ ¬ Loop((𝑒 ⊙ 𝑝) ⋅ 𝑞) → Loop(𝑒 ⊙ 𝑝)
→ NonTrivial(𝑞)
→ (𝑤 ∶ W𝐺(𝑥, 𝑧)) → 𝑤 = (𝑒 ⊙ 𝑝) ⋅ 𝑞
→ 𝑤 ⇝ 𝑞

(5.3–13)

The following provides hints about the intuition behind each of the data constructors

above.

1. The rule 𝜉1 is “a nontrivial loop reduces to the trivial walk of its endpoint”.

2. The rule 𝜉2 is “the relation (⇝) is right compatible with edge concatenation”.

3. The rule 𝜉3 is “the relation (⇝) removes left attached loops”.

Remark 5.30. The data constructors in (5.3–13) follow a design principle to avoid certain unifica-

tion problems occurring in dependently-typed programs (Kokke, Siek, and Wadler 2020; McBride

https://jonaprieto.github.io/synthetic-graph-theory/CPP2022-paper.html#2358

5.3 Normal forms for walks 91

n.d.).

Definition 5.31. The relation (⇝∗) is the reflexive and transitive closure of the relation (⇝)
in Definition 5.29.

Lemma 5.32. Given 𝑥, 𝑦 ∶ N𝐺 and 𝑝, 𝑞 ∶ W𝐺(𝑥, 𝑦), the following claims hold:

1. If 𝑥 ∈ 𝑞 and 𝑝 ⇝∗ 𝑞 then 𝑥 ∈ 𝑝.
2. If 𝑝 ⇝ 𝑞 then length(𝑞) < length(𝑝).

One can prove that our reduction relation in Definition 5.29 satisfies the progress

property, similarly as proved for simply-typed lambda calculus in Agda (Kokke, Siek, and

Wadler 2020, §2). Evidence that a walk reduces is encoded using the following predicate.

Definition 5.33. Given a walk 𝑝 ∶ W𝐺(𝑥, 𝑦),

Reduce(𝑝) ∶≡ ∑
(𝑞∶W𝐺 (𝑥,𝑦))

(𝑝 ⇝ 𝑞).

The predicate Normal defined in Definition 5.34 is the evidence that a walk is a quasi-

simple walk that can no longer reduce.

Definition 5.34. Given a walk 𝑝, one states that 𝑝 is in normal form if Normal(𝑝). If 𝑝 ⇝ 𝑞
and the walk 𝑞 is in normal form; we refer to 𝑞 as the normal form of 𝑝.

Normal(𝑝) ∶≡ isQuasi(𝑝) × ¬Reduce(𝑝).

Lemma 5.35. Being in normal form for a walk is a proposition.

Proof. It follows from Lemmas 2.13 and 5.17. □

Example 5.36. The very basic normal forms for walks are the trivial ones, and the one-edge

walks with different endpoints. Given a walk 𝑤 and a term of NoReduce(𝑤), one can easily

show that the walk 𝑤 is in normal form.

Definition 5.37. Given nodes 𝑥 and 𝑦 in a graph 𝐺, we encode the fact a walk can reduce or

not by using the inductive data type Progress.

92 Walks and Spherical Maps

data Progress {𝑥 𝑦} (𝑝 ∶ W𝐺(𝑥, 𝑦)) ∶ U

step ∶ Reduce(𝑝) → Progress(𝑝)
done ∶ Normal(𝑝) → Progress(𝑝)

Theorem 5.38. Given a graph 𝐺 with a discrete node-set, there exists a reduction for each

walk to one of its normal forms, i.e., (5.3–14) is inhabited for all 𝑤 ∶ W𝐺(𝑥, 𝑦).

∑
(𝑣∶W𝐺 (𝑥,𝑧))

(𝑤 ⇝∗ 𝑣) × Normal(𝑣). (5.3–14)

Remark 5.39. The reduction relation (⇝) has the termination property. There is no infinite se-

quence of walks reducing, since the length of each walk in a chain, like 𝑤1 ⇝ 𝑤2 ⇝ 𝑤3 ⇝ ⋯,

decreases at each reduction step. See also Lemma 5.3.

Corollary 5.40. Given a graph 𝐺 with a discrete node-set, and a walk 𝑤 of type W𝐺(𝑥, 𝑦) for
two 𝑥, 𝑦 ∶ N𝐺 , the following claims hold.

1. The type Reduce(𝑤) is decidable.
2. The proposition Normal(𝑤) is decidable.
3. The walk 𝑤 progresses in the sense of Definition 5.37.

For simplicity, the proofs of Theorem 5.38 and Corollary 5.40 are omitted. Neither of

them requires the law of excluded middle. However, if we want to construct the normal

form for a walk, the node set of the graph has to be discrete. In the case of Theorem 5.38,

its proof can use the same reasoning given for the proof of Theorem 5.48.

5.4 The notion of walk homotopy

In this subsection, we introduce a binary relation, denoted by (∼M), on the set of walks

between fixed endpoints in a graph. This relation is designed to capture the behaviour of

walks in an embedded graph in a surface such as the two-dimensional plane, where all

the walks can be deformed one into another along the faces of the graph map in use.

Definition 5.41. Let 𝑤1, 𝑤2 be two walks from 𝑥 to 𝑦 in Sym(𝐺). The expression 𝑤1 ∼M 𝑤2
denotes that one can deform 𝑤1 into 𝑤2 along the faces of M, as illustrated in Figure 5.4. We

acknowledge evidence of this deformation as a walk homotopy between 𝑤1 and 𝑤2, of type
𝑤1 ∼M 𝑤2.

The relation (∼M) has four constructors, as follows. The first three constructors are

functions to indicate that homotopy for walks is an equivalence relation; they are hrefl, hsym,

5.4 The notion of walk homotopy 93

and htrans. Let 𝑥, 𝑦 ∶ N𝐺 .

hrefl ∶ ∏
(𝑤1∶WSym(𝐺)(𝑥,𝑦))

𝑤1 ∼M 𝑤1.

hsym ∶ ∏
(𝑤1 ,𝑤2∶WSym(𝐺)(𝑥,𝑦))

𝑤1 ∼M 𝑤2 → 𝑤2 ∼M 𝑤1.

htrans ∶ ∏
(𝑤1 ,𝑤2 ,𝑤3∶WSym(𝐺)(𝑥,𝑦))

𝑤1 ∼M 𝑤2 → 𝑤2 ∼M 𝑤3 → 𝑤1 ∼M 𝑤3.

(5.4–15)

The fourth constructor, illustrated in Figure 5.5, is the hcollapse function that establishes

the walk homotopy:

(𝑤1 ⋅ ccwF(𝑎, 𝑏) ⋅ 𝑤2) ∼M (𝑤1 ⋅ cwF(𝑎, 𝑏) ⋅ 𝑤2),

supposing one has the following,

(i) a face F given by ⟨𝐴, 𝑓 ⟩ of the map M,

(ii) a walk 𝑤1 of type WSym(𝐺)(𝑥, 𝑓 (𝑎)) for a node 𝑥 in 𝐺 with a node 𝑎 in 𝐴, and

(iii) a walk 𝑤2 of type WSym(𝐺)(𝑓 (𝑏), 𝑦) for a node 𝑏 in 𝐴 with a node 𝑦 in 𝐺.

w1

w2

⇐

⇐

y

x

⇐

Figure 5.4: It is shown that three homotopies between twowalks from 𝑥 to 𝑦 in an embed-
ded graph in the sphere. In each case, the arrow (⇓) indicates the face and the direction in
which the correspondingwalk deformation is performed. We obtain a homotopy between
the two highlighted walks, 𝑤1 and 𝑤2, by composing, from left to right, the homotopies
from each figure.

•𝑥 •𝑓 (𝑎) •𝑓 (𝑏) •𝑦𝑤1

ccwF(𝑎,𝑏)

𝑤2

cwF(𝑎,𝑏)

Figure 5.5: Given a face F of a map M, we illustrate here hcollapse, one of the four con-
structors of the homotopy relation on walks in Definition 5.41. The arrow (⇓) represents
a homotopy of walks.

One consequence of Definition 5.41 is that, in each face F, there is a walk-homotopy

between ccwF(𝑥, 𝑦) and cwF(𝑥, 𝑦) using the constructor hcollapse.

94 Walks and Spherical Maps

The following lemma shows how to compose walk homotopies horizontally and ver-

tically. We consider a map M for a graph 𝐺 and distinguishable nodes, 𝑥, 𝑦 , and 𝑧 where

𝑤 , 𝑤1, and 𝑤2 are walks from 𝑥 to 𝑦 .

Lemma 5.42.

1. (Right whiskering) Let 𝑤3 be awalk of typeWSym(𝐺)(𝑦 , 𝑧). If 𝑤1 ∼M 𝑤2 then (𝑤1 ⋅𝑤3) ∼M

(𝑤2 ⋅ 𝑤3).

•𝑥 •𝑦 •𝑧 → •𝑥 •𝑧
𝑤1

𝑤2

𝑤3
𝑤1 ⋅𝑤3

𝑤2 ⋅𝑤3

2. (Leftwhiskering) Let 𝑝1, 𝑝2 be walks of typeWSym(𝐺)(𝑦 , 𝑧). If 𝑝1 ∼M 𝑝2 then (𝑤 ⋅𝑝1) ∼M

(𝑤 ⋅ 𝑝2).

•𝑥 •𝑦 •𝑧 → •𝑥 •𝑧𝑤
𝑝1 𝑤⋅𝑝1

𝑤⋅𝑝2𝑝2

3. (Horizontal composition) Let 𝑝1, 𝑝2 be walks of type WSym(𝐺)(𝑦 , 𝑧). If 𝑤1 ∼M 𝑤2 and

𝑝1 ∼M 𝑝2, then (𝑤1 ⋅ 𝑝1) ∼M (𝑤2 ⋅ 𝑝2).

•𝑥 •𝑦 •𝑧 → •𝑥 •𝑧
𝑤1

𝑤2

𝑝1

𝑝2

𝑤1 ⋅𝑝1

𝑤2 ⋅𝑝2

5.5 The type of spherical maps

In topology, the property of being simply connected to the sphere states that one can

freely deform/contract any walk on the sphere into another whenever they share the

same endpoints. This property of the sphere leads to the predicate in Definition 5.43,

which sets the criteria for a graph to be embeddable in the 2-sphere. An alternative

definition of this criteria for graphs with discrete nodes is provided in Definition 5.44.

We use spherical maps to develop basic planarity criteria for graphs, which were initially

described in (Prieto-Cubides and Håkon Robbestad Gylterud 2022).

Definition 5.43. Given a graph 𝐺, a map M for 𝐺 is said to be spherical if the type in (5.5–16)

is inhabited.

∏
(𝑥,𝑦∶NSym(𝐺))

∏
(𝑤1 ,𝑤2∶WSym(𝐺)(𝑥,𝑦))

∥ 𝑤1 ∼M 𝑤2 ∥ . (5.5–16)

To prove a given map is spherical following Definition 5.43, one must consider the set

of all possible walk-pairs for each node-pair. This is not easy unless the set of walks fol-

5.5 The type of spherical maps 95

lows a certain property, since the type of walks forms an infinite set. Therefore, it is pro-

posed an alternative formulation for spherical maps based on Definition 5.29. Anywalk is

homotopic to its normal form, and only quasi-simple walks can be in normal form. By re-

moving such a “redundancy” created by loops in the graph, a more convenient definition

is obtained for spherical maps for graphs with discrete node-set, see Definition 5.44. Fur-

thermore, using Theorem 5.48, we show that both definitions are equivalent for graphs

with discrete node set in Corollary 5.49.

Definition 5.44. Given a graph 𝐺, a map M for 𝐺 is considered to be spherical if the type

in (5.5–17) is inhabited.

∏
(𝑥,𝑦∶N𝐺)

∏
(𝑤1 ,𝑤2∶WSym(𝐺)(𝑥,𝑦))

isQuasi(𝑤1) × isQuasi(𝑤2) → ∥ 𝑤1 ∼M 𝑤2 ∥ . (5.5–17)

Lemma 5.45. Being spherical for a map is a proposition. Furthermore, if the graph of the map

is finite, such a proposition is decidable.

Proof. The first part follows straightforwardly. To show the second part, let ℳ be a map

for a finite graph. Then, the conclusion will follow if for any pair of quasi-simple walks,

𝑝 and 𝑞, sharing endpoints, one can always determine whether a walk homotopy exists

or not between them. To check if 𝑝 ∼ℳ 𝑞, let us assume, without loss of generality, that

𝑝 and 𝑞 are different walks without a prefix or suffix walk in common. Otherwise, using

left/right whiskering as in Lemma 5.42, one could reconstruct a walk homotopy from a

walk homotopy between 𝑝 and 𝑞 without prefixes and suffixes.

�
�
� �

�
�� �� � ��

Figure 5.6: The figure shows the cases considered in the proof of Lemma 5.45 for two
walks 𝑝 and 𝑞 with the same endpoints. In the first case, there is at least one walk between
𝑝 and 𝑞, while in the second case, there are no faces but those given by a map.

Using the map, one can check whether there is a walk 𝑟 between 𝑝 and 𝑞. Note that

the set of quasi-simple walks is finite, and one can then freely iterate through any subset

of it; see Theorem 5.26.

Now, if there is no such walk 𝑟 , then one checks if 𝑝 and 𝑞 cover one or more faces

from the finite set of faces of ℳ. If so, one can repeatedly use data constructors like

96 Walks and Spherical Maps

w1

w2

w1

w2

w1

w2

⇐

⇐

⇐

⇐
⇐

⇐

⇐ ⇒

⇒

Figure 5.7: The figure shows three different walk homotopies between the walks 𝑤1 and
𝑤2 in a graph with a spherical map.

htrans and hcollapse to build up a walk homotopy using the faces between 𝑝 and 𝑞, as
illustrated in Figure 5.6. Covering a face using 𝑝 and 𝑞 means that the boundary of such

a face is the concatenation of a subwalk of 𝑝 and a subwalk of 𝑞. Otherwise, there is a

hole, which allows concluding that such a map is not spherical.

On the other hand, if there is a walk 𝑟 between 𝑝 and 𝑞, then we recursively check if

𝑝 ∼ℳ 𝑟 and 𝑟 ∼ℳ 𝑞. If both walk homotopies exist, one continues with a different pair

of walks. Otherwise, the map is not spherical. □

Lemma 5.46. The collection of all spherical maps for a (finite) graph is a (finite) set.

Proof. This is a subtype of the type of maps, which, when considering a finite graph, turns

out to be finite. Subtypes of finite types are finite. □

We will only refer to spherical maps as maps that follow Definition 5.44, unless oth-

erwise indicated. It is straightforward to prove that loops are homotopic to the corre-

sponding trivial walk if a spherical map is given.

5.5 The type of spherical maps 97

Lemma 5.47. Given a graph 𝐺, a spherical map M and 𝑥 ∶ N𝐺 , it follows that ‖(𝑒 ⊙ ⟨𝑥⟩) ∼M

⟨𝑥⟩‖ for all 𝑒 ∶ ESym(𝐺)(𝑥, 𝑥).

Proof. Apply M to the walks (𝑒 ⊙ ⟨𝑥⟩) and ⟨𝑥⟩. □

Theorem 5.48. Given a graph 𝐺 with a spherical map M and discrete set of nodes, for any

walk 𝑝 ∶ WSym(𝐺)(𝑥, 𝑧), there exists a normal form of 𝑝, denoted by nf(𝑝), such that 𝑝 is

merely homotopic to nf(𝑝), in the sense of Definition 5.41.

Proof. Given a walk 𝑝 in Sym(𝐺) from 𝑥 to 𝑧 of length 𝑛, we will construct a term of type

𝑄(M, 𝑥, 𝑧, 𝑝) defined as follows.

𝑄(M, 𝑥, 𝑧, 𝑤) ∶≡ ∑
(𝑣∶WSym(𝐺)(𝑥,𝑧))

(𝑤 ⇝∗ 𝑣) × Normal(𝑣) × ‖𝑤 ∼M 𝑣‖.

The proof is done by using strong induction on 𝑛.

▷ Case 𝑛 equals zero. The walk 𝑝 is the trivial walk ⟨𝑥⟩, and it is then in normal form

and also, by hrefl, homotopic to itself.

▷ Case 𝑛 equals one. The walk 𝑝 is a one-edge walk. We then ask if 𝑥 = 𝑧.

1. If 𝑥 = 𝑧, the walk 𝑝 reduces to the trivial walk ⟨𝑥⟩ by 𝜉1. Applying M, one

obtains evidence of a homotopy between 𝑝 and ⟨𝑥⟩, as the twowalks are quasi-

simples.

2. If 𝑥 ≠ 𝑧, the one-edge walk 𝑝 is its own normal form and homotopic to itself

by hrefl.

▷ Assuming that 𝑄(𝑥′, 𝑧′, 𝑤) for any walk 𝑤 from 𝑥′ to 𝑦 ′ of length 𝑘 ≤ 𝑛, we must

prove that 𝑄(𝑥, 𝑧, 𝑝) when the length of 𝑝 is 𝑛 + 1.

▷ Therefore, let 𝑝 be a walk (𝑒 ⊙ 𝑤) where 𝑒 ∶ ESym(𝐺)(𝑥, 𝑦) and the walk 𝑤 ∶
WSym(𝐺)(𝑦 , 𝑧) is of length 𝑛. The following cases must be considered with respect

to equality 𝑥 = 𝑦 .

1. If 𝑥 = 𝑦 then by the induction hypothesis applied to 𝑤 , one obtains the normal

form nf(𝑤) of the walk 𝑤 , along with 𝑟 ∶ 𝑤 ⇝ nf(𝑤) and ℎ1 ∶ ‖𝑤 ∼M nf(𝑤)‖.
We ask if 𝑥 = 𝑧 to see if 𝑝 is a loop.

(a) If 𝑥 = 𝑧 then the walk 𝑝 reduces to the trivial walk ⟨𝑥⟩ by 𝜉1. By applying

M to the quasi-simple walk nf(𝑤) and ⟨𝑥⟩, ℎ2 ∶ ‖ nf(𝑤) ∼M ⟨ 𝑧 ⟩ ‖ is
obtained. It remains to show that 𝑝 is homotopic to ⟨𝑥⟩. Because being

homotopic is a proposition, the propositional truncation in ℎ1 and ℎ2 can

98 Walks and Spherical Maps

be eliminated to get access to the corresponding homotopies. The required

walk homotopy is as follows.

𝑝 ≡ (𝑒 ⊙ 𝑤)
𝑝 ∼M 𝑒 ⊙ nf(𝑤) (By Lemma 5.42 and ℎ1)
𝑝 ∼M 𝑒 ⊙ ⟨𝑧⟩ (By Lemma 5.42 and ℎ2)
𝑝 ∼M ⟨𝑥⟩ (By Lemma 5.47 applied to M).

(b) If 𝑥 ≠ 𝑧, then the walk 𝑝 reduces to nf(𝑤) by the following calculation

using ℎ1.

𝑝 ≡ (𝑒 ⊙ 𝑤)
𝑝 ≡ (𝑒 ⊙ ⟨𝑥⟩) ⋅ 𝑤 (By def. of walk composition)
𝑝 ⇝∗ 𝑤 (By 𝜉3)
𝑝 ⇝∗ nf(𝑤) (By 𝑟).

2. If 𝑥 ≠ 𝑦 , then we split 𝑤 at 𝑥 using Lemma 5.9. Hence, two cases have to be

considered: whether 𝑥 is in 𝑤 or not, see Definition 5.8.

(a) If 𝑥𝑖𝑠 ∈ 𝑤 , then, for every node 𝑘 in 𝐺, there are walks 𝑤1 ∶ WSym(𝐺)(𝑦 , 𝑘)
and 𝑤2 ∶ WSym(𝐺)(𝑘, 𝑧) such that 𝛾 ∶ 𝑤 = 𝑤1 ⋅ 𝑤2, along with evidence

that 𝑥 ∉ 𝑤1 by Lemma 5.9. By the induction hypothesis applied to 𝑤1
and to 𝑤2, we obtain the normal forms nf(𝑤1) and nf(𝑤2), and the terms

𝑟𝑖 ∶ 𝑤𝑖 ⇝ nf(𝑤𝑖) and ℎ𝑖 ∶ ‖𝑤𝑖 ∼M nf(𝑤𝑖)‖ for 𝑖 = 1, 2. The following cases

refer to whether 𝑥 = 𝑧 or not.

i. If 𝑥 = 𝑧, the walk 𝑝 reduces to ⟨𝑥⟩ by the rule 𝜉1. To show that 𝑝 is

homotopic to ⟨𝑥⟩, let 𝑠1 and 𝑠2 of type, respectively, ‖𝑝 ∼M nf(𝑤2)‖ and
‖ nf(𝑤2) ∼M ⟨𝑥⟩‖, as given below. Assuming one has the terms 𝑠1 and

𝑠2, by elimination of the propositional truncation and the transitivity

property of walk homotopy with 𝑠1 and 𝑠2, the required conclusion

follows. The walk homotopy 𝑠1 is as follows.

𝑝 ≡ (𝑒 ⊙ 𝑤)
𝑝 ∼M 𝑒 ⊙ (𝑤1 ⋅ 𝑤2) (By the equality 𝛾)
𝑝 ∼M (𝑒 ⊙ 𝑤1) ⋅ 𝑤2 (By assoc. property of (⋅))
𝑝 ∼M (𝑒 ⊙ nf(𝑤1)) ⋅ nf(𝑤2) (By Lemma 5.42, ℎ1, and ℎ2)
𝑝 ∼M ⟨𝑥⟩ ⋅ nf(𝑤2) (By the homotopy from ℎ4)
𝑝 ∼M nf(𝑤2) (By definition),

where ℎ4 ∶ ‖(𝑒 ⊙ nf(𝑤1)) ∼M ⟨𝑥⟩‖ is given by applying the map M to

the quasi-simple walks, (𝑒 ⊙ nf(𝑤1)) and ⟨𝑥⟩. The walk (𝑒 ⊙ nf(𝑤1))

5.5 The type of spherical maps 99

is quasi-simple by Lemma 5.14. Also, note that 𝑥 ∉ nf(𝑤1) by

Lemma 5.32 and the assumption 𝑥 ∉ 𝑤1. Finally, the remaining walk

homotopy 𝑠2 is obtained by applying M to the quasi-simple walks,

nf(𝑤2) and the trivial walk at 𝑥 .
ii. If 𝑥 ≠ 𝑧, then the walk 𝑝 reduces to nf(𝑤2) by the reduction reasoning

in (5.5–18). As the walk nf(𝑤2) is in normal form, it remains to show

that 𝑝 is homotopic to nf(𝑤2). However, the reasoning is similar to

Item 2(a)i.

𝑝 ≡ (𝑒 ⊙ 𝑤)
𝑝 ⇝∗ 𝑒 ⊙ (𝑤1 ⋅ 𝑤2) (By splitting 𝑤 using Lemma 5.9)
𝑝 ⇝∗ (𝑒 ⊙ 𝑤1) ⋅ 𝑤2 (By assoc. property of (⋅))
𝑝 ⇝∗ ⟨𝑥⟩ ⋅ 𝑤2 (By 𝜉2 applied to the loop (𝑒 ⊙ 𝑤1))
𝑝 ⇝∗ 𝑤2 (By definition of walk composition)
𝑝 ⇝∗ nf(𝑤2) (By the induction hypothesis).

(5.5–18)

(b) Otherwise, there is evidence that 𝑥 ∉ 𝑤 . By the induction hypoth-

esis applied to 𝑤 , the walk nf(𝑤) is obtained, along with a reduction

𝑟 ∶ 𝑤 ⇝ nf(𝑤) and evidence ℎ ∶ ‖ 𝑤 ∼M nf(𝑤) ‖. The proof is by

structural induction on the walk, nf(𝑤).
i. If nf(𝑤) is the trivial walk ⟨𝑦⟩, then the walk 𝑝 reduces either to ⟨𝑥⟩, if

𝑥 = 𝑧, or to the walk (𝑒 ⊙ ⟨𝑧⟩), if 𝑥 ≠ 𝑧. Either way, it is possible to

construct the corresponding homotopies, similarly as for Item 1a.

ii. If the walk nf(𝑤) is the composite walk (𝑢 ⊙ 𝑣) for 𝑢 ∶ ESym(𝐺)(𝑦 , 𝑦 ′),
𝑣 ∶ WSym(𝐺)(𝑦 ′, 𝑧) and nodes 𝑦 ′, 𝑧 ∶ N𝐺 , then we ask if 𝑥 = 𝑧.
– If 𝑥 = 𝑧, then the walk 𝑝 reduces to the trivial walk ⟨𝑥⟩ by 𝜉1. It

remains to show that the walk (𝑒 ⊙ nf(𝑤)) is homotopic to ⟨𝑥⟩. The
spherical property of themapM is applied to observe this. Note that

the walk (𝑒 ⊙ nf(𝑤)) is quasi-simple by Lemma 5.14, as 𝑥 ∉ nf(𝑤)
by Lemma 5.32 applied to the assumption 𝑥 ∉ 𝑤 .

– If 𝑥 ≠ 𝑧, then the walk 𝑝 reduces to the walk (𝑒 ⊙ nf(𝑤)) by 𝜉2. By
the propositional truncation elimination applied to the evidence of

Lemma 5.42 and the homotopy ℎ, one can obtain evidence that the

walk (𝑒⊙𝑤) is homotopic to (𝑒⊙nf(𝑤)). It remains to show that the

composite walk (𝑒 ⊙ nf(𝑤)) is in normal form. By Lemma 5.14, this

walk is quasi-simple. By case analysis on the possible reductions

using Definition 5.29, one proves that this walk does not reduce.

100 Walks and Spherical Maps

Therefore, (𝑒 ⊙ nf(𝑤)) is in normal form. □

Corollary 5.49. The two spherical map definitions, Definition 5.43 and Definition 5.44, are

equivalent when considering graphs with a discrete set of nodes.

Proof. The definitions in question are propositions. Thus, it is only necessary to show

that they are logically equivalent.

1. Every spherical map by Definition 5.44 is a spherical map with additional data in

the sense of Definition 5.43

2. Let M be a spherical map by Definition 5.44. To see M also satisfies Definition 5.43,

let 𝑤1 and 𝑤2 be two quasi-simple walks from 𝑥 to 𝑦 . We must now exhibit evidence

that 𝑤1 is homotopic to 𝑤2. By Theorem 5.48, a walk homotopy ℎ1 between 𝑤1
and the normal form nf(𝑤1) exists. Similarly, one can obtain a term ℎ2 of type

‖𝑤2 ∼M nf(𝑤2)‖.

𝑤1 ∼M nf(𝑤1) (By ℎ1 from Theorem 5.48)
𝑤1 ∼M nf(𝑤2) (By ℎ3 from Definition 5.44)
𝑤1 ∼M 𝑤2 (By ℎ2 from Theorem 5.48).

(5.5–19)

On the other hand, note that walks in normal form are quasi-simple walks by def-

inition. Therefore, it is possible to get ℎ3 ∶ ‖nf(𝑤1) ∼M nf(𝑤2)‖ by applying the

spherical property of the map M to nf(𝑤1) and nf(𝑤2). By the elimination of the

propositional truncation applied to ℎ1, ℎ2, and ℎ3, the required evidence of a homo-

topy between 𝑤1 and 𝑤2 can be obtained, as stated in (5.5–19). □

For the sake of completeness, let us here state Lemma 5.51 that there exists one spher-

ical map for every 𝐶𝑛. This lemma together with the results of Section 4.4.2 allows us to

prove later Example 6.3. The candidate map for 𝐶𝑛 to be spherical is precisely the one

given in Example 4.30.

Lemma 5.50. Let 𝑥, 𝑦 be nodes in 𝐶𝑛. The following claims hold for the graph Sym(𝐶𝑛). The
walks cwSym(𝐶𝑛)(𝑥, 𝑦) and ccwSym(𝐶𝑛)(𝑥, 𝑦), referenced in Lemma 4.29, are quasi-simple walks.

The total length of these walks sums up to 𝑛.

Additionally, one can prove that 𝑛 is the maximum possible length of a quasi-simple

walk in the graph Sym(𝐶𝑛), as stated in Lemma 5.24. Moreover, as illustrated in Figure 4.5

for the faceF, the graph Sym(𝐶𝑛) is completely covered by thewalks ccwSym(𝐶𝑛)(𝑥, 𝑦) and
cwSym(𝐶𝑛)(𝑥, 𝑦). Note that for any graph 𝐺, there are at least two closed walks between

any pair of nodes 𝑥, 𝑦 in any face F, respectively, ccwF(𝑥, 𝑦) and cwF(𝑥, 𝑦).

5.6 Discussion 101

Lemma 5.51. The graph map for 𝐶𝑛 given in Example 4.30 is spherical.

Proof. We must show that any pair of walks in 𝐶𝑛, equivalently quasi-simple walks, are

walk-homotopic. Let us consider the following cases.

1. If 𝑛 = 1, the only walk to consider is the trivial walk, which is trivially homotopic

to itself.

2. If 𝑛 > 1 and 𝑥 ≠ 𝑦 , then one only needs to consider the quasi-simple walks

ccwSym(𝐶𝑛)(𝑥, 𝑦) and cwSym(𝐶𝑛)(𝑥, 𝑦) given by Lemmas 4.29 and 5.50.

However, such walks are walk-homotopic by

hcollapse(F, 𝑥, 𝑦 , 𝑥, 𝑦 , ⟨𝑥⟩, ⟨𝑦⟩),

where F is the face induced by Sym(𝐶𝑛).

3. Otherwise, if 𝑛 > 1 and 𝑥 = 𝑦 , the only walks to consider are the trivial walk

at 𝑥 and cwSym(𝐶𝑛)(𝑥, 𝑥). Remember that the ccwSym(𝐶𝑛)(𝑥, 𝑦) is by definition ⟨𝑥⟩.
Similarly, as in the previous case, these two walks are homotopic by the constructor

hcollapse. □

5.6 Discussion

In other areas of mathematics unrelated to type theory, considering homotopy for graph-

theoretical concepts, for example, is not new. There are several proposals for the concept

of homotopy for graphs using a few discrete categorical constructions (Grigor’yan, Lin,

Muranov, et al. 2014). Many of these constructions use the ×-homotopy notion, defined as

a relation based on the categorical product of graphs in the Cartesian closed category of

undirected graphs. Since a walk of length 𝑛 in a graph 𝐺 is simply a morphism between a

path graph 𝑃𝑛 into 𝐺, the notion of homotopy for walks is defined as homotopy between

graph homomorphisms. The looped path graph 𝐼𝑛 is used to define the homotopy of these

morphisms in a manner similar to the interval [0, 1] for the concept of homotopy between

functions in homotopy theory. As a source of more results, it is possible to endow the

category of undirected graphs with a 2-category structure by considering homotopies of

walks as 2-cells, as described by Chih and Scull (Chih and Scull 2020).

In terms of the reduction relation on walks and spherical maps, this work is related to

polygraphs used in the context of higher-dimensional rewriting systems. Recent work by

Kraus and von Raumer (Kraus and Raumer 2020, 2021) uses ideas in graph theory, higher

categories, and abstract rewriting systems to approximate a series of open problems in

HoTT. In the same vein, the internalisation of rewriting systems and the implementation

102 Walks and Spherical Maps

of polygraphs in Coq by Lucas (Lucas 2019, 2020) were found to be related to the Kraus

and von Raumer approach. A fundamental object in the work of the authors mentioned

above is that of an 𝑛-polygraph, also called computad.

A 𝑛-polygraph is a (higher dimensional) structure that can serve, for example, to anal-

yse reducing terms to normal forms and compare reduction sequences on abstract term

rewriting systems. The following is a possible correspondence to relate these ideas within

the context of our work. The notion of a 1-polygraph (Kraus and Raumer 2021, §2), which

is given by two sets Σ0 and Σ1, and two functions, 𝑠0, 𝑡0 ∶ Σ1 → Σ0 is equivalent to the type

of graphs in Definition 3.1. An object is a node, a reduction step is an edge, and a reduction

sequence 𝑎 ⇝∗ 𝑏 is a walk between nodes 𝑎 to 𝑏. A (closed) zig-zag is a (cycle) walk in

the symmetrisation of the graph representing the reduction relation. A (generalised) 2-
polygraph (Kraus and Raumer 2021, Def. 25) consists of a type 𝐴, a set of reduction steps

on𝐴, and all rewriting steps between zig-zags. Then, the notion of 2-polygraph on𝐴will

correspond to a graph 𝐺 representing the type 𝐴 with the set of all walks in 𝐺 and the

collection of walk homotopies in the symmetrisation Sym(𝐺) for a given combinatorial

map.

Using the previous interpretation for polygraphs, one may state that a graph with

a spherical map holds properties such as terminating, closed under congruence, cancels

inverses, and it has a Winkler-Buchberger structure (Kraus and Raumer 2021, Eq. 32-35).

The related concept of homotopy basis of a 2-polygraph (Kraus and Raumer 2021, Def.

28) may be seen as the set obtained from Definition 5.43 without using propositional

truncation in the corresponding type.

On the other hand, Noetherian induction for closed zig-zags (Kraus and Raumer 2021,

§ 3.5) addresses a similar issue that we investigated here. In this work, we found that to

prove certain properties, such as the normalisation theorem in Theorem 5.48 for graphs

with a spherical map and a discrete set, it was only necessary to consider (cycle) walks

without inner loops. One can prove other properties related to walk homotopies for

graphs with spherical maps, not only considering the property on a cycle walk but on

any walk. This approach relies on the machinery of quasi-simple walks in Section 5.2 and

the loop reduction relation on walks in Section 5.3. Our loop reduction relation is likely

locally confluent (Kraus and Raumer 2021, § 3.3), but without the uniqueness of normal

forms. Proof of these properties will be done in the future, since they are not required

here. We will also investigate in depth the extent to which the constructions given by

Kraus and von Raumer, as well as by Lucas, are not only related but also applicable to our

main project of graph theory in HoTT (Prieto-Cubides 2023).

Finally, on the computer formalisation side, we identify only the earlier mentioned

work by Kraus and von Raumer as related to our Agda formalisation. They have a for-

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-definitions.Alternative-definition-is-equiv.html

5.6 Discussion 103

malised version¹ of their results in Lean’s HoTT variant.

¹https://gitlab.com/fplab/freealgstr

https://gitlab.com/fplab/freealgstr

6
Planar Maps

In this final chapter, our aim is to combine the concepts developed in previous chapters

and establish a HoTT characterisation of graph planarity, as outlined in Definition 6.1.

Our comprehension of graph planarity is influenced by topological graph theory (Gross

and Tucker 1987, §3), allowing us to employ combinatorial maps to represent graph em-

beddings in a surface up to isotopy, without needing to define a notion of surface or other

topological concepts within type theory.

We begin by reviewing background information on graph planarity before presenting

the type of planarmaps. Subsequently, we introduce planar extensions of graphmaps and

analyse the Euler characteristic for finite graphs. This method of extending graphs paves

the way for constructing a multitude of planar graphs.

6.1 Planarity in graph theory

In the field of graph theory, planar graphs refers to graphs that can be drawn in the two-

dimensional planewithout any edge crossings. Why are planar graphs important? Planar

graphs, apart from the joy of studying them, are often used as convenient and efficient

models to address a wide variety of real-world problems. From a practical standpoint,

they aid in numerous applications ranging from geographical mapping, data visualisa-

tion, and various graph drawing algorithms to network layouts and electric circuit print-

ing. In light of this, various characterisations have been introduced to offer alternative

6.2 A type of planar maps for a graph 105

perspectives and methods for understanding and identifying planar graphs.

The study of planarity criteria, which encompasses methods for identifying planar

graphs, commenced with Kuratowski’s work in 1930 and its theorem on graph planarity.

According to this theorem, a graph is considered planar if and only if it does not con-

tain a subgraph isomorphic to any of the forbidden minors 𝐾3,3 or 𝐾5. Consequently,

if a graph can be transformed into one of the forbidden minors through edge deletions

and contractions, then it is deemed non-planar. Another planarity criterion that men-

tions the forbiddenminors isWagner’s theorem (Diestel 2012; Rahman 2017). Alternative

approaches involve algebraic methods such as MacLane’s planarity criterion (MacLane

1937) and Schnyder’s theorem (Baur 2012, §3.3).

In the context of type theory and formal methods, planar graphs hold a special place.

The Four Colour Theorem (FCT), a seminal result in graph theory, was proven with com-

puter assistance by Appel and Haken in 1976. This theorem states that any finite planar

graph can be coloured with no more than four colours, ensuring no two adjacent nodes

share the same colour. Its proof, covering over 1900 cases, marks a significant milestone

in formal verification history and sparks a debate on the role of computers in mathemat-

ics. It raises questions such as: is a computer-checked proof truly a mathematical proof?

And to what extent can computers assist in theorem proving?

Addressing the concerns surrounding the validity of Appel and Haken’s proof,

Gonthier undertook a complete formalisation of the FCT proof using Coq (Gonthier 2008).

This monumental task stands as a significant milestone in the realm of formal verifica-

tion. Their work not only fortified the standing of the FCT proof but also illuminated

the vast potential of computer-assisted methodologies. One such method involves elabo-

rating mathematical statements using dependently typed theories such as the Coq’s type

system.

6.2 A type of planar maps for a graph

We aim to characterise graph planarity in HoTT based on the intuitive notion that edges

cannot cross each other on the plane. Finding a way to define the concept of edge cross-

ing carefully is a challenging task. If we follow the geometric nature of the intuitive

description, we may end up working with real numbers to represent, for example, the

coordinates in the R2 to represent the nodes and edges of the graph drawing. The con-

struction of real numbers in HoTT is discussed in (Univalent Foundations Program 2013,

§10). To avoid these issues, we choose to follow the combinatorial approach described in

previous chapters to describe graph maps in the plane, or equivalently, the 2-sphere with

a puncture.

In the context of topology, we are aware that the 2-sphere possesses two primary

106 Planar Maps

invariants that we want transport to the language of graph maps: path-connectedness

and simply-connectedness. The concept of path-connectedness is that a path exists con-

necting any two points within the 2-sphere. On the other hand, simply-connectedness

suggests that if two paths share the same endpoints in the 2-sphere, they can be deformed

into one another.

If we consider a walk as the path in the corresponding space induced by the

graph map, we can transport these two concepts with a fixed graph. Thus, the path-

connectedness property coincides with being connected for the embedded graph. To ad-

dress simply-connectedness for the surface induced by a graph map, we need to have

an equivalent notion to saying how a pair of walks can be deformed into one another.

We developed this notion and called walk homotopy in Definition 5.41. The concept of a

graph map in the 2-sphere is what we call a spherical map.

A spherical map for a graph 𝐺 is defined as a map M that satisfies the property of

isSpherical(M).

isSpherical(M) ∶≡ ∏
(𝑥,𝑦∶NSym(𝐺))

∏
(𝑤1,𝑤2∶WSym(𝐺)(𝑥,𝑦))

∥ 𝑤1 ∼M 𝑤2 ∥ . (6.2–1)

In essence, the concept of a spherical map for a graph is defined as the characterisation

of graph embeddings in the 2-sphere. The non-edge-crossing condition appearing in the

intuitive definition of planarity mentioned earlier is now captured in the characterisation

of spherical maps with the notion of homotopy of walks. In other words, there is no edge-

crossing when embedding a graph using a map if such is spherical. As a result, having

spherical maps for a graph is a necessary condition for its planarity.

��

Figure 6.1: The stereographic projection of the sphere 𝑆2 onto the two-dimensional plane.

The final observation involves determining how to obtain a graph embedding in the

plane from a spherical map. This process comes naturally; recall that by puncturing the

2-sphere at a specific location and subsequently applying stereographic projection, we

can transform a graph embedded in the 2-sphere into one embedded in the plane. Thus,

6.2 A type of planar maps for a graph 107

we need to select one face of the map to serve as the puncture point on the 2-sphere,

which completes our characterisation of planarity as described below.

Definition 6.1. A connected and locally finite graph 𝐺 is planar if the type Planar(𝐺) is in-

habited. Elements of Planar(𝐺) are called planar maps of 𝐺.

Planar(𝐺) ∶≡ ∑
(M ∶ Map(𝐺))

isSpherical(M) × Face(𝐺,M)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
outer face

.

We define the type Planar(𝐺) to represent all possible embeddings of 𝐺 into the plane,

specifically focussing on plane graphs. Although Planar(𝐺) is not a planarity test in itself,

it can be used to determine if a finite graph is planar or not by generating all the maps of

the graph and subsequently verifying their spherical nature and the presence of an outer

face, see Lemma 5.45.

Theorem 6.2. The type of all planar maps of a (finite) graph forms a (finite) set.

Proof. The type of planar maps in Definition 6.1 is not a proposition. It encompasses two

sets: the set of combinatorial maps, see Lemma 4.10, and the set of faces, see Lemma 4.18.

Since being spherical for a map is a mere proposition, one concludes that the Σ-type
collecting all planar maps of a graph forms a set. Now, given a finite graph, the finiteness

property of the collection of its planar maps is a direct consequence of the finiteness of

the set of nodes, edges, maps, and faces (see Lemma 4.10 and Theorem 4.26). □

Example 6.3. To establish the planarity of 𝐶𝑛, we begin with the base case 𝑛 = 0. The graph

𝐶0 is a unit graph, a graph with a single node ⋆ and no edges. Without edges, the type of

functions mapping this node to any cyclic order of its star is a contractible type, yielding a

unique, trivially spherical map. The map is spherical since the only walk to consider is the

empty walk, which is trivially homotopic to itself. Planarity follows as 𝐶0 is connected by

definition and possesses an outer face. To define this face, we use as the base cyclic graph,

the graph 𝐶0 itself along with identity graph homomorphism ℎ, see that Sym(𝐶0) ≅ 𝐶0. The
other conditions to inhabit the type of faces for our map are thus trivially met, and the proof

is detailed in Example A.1.

For 𝑛 > 0, 𝐶𝑛 is connected and locally finite as shown by Lemma 4.28. Its planarity is

supported by Example 4.30, which confirms the existence of a unique map M for 𝐶𝑛. To

show this map is spherical, it suffices to show that any two walks 𝑤1 and 𝑤2 with identical

endpoints are homotopic. Inner loops in walks can be ignored since they are irrelevant to

walk homotopy, as shown in Corollary 5.49. Let us now consider the following cases. For

𝑛 = 1, the only walk is the trivial one, which is self-homotopic. For 𝑛 > 1, when examining

nodes 𝑥 and 𝑦 in 𝐶𝑛, we have:

▷ If 𝑥 ≠ 𝑦 , the relevant walks are ccwSym(𝐶𝑛)(𝑥, 𝑦) and cwSym(𝐶𝑛)(𝑥, 𝑦), as per Lemma 4.29.

108 Planar Maps

These walks are homotopic via hcollapse(F, 𝑥, 𝑦 , 𝑥, 𝑦 , ⟨𝑥⟩, ⟨𝑦⟩), where F denotes the

face associated with Sym(𝐶𝑛) where these walks form the boundary of F.

▷ If 𝑥 = 𝑦 , the walks under consideration are the trivial walk at 𝑥 and cwSym(𝐶𝑛)(𝑥, 𝑥).
Similarly to the previous case, these walks are homotopic via hcollapse.

Finally, the outer face of M is naturally induced by 𝐶𝑛, which satisfies Definition 4.14 by

construction. In fact, the definition of faces in Definition 4.14 was informed by the structure

of 𝐶𝑛. Hence, we conclude that 𝐶𝑛 is planar for all 𝑛.

In addition to their simple structure, cyclic graphs, and in particular 𝐶𝑛 graphs, are

building blocks in a few relevant constructions in formal systems related to the study

of the planarity of graphs, such as planar triangulations and the characterisation of all

2-connected planar graphs.

In order to expand our collection of planar map examples, we will now explore the

concept of planar extensions in the context of graph maps. This approach will provide a

deeper understanding and additional instances of planar structures in graph theory.

6.3 Planar extensions

This subsection outlines the construction of planar maps from existing ones using the

path addition operation. The inspiration for this construction derives from ear decompo-

sitions (Bang-Jensen and Gutin 2009, §5.3), reliable networks, extensions of planar graphs

for undirected graphs (J. Gross, Yellen, and Anderson 2018, §5.2, 7.3), and the characteri-

sation of 2-connected graphs (Whitney 1932).

6.3.1 Path additions

Definition 6.4. Let 𝐺 be a graph with nodes 𝑢, 𝑣 , and 𝑃𝑛 denote a path graph of 𝑛 nodes as

defined in Definition 3.14. The (simple) path addition of 𝑃𝑛 to 𝐺 at nodes 𝑢 and 𝑣 in 𝐺 is a new

graph constructed using the function path-addition with arguments 𝐺, 𝑢, 𝑣 , 𝑛, and 𝑟 showing

that 𝑛 is positive, as illustrated in Figure 6.5 (a). For short, this new graph is denoted by

𝐺 •𝑢,𝑣 𝑃𝑛. Here, 𝑢 and 𝑣 are referred to as the endpoints of the addition.

path-addition ∶ ∏
(𝐺∶Graph)

∏
(𝑢, 𝑣∶N𝐺)

∏
(𝑛∶N)

(0 < 𝑛) → Graph.

path-addition (𝐺, 𝑢, 𝑣 , 𝑛, 𝑟) ∶≡ (𝑁 ′, 𝐸′, ℎ1, ℎ2).

The types of nodes 𝑁 ′ and the family of edges 𝐸′ are defined below. The functions ℎ1
and ℎ2 are well defined, although not elaborated here. Refer to Example A.3 for details on

6.3 Planar extensions 109

these functions, their properties, and other functions related to path-additions.

𝑁 ′ ∶≡ N𝐺 + J𝑛K.
𝐸′ ∶ 𝑁 ′ → 𝑁 ′ → U.
𝐸′(inl(𝑥), inl(𝑦)) ∶≡ E𝐺(𝑥, 𝑦).
𝐸′(inl(𝑥), inr(𝑦)) ∶≡ (𝑥 = 𝑢) × (𝑦 = (0, 𝑟)).
𝐸′(inr(𝑥), inl(𝑦)) ∶≡ (𝑥 = pred((0, 𝑟))) × (𝑦 = 𝑣).
𝐸′(inr(𝑥), inr(𝑦)) ∶≡ E𝑃𝑛(𝑥, 𝑦).

Remember that the path graph 𝑃𝑛 with 𝑛 nodes can be defined as follows.

𝑃𝑛 ∶≡ (J𝑛K, 𝜆 𝑢 𝑣 .toNat(𝑢) + 1 = toNat(𝑣)),

where
toNat ∶ J𝑛K → N.
toNat (𝑘, !) ∶≡ 𝑘.

We also conveniently define the non-simple path addition of 𝑃𝑛 to 𝐺 at nodes 𝑢 and

𝑣 in 𝐺. This operation mirrors the symmetrisation of a simple path addition. This con-

struction of non-simple path addition is needed for subsequent sections, as it is used to

establish the planar graphs, which involve the symmetrisation of the given graph.

Definition 6.5. Let 𝐺 be a graph with nodes 𝑢, 𝑣 . The non-simple path addition of 𝑃𝑛 to 𝐺 at

these nodes yields a new graph. This graph is constructed in a similar fashion as the simple

path addition, by linking 𝐺 and the graph Sym(𝑃𝑛) using four edges. Two of these edges go

from node 𝑢 to 0 in Sym(𝑃𝑛) and back. The other two edges link 𝑣 to 𝑛 in Sym(𝑃𝑛) and back.

To ease the upcoming discussion, we must introduce the following conventions.

▷ 𝐺 is a locally connected finite graph with decidable equality on its nodes.

▷ 𝑛 is a positive natural number.

▷ In the graph 𝐺 •𝑢,𝑣 𝑃𝑛, we denote the walk from 𝑢 to 𝑣 via the addition of 𝑃𝑛 to 𝐺 as

𝑝. This is illustrated in Figure 6.2 (a). By an abuse of notation, we may also refer

to this walk as 𝑒0 ⋅ 𝑃𝑛 ⋅ 𝑒𝑛. Here, 𝑒0 and 𝑒𝑛 are the edges connecting nodes 𝑢 to 0 and

nodes 𝑛 − 1 to 𝑣 respectively. The remaining edges, denoted as 𝑒𝑖, connect nodes
𝑖 − 1 and 𝑖 and represent the new additions from the path addition.

▷ For brevity, we denote 𝐺 •𝑢,𝑣 𝑃𝑛 by 𝐺 • 𝑝. This notation is often used below when

the specifics of 𝑛 and 𝑢, 𝑣 are not crucial to the discussion.

▷ We denote 𝐺 •𝑢,𝑣 Sym(𝑃𝑛) by 𝐺 • 𝑝. Here, 𝑝 represents the subgraph added to 𝐺
through the non-simple path addition of 𝑃𝑛 at nodes 𝑢 and 𝑣 . This is illustrated in

Figure 6.2 (b).

110 Planar Maps

▷ In 𝐺•𝑝, we adopt similar notation regarding edges in the symmetrisation of a graph,

as introduced in Figure 4.1. The walk ⃖⃖𝑝 signifies the walk in 𝑝 induced by the

sequence ⃖⃖ ⃖𝑒0 ⋅ ⃖⃖ ⃖𝑒1 ⋅ ⋯ ⋅ ⃖⃖ ⃖𝑒𝑛. Conversely, ⃖⃗𝑝 denotes the opposite direction walk, induced

by the sequence ⃖⃖ ⃗𝑒𝑛 ⋅ ⃖⃖ ⃖⃖ ⃖⃖ ⃗𝑒𝑛−1 ⋅ ⋯ ⋅ ⃖⃖ ⃗𝑒0. See Figure 6.2 (b) for an illustration.

▷ Both 𝐺 • 𝑝 and 𝐺 • 𝑝 are referred to as graph extensions.

▷ The operator (•) is left associative.

▷ The variables 𝑝𝑖 denote finite path graphs of positive length, with respective end-

points 𝑢𝑖 and 𝑣𝑖, adhering to the same considerations as for 𝑝 in the previous items.

▷ A simple cyclic addition to 𝐺 is the path addition 𝐺 •𝑢,𝑢 𝑝 for some 𝑝, where 𝑢 is a

node in 𝐺.

Pn

v

en

n-10

e1
u

e0

Sym(Pn)

v

u

G • p
G • p

en
e0

e0
→

← ← en
→

Figure 6.2: The left figure illustrates the path addition 𝐺 •𝑢,𝑣 𝑃𝑛, achieved by adding path
graph 𝑃𝑛 to graph 𝐺 at nodes 𝑢 and 𝑣 . This process introduces two new edges, 𝑒0 and
𝑒𝑛, along with 𝑛 new nodes from path 𝑃𝑛. We define 𝑝 as the walk 𝑒0 ⋅ 𝑃𝑛 ⋅ 𝑒𝑛 from 𝑢 to 𝑣
in 𝐺 •𝑢,𝑣 𝑃𝑛, simplifying notation. Similarly, the right figure depicts the non-simple path
addition of 𝑃𝑛 to 𝐺 at nodes 𝑢 and 𝑣 , extending graph 𝐺 with 𝑃𝑛’s symmetrisation and
four additional edges.

Lemma 6.6. If 𝐺 is connected, then 𝐺 • 𝑝 and 𝐺 • 𝑝 are connected.

Proof. To demonstrate the connectedness of 𝐺 •𝑢,𝑣 𝑃𝑛, it is sufficient to consider connec-

tivity between all node pairs in the augmented graph. The case for 𝐺 •𝑢,𝑣 Sym(𝑃𝑛) is

analogous. Additionally, we assume a walk always can be constructed to connect any

two nodes in 𝐺. This is justified by eliminating the propositional truncation in the def-

inition of connectedness, since we want to prove connectedness for a graph, which is a

proposition itself. The proof is followed by cases, depending on the location of the nodes

in the augmented graph.

Let 𝑥 and 𝑦 be distinct nodes in 𝐺 •𝑢,𝑣 𝑃𝑛; for identical nodes, a trivial walk suffices. If

both are in 𝐺, their connectivity is inherent. If 𝑥 is in 𝐺 and 𝑦 is in 𝑃𝑛, their connectivity
is established via a concatenated walk from 𝑥 to 𝑢 within 𝐺, followed by the subwalk of

𝑒0 ⋅𝑃𝑛 ⋅ 𝑒𝑛 that connects 0 to 𝑦 . If 𝑥 and 𝑦 lie in 𝑃𝑛, say they correspond to 𝑖 and 𝑗, we can use

as the walk to connect them, 𝑒𝑖+1 ⋅⋯ ⋅ 𝑒𝑗 if 𝑖 < 𝑗. Otherwise, the walk is 𝑒𝑖 ⋅⋯ ⋅ 𝑒𝑛 ⋅ 𝑤 ⋅ 𝑒0 ⋅⋯ ⋅ 𝑒𝑗 ,
where 𝑤 denotes a given walk from 𝑣 to 𝑢 in 𝐺. □

6.3 Planar extensions 111

Lemma 6.7. Sym(𝐺 • 𝑝) ≅ Sym(𝐺) • 𝑝.

Proof. To show these graphs are isomorphic, we compare their node and edge sets for

equivalence. By definitions of Sym and path-addition, the node sets are identical:

NSym(𝐺•𝑝) ≡ N𝐺 + J𝑛K ≡ NSym(𝐺) + J𝑛K ≡ NSym(𝐺)•𝑝 .

For the edge sets, we want to show that for given nodes 𝑥 and 𝑦 ,

ESym(𝐺•𝑝)(𝑥, 𝑦) ≃ ESym(𝐺)•𝑝(𝑥, 𝑦).

To address this equivalence, we notice how the path addition operation affects the edge

sets of original graph. This operation affects the edges differently based on the location

of 𝑥 and 𝑦 , but within 𝐺 or 𝑃𝑛, and because symmetrisation does not alter the edge sets:

ESym(𝐺•𝑝)(𝑥, 𝑦) ≡ ESym(𝐺)(𝑥, 𝑦) ≡ ESym(𝐺)•𝑝(𝑥, 𝑦).

When 𝑥 is in 𝐺 and 𝑦 in 𝑃𝑛, or vice versa, symmetry allows us to consider two cases:

𝑥 ≡ 𝑢 and 𝑦 ≡ 0, or 𝑥 ≡ 𝑣 and 𝑦 ≡ 𝑛. In both scenarios, the new edges introduced by path

addition result in equivalent edge sets.

ESym(𝐺•𝑢,𝑣𝑃𝑛)(𝑢, 0) ≃ J2K ≃ ESym(𝐺)•𝑝(𝑢, 0).

The first part of this chain, the equivalence, ESym(𝐺•𝑢,𝑣𝑃𝑛)(𝑢, 0) ≃ J2K which is due to the

fact that 𝑢 and 0 are adjacent in Sym(𝐺 •𝑢,𝑣 𝑃𝑛). These two edges are the one induced

in 𝐺 •𝑢,𝑣 𝑃𝑛 and the other one from the symmetrisation process. On the other hand, the

equivalence ESym(𝐺)•𝑝(𝑢, 0) ≃ J2K follows by applying (•𝑝) to Sym(𝐺). The case for 𝑥 ≡ 𝑣
and 𝑦 ≡ 𝑛 is analogous. Consequently, the edge sets coincide, confirming the expected

isomorphism. □

Lemma 6.8. Let M represent a planar map of 𝐺, F a specific face, and 𝑢 and 𝑣 two nodes on

the boundary walk of F. An extended planar map of 𝐺 •𝑝 can be constructed from M, where

𝑝 is situated onto F, splitting it into two faces.

The proof of Lemma 6.8 unfolds in several steps. We first define a map that extends

M to a proper map of 𝐺 • 𝑝 with defined values for the nodes in 𝑝. Next, as illustrated in

Figure 6.4, we establish two faces resulting from placing 𝑝 onto F. The final step involves

demonstrating that the candidate map for 𝐺 • 𝑝 is planar. That is, per Definition 6.1, that

all pairs of walks in the symmetrisation of 𝐺 • 𝑝 are walk homotopic with respect to the

given map.

112 Planar Maps

Proof of Lemma 6.8. Let M be a planar map of 𝐺, F a specific face, and 𝑢 and 𝑣 two nodes

on the boundary walk of F. We denote the graph 𝐺 • 𝑝 as 𝐻 and the prospective planar

map for this graph asM′. In the context of Definition 4.14, within the face walk boundary

𝜕Fof the given faceF, we identify an edge preceding 𝑢, represented as 𝑎 ∶ E𝐺(pred(𝑢), 𝑢),
and its succeeding edge 𝑎+ ∶ E𝐺(𝑢, suc(𝑢)). Analogously for 𝑣 , we have 𝑏 ∶ E𝐺(pred(𝑣), 𝑣)
and 𝑏+ ∶ E𝐺(𝑣 , suc(𝑣)), as depicted in Figure 6.3a.

We define the map M′ at each node 𝑥 in 𝐻 . We begin with the endpoints of 𝑝, that is,
𝑥 = 𝑢 and 𝑥 = 𝑣 . For 𝑥 = 𝑢, we alter the cycle M(𝑢) by introducing 𝑒0 between the edges

𝑎 and 𝑎+, resulting in the cycle M′(𝑢) = (⋯ 𝑎 𝑒0 𝑎+ ⋯). Similarly, for 𝑥 = 𝑣 , the modified

cycle M′(𝑣) is (⋯ 𝑏 𝑒𝑛 𝑏+ ⋯). For internal nodes of 𝑝, that is, nodes 𝑥 in 𝑃𝑛, the map M′ is
defined directly. At each of these nodes, we encounter only two edges, denoted as 𝑒𝑖 and
𝑒𝑖+1, where 𝑖 ranges from 0 to 𝑛 − 1. Remember that 𝑒0 connects nodes 𝑢 and 0, 𝑒𝑛 links

nodes 𝑛 − 1 and 𝑣 , and for the remaining, 𝑒𝑖 bridges nodes 𝑖 − 1 and 𝑖.

Pn

u

en

a

a+

b+

b

v

n-1

e0
0

e1

(a) Path addition used in Lemma 6.8.

p q

r

(b) The embedded graph Sym(𝐺 • 𝑝 • 𝑞 • 𝑟).
Figure 6.3: Figure (a) in the caption illustrates the path addition 𝐺 • 𝑝 as detailed in
Lemma 6.8. Figure (b) presents the planar map for 𝐺 from Figure 4.2 (b), showcasing
three graph extensions: the path addition of 𝑝, cyclic addition of 𝑞, and spike addition of
𝑟 . Though it is feasible to define the construction of 𝑟 , it is not necessary for this discus-
sion. The additions of 𝑝 and 𝑞 split faces 𝐹2 and 𝐹3 from Figure 4.2, generating two new
faces each. The spike addition of 𝑟 substitutes 𝐹4 with a face of higher degree.

Assume the face F, induced by (𝐴, ℎ) of degree 𝑚 according to Definition 4.14. Here,

ℎ is an edge-injective graph homomorphism from 𝐴 to Sym(𝐻), satisfying the map-

compatibility condition. Let 𝜕F be the boundary walk of F of length 𝑘, and define 𝑛1, 𝑛2
as 𝑘 + (𝑛 + 1) and (𝑚 − 𝑘) + (𝑛 + 1) respectively.

Let us denote 𝐹1, 𝐹2 as faces induced by (𝐶𝑛1 , ℎ1) and (𝐶𝑛2 , ℎ2) respectively, where ℎ1 =
(𝛼1, 𝛽1) and ℎ2 = (𝛼2, 𝛽2) are morphisms of type Hom(𝐶𝑛𝑖 , Sym(𝐻)) for 𝑖 = 1, 2. The

boundary walks of these faces, 𝜕𝐹1 and 𝜕𝐹2, are defined as cwF(𝑢, 𝑣) ⋅ ⃖⃗𝑝 and ccwF(𝑢, 𝑣) ⋅ ⃖⃗𝑝
respectively. The illustration in Figure 6.4 provides a visual representation of this concept.

To establish the planarity ofM′, wemust first demonstrate that for each face 𝐹1 and 𝐹2
of M′, ℎ1 and ℎ2 satisfy the map-compatibility condition and uphold the edge-injectivity

6.3 Planar extensions 113

F1

F2

∂F

ccwF(u, v)

v

u

p

cwF(u, v)

Sym(G • p)
Cn1

Cn2

(α1, β1)

(α2, β2)

Figure 6.4: The figure demonstrates the partitioning of face F into two, 𝐹1 and 𝐹2, via
𝐺 • 𝑝 when 𝑝 resides on face F.

property. Beginning with ℎ1, consider the nodes in 𝐶𝑛1 , namely 0, 1, … , 𝑛1 − 1. Each node

𝑖 ∶ N𝐶𝑛1 maps to a node defined by 𝛼 from F. Specifically, 𝛼1(𝑖) equals 𝛼(𝑖) for 𝑖 < 𝑘,
while 𝛼(𝑖) positions the node in cwF(𝑢, 𝑣). For the corresponding edges, 𝑒 ∶ E𝐶𝑛1 (𝑖, 𝑖 + 1),
we employ the function 𝛽 from F to define 𝛽1, such that 𝛽1(𝑖, 𝑖 + 1, 𝑒) corresponds to

𝛽(𝑖, 𝑖 + 1, 𝑒).
However, if 𝑘 ≤ 𝑖 ≤ 𝑛1, node 𝑖must be placed in 𝑝, then 𝛼1(𝑖) is 𝑛− 𝑖. Correspondingly,

for edges, we set 𝛽1(𝑖, 𝑖 + 1, 𝑒) as the edge inl(𝑒𝑖) in Sym(𝐻). It is clear by construction

that ℎ1 is an edge-injective, map-compatible graph homomorphism with the map M′,
properties naturally inherited from ℎ. In a similar vein, it can be proven that ℎ2 is well-

defined and fulfills the map-compatibility condition and the edge-injectivity property.

•𝑥 •𝑢 •𝑦 •𝑣 •𝑧𝛿1 𝑝2

cwF(𝑢,𝑣)

𝛿2𝑝1

ccwF(𝑢,𝑣)
ℎ𝐹2

ℎ𝐹1

Figure 6.5: The figure shows a part of the graph Sym(𝐺 • 𝑝) embedded in the 2-sphere.
As constructed in the proof of Lemma 6.8, the faces, 𝐹1 and 𝐹2, of the map M′ are given
by a face division of F by the path 𝑝. Such gives rise to new walk homotopies, as ℎ𝐹1 andℎ𝐹2 in the picture. The walk ⃖⃖𝑝 from 𝑢 to 𝑣 is the walk composition of 𝑝1, a walk from 𝑢 to
𝑦 , and 𝑝2, a walk from 𝑦 to 𝑣 . The walks 𝛿1 and 𝛿2 are walks in Sym(𝐺) from 𝑥 to 𝑧.

To prove that M′ is planar, we must first show that it is spherical. To see this, we rely

on Lemma 5.45, which allows us to apply the elimination of the propositional truncation

to the evidence that M is spherical. This enables us to obtain a walk homotopy for any

pair of walks in Sym(𝐺) sharing endpoints, which is perhaps used henceforth without

explicit mention. This entails that homotopic walks in Sym(𝐺), deforming along faces

other than F, maintain their homotopy in Sym(𝐻). Therefore, our focus narrows down

114 Planar Maps

to:

(i) the set of walks in Sym(𝐺) deforming along F, and

(ii) the set of walks resulting from possible compositions of 𝑝 with existing walks in

Sym(𝐺).

For both walks originating from set (i), their homotopy is defined by the vertical com-

position of homotopies along 𝐹1 and 𝐹2, as referenced in Lemma 5.42, (Prieto-Cubides

2022, §5).

In case (ii), we consider walks without inner loops, following Lemma 5.8 in (Prieto-

Cubides 2022). We examine three subcases without loss of generality, where the walk 𝑝
from 𝑢 to 𝑣 decomposes into 𝑝1 and 𝑝2. Here, 𝑝1 is a walk from 𝑢 to node 𝑦 in Sym(𝐺 • 𝑝),
and 𝑝2 from 𝑦 to 𝑣 , as shown in Figure 6.5. Recall that a walk homotopy for any pair of

walks in Sym(𝐺) sharing endpoints is always accessible by hypothesis.

(a) Either 𝑤1, 𝑤2, or both, include ⃖⃖𝑝 as a subwalk from 𝑥 to 𝑧. If 𝑤1 composes as 𝛿1 ⋅ ⃖⃖𝑝 ⋅𝛿2,
and ⃖⃖𝑝 is not a subwalk of 𝑤2, with 𝛿1 and 𝛿2 being walks in Sym(𝐺) from 𝑥 to 𝑢
and 𝑣 to 𝑧, a homotopy of walks can be obtained as in the calculation below. The

remaining cases are demonstrated similarly.

𝑤1 ≡ 𝛿1 ⋅ ⃖⃖𝑝 ⋅ 𝛿2
𝑤1 ≡ 𝛿1 ⋅ ccw𝐹1(𝑢, 𝑣) ⋅ 𝛿2 (By construction of 𝐹1)
𝑤1 ∼M′ 𝛿1 ⋅ cw𝐹1(𝑢, 𝑣) ⋅ 𝛿2 (By hcollapse constructor applied to 𝐹1, 𝛿1, and 𝛿2)
𝑤1 ≡ 𝛿1 ⋅ cwF(𝑢, 𝑣) ⋅ 𝛿2 (By construction of 𝐹1)
𝑤1 ∼′

M 𝑤2 (By hypothesis: walks in Sym(𝐺) are homotopic).

(b) The walks 𝑤1 and 𝑤2 from 𝑥 to 𝑦 share a suffix (𝑝1) or a prefix (𝑝2). Without loss of

generality, let 𝑤1 = 𝛿1 ⋅𝑝1 and 𝑤2 = 𝛿 ⋅𝑝1, where 𝛿 is a walk from 𝑥 to 𝑢. These walks

are homotopic in Sym(𝐺) via the spherical map M, i.e., 𝛿1 ∼M 𝛿 . The construction

of M′ ensures 𝛿1 ∼M′ 𝛿 . Utilising right whiskering, we deduce 𝛿1 ⋅ 𝑝1 ∼M′ 𝛿 ⋅ 𝑝1,
thereby reaching our desired conclusion. Similarly, if 𝑤1 is 𝑝2 ⋅ 𝛿2 and 𝑤2 is 𝑝2 ⋅ 𝛿 ,
where 𝛿 is a walk from 𝑣 to 𝑧, one can show that 𝛿2 ∼M 𝛿 , and hence 𝛿2 ⋅𝑝2 ∼M′ 𝛿 ⋅𝑝2
by left whiskering.

(c) The walks 𝑤1 and 𝑤2 from 𝑥 to 𝑦 can be expressed as composites of 𝛿 ⋅ 𝑝1 and 𝛿′ ⋅ ⃖⃖ ⃖⃗𝑝2,
respectively. Here, 𝛿 and 𝛿′ are walks from 𝑥 to 𝑢 and 𝑥 to 𝑣 , without sharing a

common prefix or suffix subwalk. We aim to show 𝑤1 ∼M′ 𝑤2 via 𝐹2 deformation.

6.3 Planar extensions 115

𝑤1 ≡ 𝛿 ⋅ ⃖⃖ ⃖⃖𝑝1
𝑤1 ≡ 𝛿 ⋅ cw𝐹2(𝑢, 𝑦) (By construction of 𝐹2)
𝑤1 ∼M′ 𝛿 ⋅ ccw𝐹2(𝑢, 𝑦) (By constructor hcollapse applied to 𝐹2, 𝛿1, and ⟨𝑦⟩)
𝑤1 ≡ 𝛿 ⋅ (ccwF(𝑢, 𝑣) ⋅ ⃖⃖ ⃖⃗𝑝2) (By construction of 𝐹2)
𝑤1 ≡ (𝛿 ⋅ ccwF(𝑢, 𝑣)) ⋅ ⃖⃖ ⃖⃗𝑝2 (By assoc. of walk concat.)
𝑤1 ∼M′ 𝛿′ ⋅ ⃖⃖ ⃖⃗𝑝2 (By whiskering applied to the walk htpy. by hyp.)
𝑤1 ≡ 𝑤2.

Concluding our proof of Lemma 6.8, we have shown that M extends to a spherical

map M′ of 𝐺 • 𝑝. By identifying 𝐹1 as the outer face, we further establish that M′ is a

planar map. □

Given that M is a planar map, we denote its planar extension derived from Lemma 6.8

by 𝐸(M,F, 𝑢, 𝑣 , 𝑃𝑛). To shorten the notation, this planar extension is denoted by M by

𝐸(M,F, 𝑝), when the specifics of 𝑢, 𝑣 , and 𝑃𝑛 are not really crucial to the discussion. We

refer to this as the face division of F by 𝑝, since this construction results in the placement

of 𝑝 in F, dividing it into two new faces.

Definition 6.9. If 𝐺 is a finite graph with a map M, then we refer to the Euler characteristic

of 𝐺 by M, denoted by 𝜒M, as the number associated with the cardinal of the set of nodes

(𝑣), edges (𝑒), and faces (𝑓).
𝜒M ∶≡ 𝑣 − 𝑒 + 𝑓 . (6.3–2)

Given a graph 𝐺 with a planar map M, any planar extension of M preserves the

Euler characteristic of 𝐺. Evidence for this is found in the construction of 𝐸(M,F, 𝑝) as
outlined in the proof of Lemma 6.8. Here, the path addition of 𝑃𝑛 to 𝐺 increases the node

count 𝑣 by 𝑛 + 1, edge count 𝑒 by 𝑛 + 2, but only augments the face count 𝑓 by one.

Lemma 6.10. For a graph 𝐺 with planar map M, any planar extension of M maintains Euler’s

characteristic. That is, for any face F of M and nodes 𝑢, 𝑣 within F connected by a path 𝑃𝑛,
we have 𝜒M equals 𝜒𝐸(M,F,𝑢,𝑣 ,𝑃𝑛).

Proof. The lemma follows from the construction detailed in the proof of Lemma 6.8. The

path addition of 𝑃𝑛 between nodes 𝑢 and 𝑣 on face F increases the node count by 𝑛 + 1,
edges by 𝑛 + 2, and faces by one, preserving the Euler characteristic. □

Euler characteristic serves as a planarity criterion for connected finite graphs. Specif-

ically, according to Euler’s formula, a graph 𝐺 is planar under the map M if and only if

116 Planar Maps

𝜒M equals two. The constructions detailed in this section facilitate the verification of Eu-

ler’s formula for graphs constructed via path additions, an approach also employed later

for biconnected planar graphs in Section 6.3.3.

However, for arbitrary graphs not derived from graph extensions, validating Euler’s

formula remains challenging, primarily due to the nontrivial task of determining the car-

dinality of the set of faces for an arbitrary map M of a given graph 𝐺, i.e., computing the

set of elements of type Face(𝐺,M) (Definition 4.14). Progress was made by establishing

that the type of faces forms a finite set in Section 4.4.1. This suggests the feasibility of

extracting this number in practise, possibly utilising the employed proof-assistant. We

leave this to future work.

6.3.2 Planar synthesis of graphs

F1 F3

F2

F4F
F2

Figure 6.6: The figure illustrates a planar synthesis for constructing a𝐾4 planarmap using
a 𝐶3 planar map. Initially, face F is divided into 𝐹1 and 𝐹2. Subsequently, 𝐹1 is split into
𝐹3 and 𝐹4. The resulting map ends up with four faces, including the outer face.

Inductive graph construction methods abound, such as Whitney-Robbins synthesis,

ear decomposition of a graph, and the 𝐾4 construction depicted in Figure 6.6. Drawing

inspiration from these methods and face divisions (Lemma 6.8), we propose a method to

build larger planar graphs using graph extensions, ensuring that we remain within the

type of planar graphs.

Definition 6.11. AWhitney synthesis (synthesis for short) of graph 𝐺 from graph𝐻 is defined

as a sequence of graphs 𝐺0, 𝐺1, ⋯ , 𝐺𝑛, where 𝐺0 is𝐻 , 𝐺𝑛 is 𝐺, and each 𝐺𝑖 results from the path

addition of 𝑝𝑖 to 𝐺𝑖−1 for 𝑖 in the range 1 to 𝑛. Consequently, 𝐺 can be viewed as the result of

adding paths 𝑝1, 𝑝2, ⋯ , 𝑝𝑛 to 𝐻 :

𝐺 ≡ 𝐻 • 𝑝1 • 𝑝2 • ⋯ • 𝑝𝑛.

The length of this synthesis is 𝑛. A simple synthesis refers to a sequence containing only

simple additions. Conversely, a sequence composed solely of non-simple additions is termed

a non-simple synthesis.

6.3 Planar extensions 117

Lemma 6.12. Syntheses preserve graph connectedness. Specifically, if a graph𝐻 is connected

and 𝐺 is synthesised from 𝐻 , then each intermediate graph 𝐺𝑖 in the synthesis sequence is

also connected.

Proof. We prove this by induction on the length of the synthesis, and the fact that path

additions preserve connectedness, Lemma 6.6. □

Definition 6.13. Given a planar map M of the graph 𝐻 with outer face F, we define a planar
synthesis of 𝐺 from 𝐻 of length 𝑛 as a sequence

(𝐺0,M0,F0), (𝐺1,M1,F1)⋯ , (𝐺𝑛,M𝑛,F𝑛),

where:

▷ (𝐺0,M0,F0) is equivalent to (𝐻 ,M,F), and
▷ (𝐺𝑛,M𝑛) corresponds to (𝐺, 𝐸(M𝑛−1,F𝑛−1, 𝑝𝑛−1)).

For each 𝑖 in the range 1 to 𝑛, the graph 𝐺𝑖 is 𝐺𝑖−1 • 𝑝𝑖, and the map M𝑖 is 𝐸(M𝑖−1,F𝑖−1, 𝑝𝑖−1),
where F𝑖−1 is a face of M𝑖−1.

Lemma 6.14. If a graph 𝐺 is synthesised from a planar graph 𝐻 via planar synthesis, then 𝐺
and every graph in the corresponding sequence are planar.

Proof. Through planar synthesis, each 𝐺𝑖 is derived from 𝐺𝑖−1 via path addition, ensuring

planarity by Lemma 6.8. □

While we have not yet employed non-simple additions, they become relevant when

we characterise planar biconnected graphs in the next section. It is possible to extend the

face division lemma and construction to utilise non-simple additions, Lemma 6.8, allow-

ing us to adapt not only the planar synthesis in Definition 6.13 to non-simple planar syn-

theses, but also Lemma 6.14 to accommodate non-simple additions. Hence, given a map

M for 𝐺 with a face F, the corresponding planar map for 𝐺 • 𝑝 is denoted as 𝐸(M,F, 𝑝),
maintaining a similar notation as before. As with path additions, extending the map with

non-simple additions introduces new faces.

Taking into account 𝐺 •𝑢,𝑣 Sym(𝑃𝑛) and the map 𝐸(M,F, 𝑝), the number of faces

increases to 𝑛 + 3, the number of nodes increases to 𝑣 + 𝑛 + 1, and the number of edges

increases to 2 ⋅ (𝑛 + 2), as illustrated in Figure 6.7. Consequently, the Euler characteristic

of 𝐸(M,F, 𝑝) is equal to the Euler characteristic of M.

𝜒𝐸(M,𝑝) ∶≡ (𝑣 + (𝑛 + 1)) − (𝑒 + 2 ⋅ (𝑛 + 2)) + (𝑓 + (𝑛 + 3)) ≡ 𝜒M.

118 Planar Maps

u

v

F

p

Figure 6.7: The figure illustrates the face division of F by a non-simple path addition.

Figure 6.5b demonstrates the construction of larger planar graphs using various path,

cycle, and spike additions. A spike addition to 𝐺, although not precisely defined here, as

it is not extensively used for further constructions, can be essentially described as a path

addition sharing only one node with 𝐺. With a given map for 𝐺, a simple addition of a

spike creates a new face of higher degree than the face where the spike is inserted. Con-

sequently, non-simple spike additions also increase the number of faces for the extended

map due to the emergence of new faces between edge pairs that share endpoints.

6.3.3 Biconnected planar graphs

This subsection aims to characterise the construction of all 2-connected planar graphs.

In general, a graph is 𝑘-connected if it cannot be disconnected by removing less than

𝑘 nodes. Depending on 𝑘, there are various methods to construct the set of 𝑘-connected
graphs. For instance, any undirected 2-connected graph can be constructed by applying

path additions to an appropriate cyclic graph (Diestel 2012, §3). Our focus in the following

will be on the construction of 2-connected planar graphs.

Definition 6.15. A graph 𝐺 is defined as 2-connected, or biconnected, when the proposition

Biconnected(𝐺) holds. This is, when the resulting graph 𝐺 − 𝑥 , formed by removing a node

𝑥 from 𝐺, remains connected.

Specifically, 𝐺 − 𝑥 is the graph made up of the set of nodes, Σ𝑦∶N𝐺 (𝑥 ≠ 𝑦), and their

corresponding edges in 𝐺.

Biconnected(𝐺) ∶≡ ∏
(𝑥 ∶N𝐺)

Connected(𝐺 − 𝑥).

Lemma 6.16. If 𝐺 is a cyclic graph, then Sym(𝐺) is 2-connected.

Proof. The cyclic nature of 𝐺 ensures that in Sym(𝐺), there are two inner loop-free walks

between any pair of nodes: a direct walk following the cycle of 𝐺, and a reverse walk

counter to the cycle. These walks are edge-disjoint and thus preserve the graph’s con-

nectivity despite the removal of any single node—only one of the walks might be affected,

leaving the other intact to sustain connectedness. □

6.3 Planar extensions 119

The property of 2-connectedness in a graph does not remain invariant under sim-

ple path additions. Clearly, removing a node from the added path 𝑝 disconnects 𝐺 • 𝑝.
Yet, through non-simple path additions, it is possible to maintain and even augment 2-
connected graphs.

Lemma 6.17. Let 𝐺 denote a 2-connected graph. The graph extensions, 𝐺 • 𝑝 and Sym(𝐺) • 𝑝,
preserve the 2-connected graph property.

Proof. To show that 𝐺 •𝑢,𝑣 Sym(𝑃𝑛) − 𝑥 remains connected for any node 𝑥 in 𝐺 • 𝑝, we

consider the location of 𝑥 . If 𝑥 is within 𝐺, then 𝐺 − 𝑥 is connected by hypothesis. Ap-

plying Lemma 6.6, it follows that 𝐺 • 𝑝 − 𝑥 is also connected, showing the 2-connectivity
of 𝐺 • 𝑝. Otherwise, if 𝑥 lies on 𝑝, its removal divides 𝑝 into two parts, 𝑝1 and 𝑝2. For

any two nodes in 𝐺 • 𝑝 − 𝑥 we show they are connected. If both nodes are in 𝐺 or the

same part 𝑝𝑖, they are connected by prior arguments or direct traversal, respectively. If

they are located in distinct subgraphs, say 𝑥 is in 𝑝1 and 𝑦 is in 𝑝2. We can construct a

walk from 𝑥 to 𝑢, another walk across 𝐺 from 𝑢 to 𝑣 (since 𝐺 is connected), and then to

the second node, Hence, 𝐺 • 𝑝 maintains 2-connectivity. □

Inspired by Yamamoto’s work in (Yamamoto, Nishizaki, Hagiya, et al. 1995), our focus

is on the construction of 2-connected planar graphs. Within a different theoretical setting

(HOL) and using a different graph definition, Yamamoto shows that any undirected 2-
connected planar graph can be inductively built by adding diverse paths to circuits (their

term for cyclic graphs). In our context, we initiate constructions with any 2-connected
graph Sym(𝐶𝑛) and subsequently extend these graphs by non-simple planar additions.

Lemma 6.18. In a non-simple Whitney synthesis of 𝐺 originating from a 2-connected graph

𝐻 , with planarity ensured by a map M, each graph in the synthesis maintains 2-connectivity
and planarity via planar extension of M using non-simple additions.

Proof. Assuming a non-simple Whitney synthesis of 𝐺 from 𝐻 of length 𝑛 is given, we

proceed by induction on 𝑛.

▷ Base case (𝑛 = 0): The graph 𝐺 is 𝐻 , and by hypothesis, 𝐻 is a 2-connected planar

graph. Thus, the conclusion follows.

▷ Inductive step: For the inductive step, we assume that the claim holds for a se-

quence of length 𝑛, thus establishing 𝐺𝑛 as a 2-connected planar graph via map M𝑛.
We then aim to demonstrate that 𝐺, defined as 𝐺𝑛 •𝑝𝑖 for some path 𝑝𝑖, also qualifies

as a 2-connected planar graph.

▷ Given that 𝐺𝑛 is 2-connected, it follows from Lemma 6.17 that 𝐺𝑛 • 𝑝𝑖 also retains

this property. We then extend the planar map M𝑛 of 𝐺𝑛 to a planar map M for

120 Planar Maps

𝐺, preserving the outer face or selecting a new outer face from the additions. This

construction of M follows the method in Lemma 6.8, where we expand planar maps

using simple additions, as required here. □

Lemma 6.19. Any graph 𝐺, synthesised from Sym(𝐶𝑛) through non-simple Whitney synthe-

ses is a 2-connected planar graph.

Proof. Given that 𝐶𝑛 is planar by Example 6.3 and consequently connected, Sym(𝐶𝑛) is 2-
connected by Lemma 6.16. By repeatedly applying Lemma 6.18 to each step in the given

synthesis sequence, we ensure the resulting graph’s 2-connectivity and planarity. □

Lemma 3 and Proposition 4 in (Yamamoto, Nishizaki, Hagiya, et al. 1995) discuss undi-

rected 2-connected planar graphs similar to the converse of Lemma 6.19. It is possible to

follow Yamamoto’s argument closely, even though it was presented in an informal way.

However, this requires preliminary formalisation of several technicalities, such as maxi-

mal subgraphs, adjacent faces, and edge sequence deletion. Subsequently, one can assert

that non-simple Whitney syntheses entirely determine 2-connected planar graphs, as ex-

pressed similarly in (Diestel 2012, §3). In essence, any graph defined as planar in Defini-

tion 6.1 and 2-connected in Definition 6.15, can be inductively generated from Sym(𝐶𝑛)
via iterative non-simple path additions and proper map extensions.

Further exploration of graph extensions, such as amalgamations, appendages, dele-

tions, contractions, and subdivisions, should be considered to generate planar graphs (J.

Gross, Yellen, and Anderson 2018, §7.3).

7
Concluding Remarks and Future Work

In the following, we give a brief summary of the contributions of this thesis, that are

novel in HoTT, as far as we know. The order of the chapters is not accidental in the

document. The final chapter, Chapter 6, present, among other things, our characterisation

of planarity of connected and locally finite directed multigraphs using graph maps also

referred to as combinatorial maps or rotation systems. This characterisation is significant

as it wraps up our main constructions. For example, the type of planar maps of a graph

𝐺 requires us to define the type of graph maps, the subtype of spherical maps, and the

type of faces introduced in Definition 5.43 and Definition 4.14, respectively.

In addition to the technical definition given in Chapter 6 for the planarity of graphs,

we believe that we have encoded, in a better combinatorial and more general way, the

essence of the topological intuition behind it. Rather than stating planarity only as a

property of the graph itself, we have defined it here as structure on the type of graphs,

a different approach compared to other works, see, for example, definitions in terms of

hypermaps and cyclic lists and expressed in other proof-irrelevant type theories (G. J.

Bauer 2005; Gonthier 2008; Yamamoto, Nishizaki, Hagiya, et al. 1995). In other words, we

characterised the identity types of the type of planar maps of a graph and showed that it

forms a homotopy set, as shown in Theorem 6.2. This result is significant and common

theme in HoTT when defining new types. To support this claim, we developed a few

lemmata, as listed below, and proven in the same order they appear.

1. The star at any node 𝑥 of 𝐺 is a set, see Lemma 4.6.

122 Concluding Remarks and Future Work

2. The collection of all graph maps for 𝐺, and, in particular, the subtype of its spherical
maps, forms a set, see Section 4.3 and Lemmas 5.22 and 5.46.

3. The subtype of walks without inner loops of 𝐺, here called quasi-simple walks, form
a set, see Theorem 5.26.

4. The faces of any graph map of 𝐺 is a set, see Lemma 4.18 and Theorem 4.26.

5. The collection of planar maps of 𝐺 is a set, see Theorem 6.2.

To support the previous results, we gave new proofs in Chapter 5 to a few non-trivial

facts about quasi-simple walks (walks without internal loops) and spherical maps, two

key concepts introduced in (Prieto-Cubides 2022). The main contributions to this re-

gard are Theorems 5.38 and 5.48, and especially Corollary 5.49. Briefly, the former gives

a normalisation algorithm for walks. Given any walk, we can always find its normal

form which removes all the internal loops with evidence that the normal form is walk-

homotopic to the original walk. This occurs whenever the graph has a discrete node

set and is embedded in the sphere. The latter, Corollary 5.49, on the other hand, estab-

lishes an equivalence between the two definitions for spherical maps. This result con-

firms that one can ignore loops and multiple edges when considering spherical maps of

graphs where the node set is discrete. Except for this last result, the machinery shown

in Chapter 5 was completely unexpected and developed solely to find evidence for our

initial conjecture, Corollary 5.49.

Moreover, for characterising maps of finite graphs in the sphere, we found that con-

sidering only the finite set of quasi-simple walks suffices. Using the results mentioned

herein, one could devise an algorithm to determine whether a graph map is spherical or

not; see Lemma 5.45. Additionally, we have shown that the set of planar maps is finite,

provided that the graph is also finite. We use this result in Section 6.3, where we introduce

planar extensions and the Euler characteristic number for planar graphs. To this end, we

presented a method for constructing planar graphs using planar extensions inductively.

This method is inspired by Yamamoto’s work on biconnected planar graphs (Yamamoto,

Nishizaki, Hagiya, et al. 1995). See, for example, the construction of a planar map of 𝐾4
based on a map for 𝐶3 by using simply path additions.

As part of our contributions, we provided computer proofs of most results in the de-

pendently typed programming language Agda, see Appendix A. The Agda formalisation

turned out to be helpful on several occasions. For example, we use our formalisation to

confirm that only a subset of HoTT was necessary to perform all the proofs in Chapter 5.

Precisely, the formalisation of that chapter only needed the intensional Martin-Löf type

theory equipped with universes, function extensionality, and propositional truncation.

No other higher inductive types nor Univalence was required. Moreover, we also used

the computer formalisation to identify flaws, missing assumptions, and new proofs.

7.1 Directions of further developments 123

7.1 Directions of further developments

There are several directions for further research on the topics of this thesis. Let us men-

tion a few of them.

For example, there exist other criteria of planarity in literature, for instance, Kura-

towski’s and Wagner’s characterisations for planar graphs. An interesting result would

be to prove that our notion of planarity is equivalent to one of these characterisations.

Another possible direction is the study of surfaces in HoTT as the topological repre-

sentation/realisation. At the moment of writing, defining the notion of a surface is still

an open problem in HoTT. On this regard, consider the torus as the realisation of the

bouquet graph consisting of two edges using the graph map 𝑀𝑐 given in Figure 4.8.

Transferring this toHoTTwouldmean amapping, hopefully, an equivalence, between

a higher inductive type representing the torus (Univalent Foundations Program 2013,

§6.6) and a type representing the topological realisation of the bouquet graph with the

graph map 𝑀𝑐 . Concerning planar maps, we would expect the correspondence between

any planar map and the type of the 2-sphere as defined in (7.1–1), spotlighted by the

stereographic projection, as illustrated in Figure 6.1. Let us elaborate a bit more on this

regard.

Specifically, we conjecture that there is an equivalence between the 2-cell topological

realisation of a graph 𝐺 with a planar map ℳ, and the type of the 2-sphere S2.

data S2 ∶ U

base ∶ S2

surf ∶ reflbase = reflbase.
(7.1–1)

To elaborate on this conjecture, we first need to introduce two distinct geometric

realisations of graphs, the 1- and 2-cell topological representations of a grap. These con-

struction are further explained in Appendices B and C.

The 1-cell topological realisation of a graph 𝐺 is denoted by T1(𝐺) and can be defined

using the following HIT.

data T1 (𝐺 ∶ Graph) ∶ U

n ∶ N𝐺 → T1(𝐺)
e ∶ Π(𝑎 𝑏 ∶N𝐺) . E𝐺(𝑎, 𝑏) → n(𝑎) = n(𝑏).

Given a graphmapℳ for the graph 𝐺, let us consider the 2-cell topological realisation

of 𝐺, T2(𝐺,ℳ), which can be defined using the HIT in (7.1–2). The function w used

in (7.1–2) maps a walk to a path, see Appendix B.5.

124 Concluding Remarks and Future Work

data T2 (𝐺 ∶ Graph) (ℳ ∶ Map(𝐺)) ∶ U

n ∶ N𝐺 → T2(𝐺,ℳ)
e ∶ Π(𝑎 𝑏 ∶N𝐺) . E𝐺(𝑎, 𝑏) → n(𝑎) = n(𝑏)
f ∶ Π(F∶Face(𝐺,M)) . Π(𝑎 𝑏 ∶NF) .w(cw(F, 𝑎, 𝑏)) = w(ccw(F, 𝑎, 𝑏)).

(7.1–2)

Our first conjecture states that the type T2(𝐶0, 𝑚) is equivalent to the type of the 2-

sphere S2, where 𝐶0 is the unit graph consisting of one node with no edges, and𝑚 denotes

the only graph map for 𝐶0, see Example A.1.

Conjecture 7.1. Let 𝐶0 be the unit graph consisting of one node with no edges, and 𝑚 be the

graph map for 𝐶0. Then,

T2(𝐶0, 𝑚) ≃ S2. (7.1–3)

As expected, as illustrated in Figure 7.1, establishing the back-and-forth correspon-

dence between the two types is straightforward. Recall that there is only one graph map

for 𝐶0, 𝑚, and one face for such a map. However, the difficulty lies in proving the corre-

spondent homotopies for this equivalence. It involves two HITs, which are not easy to

work with, especially because of the induction principles for these types due to their path

constructors. Therefore, we believe lemmata developed on Spheres (Univalent Founda-

tions Program 2013, § 6) would come in handy, and the work done in the induction prin-

ciple for T2(𝐶0, 𝑚) (Appendix C.1.3).

𝐶0
base

reflbasesurf

𝑆2

Figure 7.1: The correspondence between the sphere S2 and the 2-cell topological realisa-
tion of the unit graph 𝐶0.

In Lemma B.29 we established that the 1-cell topological realisation of a tree yields

a contractible type. Hence, it is reasonable to conjecture an analogous outcome for the

2-cell realisations of graphs. A tree with only one map and one face, when realised as a

2-cell topological space, should yield the same type as realising the unit graph.

7.1 Directions of further developments 125

Conjecture 7.2. Let 𝐺 be a tree, as defined in Definition B.5, and ℳ be its map, then,

T2(𝐺,ℳ) ≃ T2(𝐶0, 𝑚). (7.1–4)

Now consider a graphmapℳ for a graph𝐺. We require an operation that can contract

a face in a graph map to a singular node, a process akin to deforming a disk to a point.

The proposed transformation entails contracting a face F within ℳ for a graph 𝐺 into a

singular node, leading to a subgraph 𝐻 of 𝐺, along with one new map ℳ′, a restriction

of ℳ to 𝐻 . We denote such an operation as (𝐺,ℳ) ⇝F (𝐻 ,ℳ′). The underlying

conjecture is that such a transformation preserves the graph’s planarity, ensuring that

the resultant map ℳ′ is also planar.

Conjecture 7.3. Given graphs 𝐺 and 𝐻 with maps ℳ and ℳ′ respectively, and a face con-

traction from (𝐺,ℳ) to (𝐻 ,ℳ′), if 𝐺 is planar by ℳ, then 𝐻 is planar by ℳ′.

Conjecture 7.4. Let F be a face of the graph map ℳ and 𝐻 be a subgraph of 𝐺 with a graph

map ℳ′. If (𝐺,ℳ) ⇝F (𝐻 ,ℳ′), then,

T2(𝐺,ℳ) ≃ T2(𝐻 ,ℳ′). (7.1–5)

Assuming the provability of prior conjectures, we can construct an equivalence be-

tween the 2-cell topological realisation of any planar graph and the sphere S2. Let us

state this result as a theorem.

Theorem 7.5. Let 𝐺 be a nonempty finite graph with 𝑛 nodes and ℳ be a planar map for 𝐺.

Then,

T2(𝐺,ℳ) ≃ S2. (7.1–6)

Proof. We proceed by case analysis on the number of nodes of 𝐺. For 𝑛 = 1, 𝐺 ≅ 𝐶0 and

the result follows from Conjecture 7.1. For 𝑛 > 1, consider a planar map ℳ of 𝐺. Given

𝐺’s finiteness, we can proceed by induction on the number 𝑚 of faces ofℳ, starting with

the base case 𝑚 = 1. Here, 𝐺 is a tree and the desired equivalence is obtained via (7.1–4)

and (7.1–3).

T2(𝐺,ℳ) ≃ T2(𝐶0, 𝑚) ≃ S2. (7.1–7)

For the inductive step, assume we obtain the equivalence in question for graphs with

𝑚−1 faces. Now, contracting a face F from 𝐺 yields a new graph 𝐺′ with a corresponding

map ℳ′, which is planar since contracting a face preserves planarity (Conjecture 7.3),

(𝐺,ℳ) ⇝F (𝐺′,ℳ′).

126 Concluding Remarks and Future Work

Conjecture 7.4 provides an equivalence T2(𝐺,ℳ) ≃ T2(𝐺′,ℳ′). Since 𝐺′ has 𝑚 − 1
faces, the induction hypothesis implies T2(𝐺′,ℳ′) ≃ S2. We can then establish the

following chain of equivalences, from which the conclusion follows.

T2(𝐺,ℳ) ≃ T2(𝐺′,ℳ′) ≃ S2. □

7.2 Formalisation

Although formalisation is an important aspect of our thesis, it is not our primary focus.

Due to the time-consuming nature of formalising concepts in a proof assistant, we have

prioritised our efforts accordingly. Nonetheless, besides providing insights into the con-

jectures discussed earlier, the future work involves completing the elaboration of some

of the contributions listed earlier. This includes proving the planarity of any cyclic graph

in Agda, as outlined in Example 6.3, and expanding on the main results about planar ex-

tensions discussed in Section 6.3, such as Lemmas 6.8 and 6.19. On this regard, we expect

extract an algorithm for computing the number of faces of a given map for finite graphs

to validate that the Euler characteristic number for planar graphs is 2. A starting point

for this must be the proof’s formalisation in Section 4.4.1, demonstrating the finiteness

property of face types.

“Those who cannot remember the past are condemned to re-

peat it.”

George Santayana

Epilogue

This thesis titled Investigations on Graph-Theoretical Constructions in HoTT documents

my research from late 2018 to 2022. It was conducted at the ICT Research School of the

University of Bergen and adds to the study field of Homotopy Type Theory/Univalent

Foundations. This field converges constructive mathematics, logic, type theory, category

theory, homotopy theory, algebraic topology, and formalisation of mathematics. The

manuscript as it stands today have been improved by the feedback of my advisors, Håkon

Gylterud and Marc Bezem.

I have structured each chapter inmywriting to focus on a specific subject. Some chap-

ters include an introduction and a discussion section. To provide a contextual overview

of the thesis and connect its key elements, I have included a summary of the main results

and raised conjectures in the conclusion chapter. This will allow readers who want to

explore further research to do so. The appendices contain additional results that did not

fit well within the main chapters but are still relevant to the thesis and, in my opinion,

quite interesting.

In the following, I briefly describe how the research for this thesis was carried out,

which may be of interest to those considering a similar project.

The research journey for this thesis began in 2018 when I began my PhD at the Uni-

versity of Bergen. Given the freedom to explore my interests, I attended Marc Bezem’s

introductory seminar on advances topics in programming languages, which covered Ho-

motopy Type Theory. It was during these sessions that I met Håkon Gylterud, a re-

searcher who occasionally attended the seminars and later became my primary advisor.

In the summer of 2018, I collaborated with Marc to illustrate equivalences related to

the circle and another equivalence involving the type of pathovers¹. This collaboration

deepened my understanding of how HoTT uses dependent types to encapsulate diverse

concepts and the strictness of its constructive nature. I saw the potential of HoTT as

a formal system for creating/defining new constructions in a precise and discipline way,

which led me to pursue a PhD in this field. Combinatorics emerged as the primary option

due to the scarcity of research in this area. Thus, I decided to explore this area.

In late 2018, I began to adapt graph theory concepts to HoTT, with a particular fo-

¹https://jonaprieto.github.io/type-theory/2018/07/05/pathovers-hott/index.html

https://jonaprieto.github.io/type-theory/2018/07/05/pathovers-hott/index.html

128 Epilogue

cus on potential characterisations of graph planarity. This interest was likely sparked by

Gonthier’s formalisation of the Four Colour Theorem (4CT) (Gonthier 2008), a proof ver-

ified using the proof assistant Coq, asserting that every finite planar graph can be coloured

with no more than four colours. Håkon shared this interest, leading to our collaboration

on the topic.

Our initial proposal on a type of planar embeddings for undirected graphs was pre-

sented at TYPES (Prieto-Cubides and Håkon Robbstand Gylterud 2019). Feedback from

the conference led us to broaden our scope to include the planarity of directed multi-

graphs. The remainder of my research focused on redefining and formalising multiple

constructions in Agda, a proof assistant similar to Coq.

This iterative process allowedme to prove, disprove, and refine my initial conjectures.

One such conjecture, which remained unproven until 2021, was later formalised in Agda

as Corollary 5.49.

In the summer of 2019, I attended the CMUHoTT Summer School in Pittsburg, where

I was introduced to Cubical methods by Anders Mörtberg. Inspired by his lectures, I be-

gan using Cubical Agda for my constructions, summarised in Appendix B. This appendix,

along with the work in Appendix C, focusses on graph embeddings as a way to realise

graphs as spaces in HoTT. This construction was inspired by geometrical intuition and

the concept underlying higher inductive types. Later I would discover that this construc-

tion is used by Swan in his proof on the Nielsen-Schreier Theorem in Homotopy Type

Theory (Swan 2022).

During the 2020-2021 COVID-19 pandemic, I organised a weekly seminar² on type

theories, Haskell, and Agda. In collaboration with fellow PhD students and friends from

the PLT research group at UiB (Eli, Benji, Tam, Knut, and Max) we engaged in the study

and discussion of various topics. These included content from the PLFA book (Kokke,

Siek, and Wadler 2020), homotopy theory as presented in Cubical Agda (Mörtberg and

Pujet 2020), and the topology of data types³ (Escardó 2004). As an outcome of this seminar,

I could prove a few lemmas on homotopywalks, which are summarised in Chapter 5. That

was conceived during the preparation of talks on Lambda Calculus and Term Rewriting

Systems.

Formalisation of mathematics The computational aspect of my project, the formali-

sation of mathematics, is another key component. Gonthier’s work, which used Coq, a

proof assistant based on the Calculus of Inductive Constructions—inspired me. However,

I opted for Agda, a dependently typed functional programming language, due to its in-

herent support for HoTT and my previous experience with Haskell and Agda during my

²https://nextjournal.com/uib-types/meetings
³https://www.cs.bham.ac.uk/~mhe/papers/entcs87.pdf

https://nextjournal.com/uib-types/meetings
https://www.cs.bham.ac.uk/~mhe/papers/entcs87.pdf

Epilogue 129

master’s studies.

When my formalisation project began in late 2018, I contemplated using the recom-

mended HoTT-Agda library. However, compatibility issues with the latest compiler ver-

sion led me to develop my own library for Agda (v2.6.0+). Despite discovering Escardo’s

TypeTopology library at the Midlands Graduate School in Birmingham in April 2019, I

continued with my library, as it was already in progress. At the end, although my de-

velopment fulfils the formalisation requirements, I underestimated the time and effort

needed to develop/maintain a library. In this regard, for those considering formalisa-

tion, I suggest examining existing libraries in your field and contributing where gaps are

identified. Fortunately, many libraries exist today.

Here are some libraries compatible with recent Agda versions and related to HoTT

and its derivatives, listed alphabetically.

▷ Vanilla Agda with HoTT support:

Agda-UniMath http://unimath.github.io/agda-unimath.
Swan’s fork of HoTT-Agda https://github.com/awswan/HoTT-Agda/tree/agda-2.6.1-compatible.
TypeTopology https://www.cs.bham.ac.uk/~mhe/TypeTopology/.
Thesis’s Agda library https://jonaprieto.github.com/synthetic-graph-theory.

▷ Cubical methods in Agda:

1Lab https://1lab.dev/.
Cubical Agda http://www.github.com/agda/cubical.

Final Comment The exploration of graph planarity within HoTT uncovered a range of

unexpected constructions, many of which emerged through iterative interactions with

the proof assistant, Agda, in my case. The use of formal methods, formal systems such

as HoTT, and tools such as proof assistants truly offer an engaging approach to our un-

derstanding of mathematics, promoting a more profound comprehension and stimulating

novel insights. Type theories, in particular, HoTT, are a promising formal system for the

study of mathematics and hold remarkable potential for new discoveries. This includes

new proofs of existing results and new results that are impossible or hard to prove in

other formal systems. There is still much to be done in this area, including improving the

computer tooling around the formalisation process in these systems. About this work, I

hope the topics developed in this manuscript serve as both a stimulus and groundwork

for future research, inspiring further refinement, completion, or new (mathematical) con-

structions on graphs in HoTT.

http://unimath.github.io/agda-unimath
https://github.com/awswan/HoTT-Agda/tree/agda-2.6.1-compatible
https://www.cs.bham.ac.uk/~mhe/TypeTopology/
https://jonaprieto.github.com/synthetic-graph-theory
https://1lab.dev/
http://www.github.com/agda/cubical

“It soon became clear that the only real long-term solution to the

problems that I encountered is to start using computers in the veri-

fication of mathematical reasoning.”

“A technical argument by a trusted author, which is hard to check

and looks similar to arguments known to be correct, is hardly ever

checked in detail.”

Vladimir Voevodsky, Univalent Foundations, March 26, 2014.

A
Computer Formalisation in Agda

This thesis includes a set of mechanised proofs and constructions, verified using Agda

v2.6.2.2-442c76b, our chosen proof assistant. The formalisation comprises its own self-

contained Agda library of a subset of the HoTT book’s foundations and the central el-

ements of the thesis. For our experiments with Cubical Agda in Appendix B, we used

the Cubical Agda version v0.3 of the library. This projects can be found at the following

address:

▷ https://jonaprieto.github.io/synthetic-graph-theory/.

A.1 Proof assistants

Proof assistants are sophisticated computer programs that function as tools to develop

formal proofs, making the process of verifying correctness more efficient (up to the cor-

rectness of the proof assistant itself). When used in combination with dependently typed

programming languages, these tools cater not only to the programming language com-

munity but also to those who require rigorous and trustworthy communication methods

with a powerful and expressive language. Their adoption may offer a significant im-

provement over traditional humanmethods, such as the revision process of mathematical

papers.

Our choice of Agda as our proof assistant to conduct this investigation stems from its

modernity, robustness, and reliance on a powerful intuitionistic type theory. Crucially,

https://jonaprieto.github.io/synthetic-graph-theory/

A.2 Agda notation 131

its type system fully backs this thesis’ HoTT focus by desabling the Axiom K (Cockx,

Devriese, and Piessens 2016) and enabling term rewriting via the REWRITE pragma¹,

which allow us to define high-inductive types and their computational rules. For our

experiments in Appendix B, we used Cubical Agda, which is a mode of Agda that offers

backing for cubical type theories, enhancing higher inductive type definitions via pattern

matching.

Despite its flexibility and power, Agda lacks maturity and robustness in certain areas

such as program synthesis via auto, especially when compared to systems like Coq, Is-

abelle, and Lean. This can result in lengthy explicit proof terms, making the formalisation

process somewhat tedious, even for small-scale developments. However, its emphasis on

dependently typed programming and its commitment to incorporates the latest develop-

ments in type theory makes it a suitable tool for conducting research effectively.

A.2 Agda notation

Several examples included in this chapter and the appendices use Agda syntax. We offer

below a very short description of the main constructs of the language. For an in-depth

exposition on Agda, refer to its official documentation (The Agda Development Team

2023) and the sources of the this thesis for any types not explicitly defined herein.

▷ Type annotations in Agda are written similar as on paper. For example, x : A is

used to indicate that x is a term of type A.

▷ Type denotes a type family of types indexed by their universe level with the follow-

ing hierarchy:

Type 0 : Type 1 : ... : Type 𝓁 : Type (lsuc 𝓁) : ...

Thus, A : Type 𝓁 indicates that A is a type in the universe 𝓁. Most of the time, our

definitions are universe polymorphic, i.e., they hold for any universe level 𝓁.

▷ The empty type is denoted by 𝟘 or ⊥ and the unit type by 𝟙 or ⊤. Also, we use standard

type formers such as (→) for function types, (×) for product types, Σ-types through

the use of the Σ type former, and Π-types for functions with codomain varying over

the domain, e.g. the type ((x : A) → B x) in Agda signifies a function that takes in a

term x of type A and returns a term of type B x, given that B is a type family over A.

▷ The identity type on a type A between 𝑥 and 𝑦 is denoted by Path {A} x y, or simple

as 𝑥 ≡ 𝑦 . The constructor for the identity type is refl.

¹https://jesper.sikanda.be/posts/hack-your-type-theory.html

https://jesper.sikanda.be/posts/hack-your-type-theory.html

132 Computer Formalisation in Agda

▷ Propositional truncation of a type A is denoted by ∥ A ∥, and its constructor is |_|, so

| a | is a term of type ∥ A ∥ for any a : A.

▷ Declaring inductive data types is done through the use of the data keyword. For

example, the following declaration defines the type of natural numbers.

data ℕ : Type 0 where

zero : ℕ

suc : ℕ → ℕ

▷ We can define functions by pattern matching whenever the domain is an induc-

tive data type. For example, the following function add defines addition on natural

numbers.

add : ℕ → ℕ → N

add zero n = n

add (suc m) n = suc (add m n)

Alternatively, we can define functions using the with keyword, which allows us to

pattern match on an expression. An equivalent definition of add using with is as

follows.

add' : Nat Nat Nat

add' n m with n

... | Z = m

... | S x = S (add' x m)

▷ Records that act as named dependent product types are declared with the record

keyword, where the components are declared after the field keyword and which

can be accessed with their respective projections. For example, the following dec-

laration represents Σ-types.
record Σ {𝓁₁ 𝓁₂} (A : Type 𝓁₁) (B : A → Type 𝓁₂) : Type (𝓁₁ ⊔ 𝓁₂) where

constructor _,_

field

π₁ : A

π₂ : B π₁

▷ Modules encapsulate declarations, serving as namespaces. To declare a module,

use the module keyword, which may include parameters of types and terms. For

instance, the module M, parameterised by a type A and a term a, is defined as follows.

Anonymous modules are declared with _ as the name.

module M (A : Type) (a : A) where

▷ To import definitions from a module into the current scope, the keyword import is

used. These imported names are qualified by the module name they are imported

A.3 Library 133

from. To bring all the names, unqualified, from a module into the current module,

the keyword open is used. For example, the following statement imports the module

M and brings all its names into the current scope.

open import M

▷ One powerful feature of Agda is the ability to infer implicit arguments for calls to

functions, including data constructors. Implicit arguments in Agda are denoted by

curly braces, e.g. {A : Type}.

A.3 Library

The Agda codebase accompanying this thesis comprises a library of 15459² lines of code,

including the formalisation of the HoTT book’s foundations used in this thesis and the

central topics of the thesis. The library is structured into two main directories: foun-

dations and lib. The former aligns with the essential background from the HoTT book,

while the latter contains the central elements of the formalisation, further divided into

distinct modules.

{-# OPTIONS without-K exact-split rewriting #-}

module agda-index where

 ∙ Graph definitions as seen in the document
import lib.graph-definitions.Graph As in the document
import lib.graph-definitions.Alternative-definition-is-equiv

 ∙ Graph forms a univalent category
import lib.graph-definitions.Graph.EquivalencePrinciple
import lib.graph-definitions.Graph.IsomorphismInduction
import lib.graph-definitions.Graph.isGroupoid
import lib.graph-homomorphisms.Hom
import lib.graph-homomorphisms.classes.Isomorphisms
import lib.graph-homomorphisms.classes.Isomorphisms.Exponentiation

 ∙ Special set of graph homomorphisms
import lib.graph-homomorphisms.classes.EdgeInjective
import lib.graph-homomorphisms.classes.Injective
import lib.graph-homomorphisms.classes.EdgeInjective.Lemmas
import lib.graph-homomorphisms.Lemmas

 ∙ Graph isomorphisms/equivalences
import lib.graph-relations.Isomorphic
import lib.graph-relations.Isomorphic.isSet
import lib.graph-relations.Homomorphic
import lib.graph-calculation-reasoning.Isos

 ∙ Graph walks
import lib.graph-walks.Walk
import lib.graph-walks.Walk.Composition
import lib.graph-walks.Walk.SigmaWalks

²Calculation performed using the loc command from the https://github.com/cgag/loc tool.

https://github.com/cgag/loc

134 Computer Formalisation in Agda

import lib.graph-walks.Walk.Equality
import lib.graph-walks.Walk.isSet

 ∙ Quasi-simple walks
import lib.graph-walks.Walk.QuasiSimple
import lib.graph-walks.Walk.QuasiSimpleFinite

 ∙ Graph transformations, symmetrisation of graphs
import lib.graph-transformations.U
import lib.graph-transformations.W
import lib.graph-transformations.Inv

 ∙ Graph maps/embeddings
import lib.graph-embeddings.Map
import lib.graph-embeddings.Map.Face
import lib.graph-embeddings.Map.Face.isSet
import lib.graph-embeddings.Map.Face.Walk
import lib.graph-embeddings.Finiteness

 ∙ Walk-homotopy and whiskering
import lib.graph-embeddings.Map.Face.Walk.Homotopy
import lib.graph-embeddings.Map.Face.Walk.Whiskering

 ∙ Graph maps into the sphere (spherical maps)
import lib.graph-embeddings.Map.Spherical
import lib.graph-embeddings.Map.Spherical-is-enough

 ∙ Planar graph maps
import lib.graph-embeddings.Planar
import lib.graph-embeddings.Planar.isSet

 ∙ The one-point graph is planar.
import lib.graph-embeddings.Map.Face.Example

 ∙ One higher-inductive of a graph with 2-cells
 And the reason we need the flag rewriting.
import HIT
import HIT-toProp
import HIT-toSet
import Homotopic-are-equal

 ∙ Some families of graphs seen in the document
import lib.graph-families.CycleGraph
import lib.graph-families.CycleGraph.RotHom
import lib.graph-families.CycleGraph.Isomorphisms.IdentityType
import lib.graph-families.CycleGraph.Isomorphisms.Lemmas
import lib.graph-families.CycleGraph.Map
import lib.graph-families.CycleGraph.isCyclicGraph
import lib.graph-families.CycleGraph.isFiniteGraph
import lib.graph-families.CycleGraph.Walk
import lib.graph-families.BouquetGraph
import lib.graph-families.CompleteGraph

 ∙ A few graph classes used in the document
import lib.graph-classes.CyclicGraph
import lib.graph-classes.CyclicGraph.Stuff
import lib.graph-classes.CyclicGraph.isFiniteGraph
import lib.graph-classes.CyclicGraph.Walk
import lib.graph-classes.EmptyGraph
import lib.graph-classes.UnitGraph
import lib.graph-classes.StarGraph
import lib.graph-classes.CompleteGraph

A.4 Short excerpts from the library 135

import lib.graph-classes.ConnectedGraph
import lib.graph-classes.FiniteGraph
import lib.graph-classes.UndirectedGraph
import lib.graph-classes.PartiteGraph

 Appendix. Univalent foundations

import foundations.Core ∙ Part I in the HoTT book
import foundations.Nat ∙ Lemmata about ℕ
import foundations.Fin ∙ ⟦ n ⟧ ∶≡ { 0,1,2,⋯, n-1}.
import foundations.Finite ∙ Finite types ∑[n] ∥ A ≃ ⟦ n ⟧ ∥.
import foundations.Cyclic ∙ Cyclic types

A.4 Short excerpts from the library

Let us present the definitions pertinent to the type of planar maps.

▷ Cycle types as introduced in Definition 2.21:

record
CyclicSet (A : Type 𝓁) : Type 𝓁
where
constructor cyclic-set
field
φ : A → A
n : ℕ
cyclicity
: ∥ ∑[e ∶ (A ≃ ⟦ n ⟧)]

((φ :> (e ∙→)) ≡ (e ∙→) :> fin-pred) ∥

▷ The symmetrisation of a graph, Sym, called here 𝑈 for short (see Definition 4.1):

U : Graph 𝓁 → Graph 𝓁
U g@(graph Ng Eg Ng-set Eg-set)
= graph Ng
(UEdge g)
Ng-set
λ x y → +-set (Eg-set x y) (Eg-set y x)
where
UEdge : (G : Graph 𝓁) (x y : Node G) → Type 𝓁
UEdge G x y = (Edge G x y) + (Edge G y x)

▷ Star at a node as introduced in Definition 4.4:

Star : (G : Graph 𝓁) → Node G → Type 𝓁
Star G x = ∑[y ∶ Node (U G)] Edge (U G) x y

▷ Graph maps as introduced in Definition 4.8 :

Map : (G : Graph 𝓁) → Type 𝓁
Map G = Π[x ∶ Node G] CyclicSet (Star G x)

▷ Faces for a graph map as an inductive record type to ensure eta-equality by de-
fault. The fields within the record type represent the conditions outlined in Defini-
tion 4.14.

136 Computer Formalisation in Agda

record Face (𝓜 : Map G) : Type (lsuc 𝓁) where
inductive
constructor face
field
A : Graph 𝓁
A↺ : CyclicGraph 𝓁 A
h : Hom A (U G)
h-is-edge-inj : isEdgeInj h
star-cond : starFaceCond A h
corners-cond : faceCornersPreserved 𝓜 A A↺ h

The type of these fields use the following definitions:

– Cyclic graph:

record
CyclicGraph (𝓁 : Level) (G : Graph 𝓁) : Type (lsuc 𝓁)
where
eta-equality
constructor cyclic-graph
field
φ : Hom G G
n : ℕ
is-cyclic : ∥ Path {A = ∑[H] (Hom H H)}

(G , φ) (Cycle 𝓁 n , rot 𝓁 n) ∥

– Edge-injectivity property for graph homomorphisms:

isEdgeInj : Hom G H → Type (𝓁₁ ⊔ 𝓁₂)
isEdgeInj (hom α β)
= ∀ {x y} → (e₁ : Edge G x y)
→ ∀ {x' y'} → (e₂ : Edge G x' y')
→ Path {A = ∑[x] ∑[y] Edge H x y}
(α x , α y , β x y e₁)
(α x' , α y' , β x' y' e₂)

→ (x , y , e₁) ≡ (x' , y' , e₂)

– Conditions on the stars:

starFaceCond : Type 𝓁
starFaceCond = (x : Node A) → ∥ Star G (α h x) ∥ → ∥ Star A x ∥

– and preservation of corners by the combinatorial map:

faceCornersPreserved : Type 𝓁
faceCornersPreserved
= (x : Node A) → (e₀ : Edge A (pred-↺ A A↺ x) x)
→ (e₁ : Edge A x (suc-↺ A A↺ x))
→ Path {A = Star G (α h x)}

(CyclicSet.φ (𝓜 (α h x))
(α h (pred-↺ A A↺ x) , flip (β h _ _ e₀)))
((α h (suc-↺ A A↺ x) , β h _ _ e₁))

▷ A planar map can then be defined as a spherical graph map with a face:

Planar : Graph 𝓁 → Type (lsuc 𝓁)
Planar G = isConnectedGraph (U G) × (∑[𝓜] (isSphericalMap G 𝓜 × Face G 𝓜))

Where spherical graph maps are defined as follows:

A.4 Short excerpts from the library 137

– Spherical maps as introduced in Chapter 5:

isSphericalMap : Map G → Type (lsuc 𝓁)
isSphericalMap 𝓜
= (x y : Node (U G))
→ (w₁ w₂ : Walk (U G) x y)
→ w₁ is-quasi-simple
→ w₂ is-quasi-simple
→ ∥ w₁ ∼⟨ 𝓜 ⟩∼ w₂ ∥

– Quasi-simple walks as introduced in Definition 5.12:

isQuasi : ∀ {x z : Node G} → Walk G x z → Type 𝓁
isQuasi w = ∏[y ∶ Node G] (isProp (y ∈w w))

– The special membership relation used above as introduced in Definition 5.10:

∈w : Node G → Walk G x z → Type 𝓁
y ∈w ⟨ z ⟩ = ⊥ 𝓁
y ∈w (e ⊙ w) = (y ≡ source G e) + (y ∈w w)

Utilising the above definitions, we ascertain that the face type constitutes a homo-

topy set. This consequently implies that the planar map type is also a set.

{-# OPTIONS without-K exact-split #-}

module lib.graph-embeddings.Map.Face.isSet
where
open import foundations.Core
open import foundations.HLevelLemmas
open import foundations.NaturalsType
open import foundations.Nat
open import lib.graph-embeddings.Map
open import lib.graph-embeddings.Map.Face
open import lib.graph-definitions.Graph
open Graph
open import lib.graph-walks.Walk
open import lib.graph-transformations.U
open import lib.graph-homomorphisms.Hom
open Hom
open import lib.graph-classes.CyclicGraph
open CyclicGraph
open import lib.graph-classes.CyclicGraph.Stuff
open import lib.graph-homomorphisms.classes.EdgeInjective

module _ {𝓁 : Level} (G : Graph 𝓁) (𝓜 : Map G) where

Face-is-set : isSet (Face G 𝓜)
Face-is-set = equiv-preserves-sets (Face'≃Face G 𝓜) Face'-is-set
where
abstract
Face'-is-set : isSet (Face' G 𝓜)
Face'-is-set

f1@(d1@(A , A↺@(cyclic-graph φA zero pA) , f) , (p₁ , p₂) , p₃)
f2@(d2@(B , B↺@(cyclic-graph φB zero pB) , g) , (q₁ , q₂) , q₃)
= trunc-elim prop-is-prop
(λ {idp → trunc-elim prop-is-prop
(λ {idp → isProp-≃

(≃-sym (≃-trans (Face'-Path-space G 𝓜 f1 f2) equiv))

138 Computer Formalisation in Agda

(∑-prop
(∑-prop
(equiv-preserves-prop
(≃-sym
(≃-trans equiv-principle only-one-iso)) 𝟙-is-prop)

(λ {_ → Hom-is-set _ _ _ _}))
(λ _ → Hom-is-set A B _ _))
}) pB}) pA

where
open import lib.graph-classes.UnitGraph
open import lib.graph-definitions.Graph.EquivalencePrinciple
open EquivPrinciple (𝟙-graph 𝓁) (𝟙-graph 𝓁)

equiv
: (d1 ≡ d2)

≃ (∑[p ∶ ∑[α ∶ A ≡ B] (tr _ α f ≡ g)] ((tr _ (π₁ p) φA) ≡ φB))
equiv =
begin≃
_
≃⟨ qinv-≃ (λ {idp → idp})

((λ {idp → idp}) , (λ {idp → idp}) , (λ {idp → idp})) ⟩
Path {A = ∑[_] ∑[_] ∑[_] _ }
(A , f , φA , pA)
(B , g , φB , pB)
≃⟨ qinv-≃ (λ {idp → idp})

((λ {idp → idp}) , (λ {idp → idp}) , (λ {idp → idp})) ⟩
Path {A = ∑[(X , h , φh) ∶ ((∑[X] (∑[_] Hom X _)))] _ }
((A , f , φA) , pA)
((B , g , φB) , pB)
≃⟨ simplify-pair (λ {(_ , _ , _) → trunc-is-prop}) ⟩

Path {A = ∑[_] ∑[_] _ }
(A , f , φA)
(B , g , φB)
≃⟨ qinv-≃ (λ {idp → (idp , idp) , idp})

((λ { ((idp , idp) , idp) → idp})
, (λ {((idp , idp) , idp) → idp}) , λ {idp → idp}) ⟩

_ ≃∎
Face'-is-set ((A , A↺@(cyclic-graph φA zero pA) , f) , (p₁ , p₂) , p₃)

((B , B↺@(cyclic-graph φB (succ nB) pB) , g) , (q₁ , q₂) , q₃)
= trunc-elim prop-is-prop (λ {idp → trunc-elim prop-is-prop
(λ {idp → λ {()}})
pB}) pA

Face'-is-set ((A , A↺@(cyclic-graph φA (succ nA) pA) , f) , (p₁ , p₂) , p₃)
((B , B↺@(cyclic-graph φB zero pB) , g) , (q₁ , q₂) , q₃)

= trunc-elim prop-is-prop (λ {idp → trunc-elim prop-is-prop
(λ {idp → λ {()}})
pB}) pA

Face'-is-set
f1@(d1@(A , A↺@(cyclic-graph φA (succ nA) pA) , f) , (p₁ , p₂) , p₃)
f2@(d2@(B , B↺@(cyclic-graph φB (succ nB) pB) , g) , (q₁ , q₂) , q₃)
= trunc-elim prop-is-prop
(λ {idp → trunc-elim prop-is-prop
(λ {idp →
isProp-≃

(≃-sym
(≃-trans (Face'-Path-space G 𝓜 f1 f2) equiv))

(∑-prop (ℕ-is-set _ _) (λ {idp → ∑-prop

A.4 Short excerpts from the library 139

(∑-Cn-isos-is-prop 𝓁
(succ nA) (succ-n>0 𝓁 {nA}) (U G) f p₁ g q₁)

(λ _ → Hom-is-set A B _ _)}))})
pB}) pA

where
open import lib.graph-homomorphisms.classes.EdgeInjective.Lemmas
open import lib.graph-homomorphisms.Lemmas
open Hom-Lemma-1 A B
open Hom-Lemma-2 A B (U G) f g
equiv : (d1 ≡ d2) ≃ (∑[α ∶ nA ≡ nB]

∑[p ∶ ∑[α ∶ A ≡ B] (f ≡ g∘ α)]
((tr _ (π₁ p) φA) ≡ φB))

equiv =
begin≃

_
≃⟨ qinv-≃ (λ {idp → idp})

((λ {idp → idp}) , (λ {idp → idp}) , (λ {idp → idp})) ⟩
Path {A = ∑[_] ∑[_] ∑[_] ∑[_] _ }
(nA , A , f , φA , pA)
(nB , B , g , φB , pB)
≃⟨ qinv-≃ (λ {idp → idp})

((λ {idp → idp}) , (λ {idp → idp}) , (λ {idp → idp})) ⟩
Path {A = ∑[(nX , X , h , φh) ∶ (∑[_] (∑[X] (∑[_] Hom X _)))] _ }
((nA , A , f , φA) , pA)
((nB , B , g , φB) , pB)
≃⟨ simplify-pair (λ {(_ , _ , _ , _) → trunc-is-prop}) ⟩

Path {A = ∑[_] ∑[_] ∑[_] _ }
(nA , A , f , φA)
(nB , B , g , φB)

≃⟨ qinv-≃ (λ {idp → idp , idp}) ((λ {(idp , idp) → idp}) ,
(λ {(idp , idp) → idp}) , λ {idp → idp}) ⟩

((nA ≡ nB) × Path ((A , f , φA)) ((B , g , φB)))
≃⟨ qinv-≃ (λ {(idp , idp) → idp , (idp , idp)})

((λ {(idp , (idp , idp)) → (idp , idp)}) ,
(λ {(idp , (idp , idp)) → idp}) , λ {(idp , idp) → idp}) ⟩

((nA ≡ nB) × (∑[α ∶ A ≡ B] (Path (f , tr _ α φA) (g∘ α , φB))))
≃⟨ qinv-≃ (λ {(idp , (idp , idp)) → idp , (idp , idp) , idp})

((λ {(idp , ((idp , idp) , idp)) → idp , (idp , idp)}) ,
(λ {(idp , ((idp , idp) , idp)) → idp})
, λ {(idp , (idp , idp)) → idp}) ⟩

((nA ≡ nB) × (∑[p ∶ ∑[α ∶ A ≡ B] (f ≡ g∘ α)] ((tr _ (π₁ p) φA) ≡ φB)))
≃∎

Planar-is-set : {G : Graph 𝓁} → isSet (Planar G)
Planar-is-set {G} =
×-is-set
(prop-is-set being-connected-is-prop)
(∑-set
(Map-is-set G)
(λ 𝓜 → ×-is-set (prop-is-set (isSphericalMap-is-prop G 𝓜))

(Face-is-set G 𝓜)))
where
open import lib.graph-embeddings.Map.Face.isSet

(1)

140 Computer Formalisation in Agda

Example A.1. Let us elaborate on a basic example, the planar map of the one-point graph.

This instance sheds light on the stringent process necessary to affirm a graph is planar within

the formal setting of this thesis. Herein, we construct an Agda term step-by-step. First, af-

firming that the trivial graph map for the one-point graph is spherical and that it has an outer

face, thus fulfilling the required data.

{-# OPTIONS without-K exact-split #-}

module lib.graph-embeddings.Map.Face.Example
where
open import foundations.Core
open import lib.graph-definitions.Graph
open import lib.graph-transformations.U
open Graph

open import lib.graph-embeddings.Map
open import lib.graph-classes.UnitGraph

open import foundations.Cyclic using (CyclicSet; cyclic-set)
open import foundations.Fin
open import foundations.Nat

open import lib.graph-embeddings.Map
open import lib.graph-definitions.Graph
open import lib.graph-homomorphisms.Hom
open import lib.graph-homomorphisms.classes.EdgeInjective
open import lib.graph-transformations.U
open import lib.graph-classes.CyclicGraph
open import lib.graph-classes.CyclicGraph.Stuff
open import lib.graph-embeddings.Map.Face

open import lib.graph-embeddings.Planar
open import lib.graph-classes.EmptyGraph

open import foundations.Fin
open import lib.graph-classes.UnitGraph
open import lib.graph-classes.EmptyGraph
open import foundations.Cyclic
open import foundations.UnivalenceAxiom
open CyclicGraph-is-set
open import foundations.FunExtAxiom

𝓁 : Level
𝓁 = lzero

star-𝟙 : Star (𝟙-graph 𝓁) ∗ ≃ Fin 𝓁 0
star-𝟙
= qinv-≃

(λ { (_ , inl ()) ; (_ , inr ())})
((λ { (zero , ()) ; (succ _ , ())}) ,
(λ { (zero , ()) ; (succ _ , ())}) , λ { (_ , inl ()) ; (_ , inr ())})

zero-is-only-once-cyclic : isProp (CyclicSet 𝓁 (Fin 𝓁 0))
zero-is-only-once-cyclic p q = rapply (lemma-2-13 𝓁 {A = Fin 𝓁 0} p q)

(pi-is-prop (λ _ → isProp-≃ (𝟘-≃-⟦0⟧ 𝓁) 𝟘-is-prop) _ _)

 There is only one map.
 Let's prove that by showing that the corresponding type is contractible.
 Or equivalently, that it is a proposition and that the type is inhabited.

A.4 Short excerpts from the library 141

𝟙-map : Map (𝟙-graph 𝓁)
𝟙-map ∗ = cyclic-set id 0 ∣ star-𝟙 , funext (λ { (fst₁ , inl ()) ; (fst₁ , inr ())}) ∣

𝟙-has-prop-map : isProp (Map (𝟙-graph 𝓁))
𝟙-has-prop-map = (pi-is-prop (λ {* → tr (λ o → isProp (CyclicSet 𝓁 o)) (! ua star-𝟙)

zero-is-only-once-cyclic}))

 Similarly, we prove that the type Hom(𝟙-graph,U(𝟙-graph)) is contractible.
𝟙-hom : Hom (𝟙-graph 𝓁) (U (𝟙-graph 𝓁))
𝟙-hom = hom id (λ _ _ abs → inl abs)

𝟙-hom-prop' : isProp (Hom (𝟙-graph 𝓁) (𝟙-graph 𝓁))
𝟙-hom-prop' = isProp-≃ (≃-sym (Hom-≃-∑ (𝟙-graph 𝓁) (𝟙-graph 𝓁)))
(∑-prop (pi-is-prop (λ _ → 𝟙-is-prop))
(λ {_ → pi-is-prop
(λ _ → pi-is-prop (λ _ → pi-is-prop
(λ _ → 𝟘-is-prop)))}))

𝟙-hom-prop : isProp (Hom (𝟙-graph 𝓁) (U (𝟙-graph 𝓁)))
𝟙-hom-prop = isProp-≃ (≃-sym (Hom-≃-∑ (𝟙-graph 𝓁) (U (𝟙-graph 𝓁))))

(∑-prop (pi-is-prop (λ _ → 𝟙-is-prop))
(λ {_ → pi-is-prop
(λ _ → pi-is-prop (λ _ → pi-is-prop
(λ _ → +-prop 𝟘-is-prop 𝟘-is-prop (λ {()}))))}))

 CyclicGraph 𝓁 (𝟙-graph 𝓁) is contractible.
𝟙-graph-is-cyclic : CyclicGraph 𝓁 (𝟙-graph 𝓁)
𝟙-graph-is-cyclic = cyclic-graph (id-hom (𝟙-graph 𝓁)) 0 ∣ idp ∣

𝟙-graph-cyclic-prop : isProp (CyclicGraph 𝓁 (𝟙-graph 𝓁))
𝟙-graph-cyclic-prop = isProp-≃ CyclicGraph-≃-∑s

(∑-prop 𝟙-hom-prop' λ {_ (n , c) (m , d)
→ pair= (instances-have-same-natural 𝓁 (𝟙-graph 𝓁)

(cyclic-graph _ n c)
(cyclic-graph _ m d)
, trunc-is-prop _ d) })

𝟙-face : Face (𝟙-graph 𝓁) 𝟙-map
𝟙-face = face (𝟙-graph 𝓁) 𝟙-graph-is-cyclic 𝟙-hom

(λ {()}) (λ _ → id) (λ {_ _ ()})

helper : ∀ {A : Graph 𝓁} → isProp (Hom A (U (𝟙-graph 𝓁)))
helper {A} =
isProp-≃ (≃-sym (Hom-≃-∑ A _))
(∑-prop (pi-is-prop λ _ → 𝟙-is-prop)
λ _ → pi-is-prop (λ _ → pi-is-prop
λ _ → pi-is-prop (λ _ → +-prop 𝟘-is-prop 𝟘-is-prop (λ {()}))))

open import lib.graph-relations.Isomorphic

U𝟙-≅-𝟙 : U (𝟙-graph 𝓁) ≅ 𝟙-graph 𝓁
U𝟙-≅-𝟙 = idEqv ,
λ _ _ → prop-ext-≃

(+-prop 𝟘-is-prop 𝟘-is-prop (λ {()}))
𝟘-is-prop

((λ { (inl ()) ; (inr ())}) , λ {()})

open import lib.graph-embeddings.Map.Face.Walk.Homotopy
open HomotopyWalks
open import lib.graph-embeddings.Map.Spherical
open import lib.graph-walks.Walk

142 Computer Formalisation in Agda

M-is-spherical : isSphericalMap (𝟙-graph lzero) 𝟙-map
M-is-spherical ∗ .∗ ⟨ .∗ ⟩ ⟨ .∗ ⟩ _ _ = ∣ hwalk-refl ∣
M-is-spherical x .x ⟨ .x ⟩ (inl e ⊙ w) = 𝟘-elim e
M-is-spherical x .x ⟨ .x ⟩ (inr e ⊙ w) = 𝟘-elim e
M-is-spherical x y (inl e ⊙ w1) w2 = 𝟘-elim e
M-is-spherical x y (inr e ⊙ w1) w2 = 𝟘-elim e

open import lib.graph-classes.ConnectedGraph
𝟙-graph-is-connected : (U (𝟙-graph lzero)) is-connected-graph
𝟙-graph-is-connected ∗ ∗ = ∣ ⟨ ∗ ⟩ ∣

𝟙-graph-is-planar : Planar (𝟙-graph lzero)
𝟙-graph-is-planar =
𝟙-graph-is-connected ,
𝟙-map ,
M-is-spherical ,
𝟙-face

Example A.2. The following is the elaboration of the proof of Lemma 3.20.
{-# OPTIONS without-K exact-split #-}
module lib.graph-families.CycleGraph.Isomorphisms.Lemmas
where
open import foundations.Core
module _ (𝓁 : Level) where
open import lib.graph-definitions.Graph
open import lib.graph-homomorphisms.Hom
open import lib.graph-relations.Isomorphic
open import lib.graph-families.CycleGraph.Isomorphisms.IdentityType
open import foundations.FunExtAxiom using (happly)
open import foundations.UnivalenceAxiom using (idtoeqv)
open import foundations.Fin 𝓁
open import foundations.Nat 𝓁
open import foundations.Cyclic 𝓁
open import lib.graph-families.CycleGraph.RotHom 𝓁
open import lib.graph-families.CycleGraph 𝓁

open Graph
open Hom

order-of-an-iso
: (n : ℕ)
→ (n>0 : ℕ-ordering._>_ 𝓁 n 0)
→ (φ : Cycle n ≅ Cycle n)
→ ∑[(k , _) ∶ ⟦ n ⟧] ((rot n ^-hom k) ≡ hom-from-iso φ)

order-of-an-iso zero ()
order-of-an-iso n@(succ _) ∗ φ = ((Isos-→-Fin 𝓁 n ∗) φ) ,

(begin
(rot n ^-hom π₁ (((Isos-→-Fin 𝓁 n ∗) φ)))
≡⟨⟩

hom-from-iso ((Fin-→-Isos 𝓁 n ∗) (((Isos-→-Fin 𝓁 n ∗) φ)))
≡⟨ ap hom-from-iso (rlmap-inverse-h (Isos-≃-Fin 𝓁 n ∗) φ) ⟩

hom-from-iso φ ∎)

open import lib.graph-homomorphisms.Lemmas
module _ (n : ℕ) (n>0 : n > 0)

where
hom-from-≡ = Hom-Lemma-1.hom-from-≡ (Cycle n) (Cycle n)
≡-from-iso = Hom-Lemma-1.≡-from-iso (Cycle n) (Cycle n)
same-hom-from-≡-or-≅ = Hom-Lemma-1.same-hom-from-≡-or-≅ (Cycle n) (Cycle n)

A.4 Short excerpts from the library 143

rot^k-from-iso
: (n : ℕ) (n>0 : n > 0)
→ (φ : Cycle n ≅ Cycle n)
→ (G : Graph 𝓁)
→ (f g : Hom (Cycle n) G)
→ let k = π₁ (((Isos-≃-Fin 𝓁 n n>0 ∙) φ))
in
(f ≡ (((hom-from-≡ n n>0) (≡-from-iso n n>0 φ)) ∘Hom g))

≡ (f ≡ ((rot n ^-hom k) ∘Hom g))

rot^k-from-iso zero () φ G f g
rot^k-from-iso n@(succ _) ∗ φ G f g

= ap (λ w → f ≡ (w ∘Hom g))
((same-hom-from-≡-or-≅ n ∗ φ) · ! π₂ (order-of-an-iso n ∗ φ))

m₁
: (n : ℕ) (n>0 : n > 0) (G : Graph 𝓁)(f g : Hom (Cycle n) G)
→ (∑[α ∶ Cycle n ≅ Cycle n]

(f ≡ (((hom-from-≡ n n>0) ((≡-from-iso n n>0) α)) ∘Hom g)))
≃ (∑[(k , _) ∶ ⟦ n ⟧] (f ≡ ((rot n ^-hom k) ∘Hom g)))

m₁ zero ()
m₁ n@(succ _) ∗ G f g

= sigma-maps-≃ (Isos-≃-Fin 𝓁 n ∗) $
λ φ → idtoeqv (rot^k-from-iso n ∗ φ G f g)

abstract
L1-hom
: (n : ℕ) (n>0 : n > 0) { k₁ k₂ : ⟦ n ⟧}
→ ((x y : Node (Cycle n))
→ (e : Edge (Cycle n) x y)
→ let
h₁ = rot n ^-hom (π₁ k₁)
h₂ = rot n ^-hom (π₁ k₂)
in
Path {A = ∑[x] ∑[y] Edge (Cycle n) x y}
(α h₁ x , α h₁ y , β h₁ x y e)
(α h₂ x , α h₂ y , β h₂ x y e))

→ k₁ ≡ k₂

L1-hom zero ()
L1-hom n@(succ m) ∗ {k₁ = k₁}{k₂} f
= fin-exp-is-unique k₁ k₂ (fin-pred (0' 𝓁 m)) eq₁
where
open Sigma

h₁ h₂ : Hom (Cycle n) (Cycle n)
h₁ = rot n ^-hom (π₁ k₁)
h₂ = rot n ^-hom (π₁ k₂)

eq₁ : (fin-pred {k = n} ^ π₁ k₁) (m , succ m)
≡ (fin-pred ^ π₁ k₂) (m , succ m)

eq₁ =
(fin-pred ^ (π₁ k₁)) (m , succ m)
≡⟨ happly (lemma-on-nodes-hom-expo (rot n) (π₁ k₁)) (m , succ m) ⟩

(α h₁ (m , succ m))
≡⟨ π₁ (Σ-componentwise (f (m , succ m) (0' 𝓁 _) idp)) ⟩

(α h₂ (m , succ m))
≡⟨ ! happly

(lemma-on-nodes-hom-expo (rot n) (π₁ k₂))

144 Computer Formalisation in Agda

((fin-pred (0' 𝓁 _))) ⟩
(fin-pred ^ π₁ k₂) _
∎

Example A.3. We present a few excerpts on the definition of the path addition of a graph and

a few related lemmas as discussed in Section 6.3.1.

▷ The path addition of 𝑃𝑛 to a graph 𝐺, where 𝑛 > 0.
path-addition : (a b : Node G) → (n : ℕ) → 0 < n → Graph 𝓁
path-addition a b n p = graph N' E' N'-is-set E'-forms-sets
where
N' : Type 𝓁
N' = Node G + Fin n
E' : N' → N' → Type 𝓁
E' (inl x) (inl y) = Edge G x y
E' (inl x) (inr y) = (x ≡ a) × (y ≡ (0 , p))
E' (inr x) (inl y) = (x ≡ fin-pred (0 , p)) × (y ≡ b)
E' (inr x) (inr y) = x ≡ fin-pred y

N'-is-set : N' is-set
N'-is-set = +-set (Node-is-set G) Fin-is-set

E'-forms-sets : (x y : N') → (E' x y) is-set
E'-forms-sets (inl x) (inl y) = Edge-is-set G _ _
E'-forms-sets (inl x) (inr y) =
∑-set (prop-is-set (Node-is-set G _ _))

(λ _ → prop-is-set (Fin-is-set _ _))
E'-forms-sets (inr x) (inl y) =
∑-set (prop-is-set (Fin-is-set _ _))

(λ _ → prop-is-set (Node-is-set G _ _))
E'-forms-sets (inr x) (inr y) = prop-is-set (Fin-is-set _ _)

▷ The graph resulting from the path addition contains the walks of the original graph.

path-addition-has-original-walks
: (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (x y : Node G) → (Walk G x y)
→ Walk (path-addition a b n p) (inl x) (inl y)

path-addition-has-original-walks a b n p x .x ⟨ .x ⟩ = ⟨ inl x ⟩
path-addition-has-original-walks a b n p x y (_⊙_ {y = y₁} e w) = e ⊙ w'
where
w' : Walk (path-addition a b n p) (inl y₁) (inl y)
w' = path-addition-has-original-walks a b n p _ _ w

▷ In addition, the graph resulting from the path addition contains the inner walks in the
path graph 𝑃𝑛.

path-addition-has-new-walks
: (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (x y : ℕ) → (x< : x < n) → (y< : y < n)
→ ((x ≡ y) + (x < y))
→ Walk (path-addition a b n p) (inr (x , x<)) (inr (y , y<))

path-addition-has-new-walks a b zero ()
path-addition-has-new-walks a b n@(succ n') ∗ zero zero x< y< (inl idp)
rewrite prop {n = n}{m = zero} x< y< = ⟨ inr (0 , y<) ⟩

path-addition-has-new-walks a b n@(succ n') ∗ zero (succ y) x< y< (inr *)
with _≟fin_ {n} (0 , x<) (fin-pred (succ y , y<))

... | yes p = p ⊙ ⟨ _ ⟩

... | no ¬p = walk-0-to-y ∙w (pair= (idp ,

A.4 Short excerpts from the library 145

prop {succ n'}{y} (inj {n}{y} y<) (n⁺<k→n<k {y}{succ n'} y<)) ⊙ ⟨ _ ⟩)
where
open ∙-walk (path-addition a b n *)
walk-0-to-y
: Walk (path-addition a b n *) (inr (0 , x<)) (inr (y , inj {n}{y} y<))

walk-0-to-y with zero ≟nat y
... | yes idp
rewrite prop {n = n}{m = zero} (inj {n}{y} y<) * = ⟨ inr ((0 , x<)) ⟩

... | no ¬p = path-addition-has-new-walks a b (succ n') ∗ 0 y ∗
((inj {n}{y} y<)) (inr (n≠0 (λ p ¬p (sym p))))

path-addition-has-new-walks a b n@(succ n') ∗ (succ x) (succ .x) x< y< (inl idp)
rewrite prop {n = n}{m = succ x} x< y< = ⟨ inr (succ x , y<) ⟩

path-addition-has-new-walks a b n@(succ n') ∗ (succ x) (succ y) x< y< (inr x<y)
with _≟fin_ {n} (succ x , x<) (fin-pred (succ y , y<))

... | yes p = p ⊙ ⟨ _ ⟩

... | no ¬p = walk-0-to-y ∙w
(pair= (idp , prop {succ n'}{y} (inj {n}{y} y<)

(n⁺<k→n<k {y}{succ n'} y<)) ⊙ ⟨ _ ⟩)
where
open ∙-walk (path-addition a b n ∗)
walk-0-to-y
: Walk (path-addition a b n ∗) (inr (succ x , x<)) (inr (y , inj {n}{y} y<))

walk-0-to-y with (succ x) ≟nat y
... | yes idp

rewrite prop {n = n}{m = succ x} (inj {n}{y} y<) x< = ⟨ inr (succ x , x<) ⟩
... | no p =
path-addition-has-new-walks a b (succ n') ∗ (succ x) y
(mono-succ {x}{n'} x<) (inj {n}{y} y<)
(inr (suc-suc< {𝓁} {x}{y} x<y λ o → ¬p

(pair= (sym o , prop {succ n'}{y} _ _))))

▷ As expected, one can prove that the graph resulting from the path addition is con-
nected if the original graph is connected. To prove this lemma, we need a few extra
lemmas, which are proved below.

path-addition-preserves-connectedness
: G is-connected-graph
→ (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (path-addition a b n p) is-connected-graph

path-addition-preserves-connectedness G-is-connected a b zero ()
path-addition-preserves-connectedness G-is-connected a b n@(succ n') p
= helper
where
G' : Graph 𝓁
G' = path-addition a b n p
N' = Node G + Fin n
open ∙-walk (path-addition a b n p)

helper : (x y : N') → ∥ Walk G' x y ∥
helper (inl x) (inl y)
= trunc-elim trunc-is-prop

(λ w → ∣ path-addition-has-original-walks a b n p _ _ w ∣)
(G-is-connected x y)

helper (inl x) (inr y@(naty , y<))
with x ≟Node a

... | inl idp = ∣ path-addition-walk-from-first-endpoint a b n p y ∣

... | inr p' = trunc-elim trunc-is-prop
(λ w → ∣ path-addition-has-original-walks a b n p x a w ∙w walk-a-finy ∣)
(G-is-connected x a)
where
walk-a-finy = path-addition-walk-from-first-endpoint a b n p y

helper (inr x@(natx , x<)) (inl y)
with (x ≟fin fin-pred (0 , p)) | (y ≟Node b)

146 Computer Formalisation in Agda

... | yes idp | inl idp = ∣ (((idp , idp)) ⊙ ⟨ inl b ⟩) ∣

... | yes idp | inr y≠b = trunc-elim trunc-is-prop
(λ w → ∣ ((((idp , idp)) ⊙ ⟨ inl b ⟩))
∙w path-addition-has-original-walks a b n p _ _ w ∣)

(G-is-connected b y)
... | no ¬p | inl idp = ∣ walk-fin0-finn-1 ∙w ((idp , idp) ⊙ ⟨ inl b ⟩) ∣

where
walk-fin0-finn-1

: Walk (path-addition a b n p) (inr x) (inr (fin-pred (0 , p)))
walk-fin0-finn-1 = path-addition-walk-to-the-end a b n p x

... | no ¬p | inr y≠b
with (x ≟fin fin-pred (0 , p))

... | yes idp = trunc-elim trunc-is-prop (λ w →
∣ ((((idp , idp)) ⊙ ⟨ inl b ⟩))

∙w path-addition-has-original-walks a b n p _ _ w ∣)
(G-is-connected b y)

... | no ¬p₁ = trunc-elim trunc-is-prop (λ w →
∣ walk-finx-b ∙w (((idp , idp))

⊙ path-addition-has-original-walks a b n p _ _ w) ∣)
(G-is-connected b y)

where
walk-finx-b : Walk (path-addition a b n p) (inr x) (inr (fin-pred (0 , p)))
walk-finx-b = path-addition-walk-to-the-end a b n p x

helper (inr x@(natx , x<)) (inr y@(naty , y<))
with trichotomy natx naty

... | inl (inl idp) =
∣ path-addition-has-new-walks a b n p natx naty x< y< (inl idp) ∣

... | inl (inr natx<naty) =
∣ path-addition-has-new-walks a b n p natx naty x< y< (inr natx<naty) ∣

... | inr naty<natx =
trunc-elim trunc-is-prop (λ w
→ ∣ path-addition-walk-to-last-endpoint a b n p x
∙w path-addition-has-original-walks a b n p _ _ w
·w path-addition-walk-from-first-endpoint a b n p y
∣)

(G-is-connected b a)

▷ Walks from the head of a path addition.

path-addition-walk-from-the-head
: (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (x : Fin n)
→ Walk (path-addition a b n p) (inr (0 , p)) (inr x)

path-addition-walk-from-the-head a b zero ()
path-addition-walk-from-the-head a b n@(succ n') p x@(natx , x<)
with natx ≟nat 0

... | yes idp = ⟨ inr x ⟩

... | no ¬p = path-addition-has-new-walks a b n p 0 natx p x< (inr (n≠0 {natx} ¬p))

▷ Walks to the tail of a path addition.

path-addition-walk-to-the-end
: (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (x : Fin n)
→ Walk (path-addition a b n p) (inr x) (inr (fin-pred (0 , p)))

path-addition-walk-to-the-end a b zero ()
path-addition-walk-to-the-end a b n@(succ n') p x@(natx , x<)
with <s-to= natx n' x<

... | (inl idp) rewrite prop {succ n'}{n'} x< (succ n') = ⟨ inr (natx , _) ⟩

... | (inr natx<n') =
path-addition-has-new-walks a b n p natx n' x< (succ n') (inr natx<n')

▷ Walks from the first endpoint of a path addition.

A.4 Short excerpts from the library 147

path-addition-walk-from-first-endpoint
: (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (x : Fin n)
→ Walk (path-addition a b n p) (inl a) (inr x)

path-addition-walk-from-first-endpoint a b n p x =
(idp , idp) ⊙ (path-addition-walk-from-the-head a b n p x)

▷ Walks to the last endpoint of a path addition.

path-addition-walk-to-last-endpoint
: (a b : Node G) → (n : ℕ) → (p : 0 < n)
→ (x : Fin n)
→ Walk (path-addition a b n p) (inr x) (inl b)

path-addition-walk-to-last-endpoint a b n p x
= path-addition-walk-to-the-end a b n p x ∙w (((idp , idp)) ⊙ ⟨ inl b ⟩)
where
open ∙-walk (path-addition a b n p)

B
On Trees and Their Topological Realisation

B.1 Introduction

This appendix explores the concepts of rooted trees and oriented spanning trees in HoTT.

A rooted tree is a tree with one node singled out, while an oriented spanning tree is de-

fined as a subgraph that not only forms a tree but also encompasses all nodes of the

original graph (Diestel and Kühn 2004). Although there is no universal method for con-

structing spanning trees in infinite connected graphs, we can establish the mere existence

of oriented spanning trees for finite, connected graphs, provided that the set nodes are

finite and the edge family comprises homotopy sets. Some notions, including the type of

a graph, differ slightly from the one used in the main text in this part. For example, we

define a graph as a type of nodes equipped with a binary type-valued relation of edges.

Furthermore, we explore these notions of connected graphs rooted trees in the con-

text of higher-inductive types (HITs) in HoTT. Towards this end, we define the 1-cell

topological realisation of a graph, a construction also seen in Swan’s proof on the proof

of Nielsen-Schreier theorem (Swan 2022). This construction, which considers only the

0-cells and 1-cells –—nodes and edges—excluding higher-dimensional cells, can be ex-

pressed in HoTT as a coequalizer that models the topological space generated by a graph

where the nodes are points, and the edges are paths glued to their endpoints in the space.

In this context of HITs, we define a graph as connected if its realisation is a connected

type. We also define a tree as a loop-free graph whose topological realisation is a con-

B.2 Computer formalisation in Cubical Agda 149

tractible type. Then, later, we reconnect with the notion of rooted trees, which are ini-

tially defined independently from topological realisation as trees with a designated node,

and prove that realisation of rooted trees corresponds to contractible types, i.e. also trees

in the sense of HITs.

The connection and constructions presented in this appendix , although novel at the

moment of writing, as we did not find any similar work in the literature, were influenced

by Swan’s constructions, especially the sections on enlarging subtrees and spanning trees

(see Appendices B.4 and B.4.1), which draw upon Lemma 4.6 (Swan 2022, §4). The pri-

mary distinction between our approach and Swan’s lies in our focus on the combinatorial

constructions of graphs. We construct (spanning) trees through the expansion of graphs,

as similarly outlined in the main text, rather than directly employing higher inductive

types on the topological realisations of graphs.

B.2 Computer formalisation in Cubical Agda

We use Cubical Agda to formalise this part, an extension of Agda that supports Cubical

type theory and a large family of HITs, making it easy to prove principles like function

and propositional extensionality, and define higher inductive types such as the circle and

the torus. Cubical Agda lets us define (dependent) functions onHITs by patternmatching.

Although we could use vanilla Agda, it is rather tedious without the Cubical Mode. In

recent versions of Agda, we can extend the type-checker’s capabilities by adding custom

rewriting rules, which can alleviate the lack of support for HITs. To type-check the proofs

in this appendix, we use the following versions of Agda and the Cubical Agda library.

▷ Agda version 2.6.2.1-59c7944 with the flag cubical.

▷ Cubical Agda library version 0.3.

{-# OPTIONS cubical #-}

open import Cubical.Core.Everything

open import Base

B.3 Basic concepts

Let us start defining a few basic concepts about graphs.

B.3.1 The type of graphs

Definition B.1. A graph consists of a type of nodes equipped with a binary type valued rela-

150 On Trees and Their Topological Realisation

tion of edges.

Graph ∶≡ ∑
(𝑁∶U)

(𝑁 → 𝑁 → U). (B.3–1)

The type of graphs is defined in Agda as follows.

record Graph : Type (𝓁-suc 𝓁) where

constructor graph

field

N : Type 𝓁

E : N → N → Type 𝓁

open Graph

B.3.2 The type of walks

We can define the type of walks in a graph as an indexed inductive data type, similar to

the polymorphic type for lists. This type is useful for formalising results on walks, as it

allows us to define walk functions through pattern matching in an easy and convenient

way (Prieto-Cubides 2022). Unfortunately, pattern matching is not supported in Cubical

Agda for such inductive data types at the moment of writing. We, therefore, consider the

following equivalent types from where the former type is chosen for the convenience of

the lemmas stated in this chapter. In particular, walks here grow by attaching edges at

their ends, as in Lemma B.11. In what follows, we denote by 𝑊 𝑛𝐺(𝑥, 𝑦) the type of walks

from 𝑥 to 𝑦 of length 𝑛 in a graph 𝐺.

1. Walks formed by backwards edge addition.

W : ℕ → N G → N G → Type 𝓁

W 0 x y = x ≡ y

W (suc n) a c = Σ[b ∈ N G] (W n a b) × (E G b c)

2. Walks formed by forward edge addition.

W' : ℕ → N G → N G → Type 𝓁

W' 0 x y = x ≡ y

W' (suc n) a c = Σ[b ∈ N G] (E G a b) × (W' n b c)

The concatenation of two walks 𝑝 and 𝑞 of 𝑛 and 𝑚 edges respectively, is a walk of 𝑛 + 𝑚
edges denoted by 𝑝 · 𝑞 and defined in Agda as follows. To not clash with Cubical notation,

we denote the new walk by p ·w q.

module walk-concat (G : Graph {𝓁}) where

open Walks G

·w : ∀ {x y z : N G} {n m : ℕ}

→ W n x y → W m y z

B.3 Basic concepts 151

→ W (n +ℕ m) x z

·w {x = x} {z = z} {n} {zero} p q

= subst ((λ o → W o x z)) (sym (+-zero n)) (subst (λ o → W n x o) q p)

·w {x = x} {z = z} {n} {suc m} p (b , q , e)

= subst (λ o → W o x z) (sym (+-suc _ _)) (b , p ·w q , e)

As typical in HoTT, once a type is defined, one would like to characterise its identity

type. In the case of walks, we compute the identity type point-wise. Since we are only

interested in the case where graphs consist of sets, the type of walks of such graphs turns

out to be a set.

Lemma B.2. Let 𝐺 be a graph such that the type of nodes is a set and the family of edges

consists of sets. Then, the type of walks of length 𝑛 from 𝑥 to 𝑦 is a set, for any 𝑥, 𝑦 ∶ 𝑁𝐺 and

𝑛 ∶ N.

A proof term for this lemma in Agda is the following.

module _ (V-is-set : isSet (N G))

(E-is-set : (x y : N G) → isSet (E G x y)) where

W-is-set : (n : ℕ) → (x y : N G) → isSet (W n x y)

W-is-set zero _ _ = isProp→isSet (V-is-set _ _)

W-is-set (suc n) _ _ = isOfHLevelΣ 2 V-is-set λ _ →

(isOfHLevel× 2 (W-is-set n _ _) (E-is-set _ _))

We work with strongly connected graphs throughout the following lemmas unless oth-

erwise stated. Let us define such a property as the mere existence of a walk between any

pair of nodes.

Definition B.3 (isGConnected). A graph 𝐺 is strongly connected if the type in (B.3–2) is inhab-

ited.

isGConnected(𝐺) ∶≡ ∏
(𝑥,𝑦∶𝑁𝐺)

‖ ∑
(𝑛∶N)

𝑊 𝑛𝐺 (𝑥, 𝑦)‖ . (B.3–2)

In Agda, the type above is defined as follows.

isGConnected : Graph → Type 𝓁

isGConnected G = (x y : N G) → ∥ Σ[n ∈ ℕ] W G n x y ∥

Lemma B.4. Being connected for a graph is a proposition.

B.3.3 Rooted trees and subgraphs

Trees are usually defined as undirected graphs with a single path between any pair of

nodes. However, we prefer to use a more suitable notion of a tree for working directly

152 On Trees and Their Topological Realisation

with directed multigraphs. Therefore, we consider the class of rooted trees, which are

directed graphs with a single node acting as the root of the tree and a single walk between

any pair of nodes.

Let us now define the type of rooted trees in a directed multigraph 𝐺. We refer to

rooted trees as trees in the rest of this work unless otherwise stated.

Definition B.5 (isTree). A graph 𝐺 is a tree if the type in (B.3–3) is contractible. The node in

the centre of contraction is referred to as the root of the tree.

∑
(𝑟∶N𝐺)

∏
(𝑥∶N𝐺)

isContr(∑
(𝑛∶N)

W𝑛
𝐺(𝑟 , 𝑥)) (B.3–3)

The notion of trees for directed graphs can also be defined in terms of zig-zags, which

are walks formed by edges of different possible orientations. In this view, a tree is then a

graph if the corresponding type of zig-zag walks is contractible. Finally, it is worth men-

tioning that the definition of the type of undirected graphs and other derived concepts,

including trees and trails, can be found in Agda–UniMath (Rijke et al. 2023). In this Agda

library, an undirected graph consists of a type 𝑉 of nodes and a family 𝐸 of types over

the unordered pairs of 𝑉 . Lastly, an unordered pair of elements in a type 𝐴 consists of a

two-element type 𝑋 and a map of type 𝑋 → 𝐴.

In Agda, the type of rooted trees is defined as follows.

isTree : Graph → Type 𝓁

isTree G = isContr(Σ[r ∈ N G] (∀ x → isContr(Σ[n ∈ ℕ] W G n r x)))

Lemma B.6 (isProp-isTree). Being a tree is a proposition.

We need now to define the notions of subgraph and subtree. Recall that we are interested

in defining and constructing spanning trees out of strongly connected graphs, which

are trees containing all nodes of the original graph. If the graph is finite and strongly

connected, such trees can be obtained by traversing the graph using a depth-first search

or a breadth-first search algorithm. For a more general class of graphs, a principle of

choice may be needed to guide the search. In Appendix B.4.1, we prove that a spanning

treemerely exists if the node set of the graph is an inhabited type and the graph is strongly

connected with a family of discrete sets as the type of edges.

Definition B.7 (Subgraph). A subgraph of 𝐺 is a graph 𝐻 with an embedding into 𝐺, denoted

by 𝐻 ↪ 𝐺. The type of subgraphs of 𝐺 is Subgraph(𝐺).

B.4 Enlarging rooted subtrees 153

Subgraph(𝐻 , 𝐺) ∶≡ ∑
((ℎ,𝑔)∶Hom(𝐻 ,𝐺))

isEmbedding(ℎ) × ∏
(𝑥,𝑦∶N𝐻)

isEmbedding(𝑔(𝑥, 𝑦)),

where Hom(𝐻 , 𝐺) is the type of graph homomorphisms from 𝐻 to 𝐺 and isEmbedding

is the property that the function ap/cong is an equivalence, as defined in the HoTT Book.

Almost faithfully, we define in Agda the above structure on graphs as follows.

module _ {𝓁 : Level} (G : Graph {𝓁}) where

record Subgraph (H : Graph {𝓁}) : Type 𝓁 where

field

h : N H → N G

g : (x y : N H) → E H x y → E G (h x) (h y)

h-is-emb : isEmbedding h

g-is-emb : (x y : N H) → isEmbedding (g x y)

Definition B.8 (isSubtree). A (decidable) subtree of 𝐺 is a tree and subgraph of 𝐺 equipped

with a mechanism for checking whether a node in 𝐺 is in it or not.

record isSubtree (H : Graph {𝓁}) : Type 𝓁 where

constructor subtree

field

is-subgraph : Subgraph H

is-tree : isTree H

dec-fiber : (x : N G) → Dec (fiber (Subgraph.h is-subgraph) x)

B.4 Enlarging rooted subtrees

In this section we develop a few lemmas about the notion of a subgraph and subtree

about how to construct larger subtrees out of subgraphs. The main result of this section

is Lemma B.11, which requires first to state the following lemma.

Lemma B.9 (∃-edgecut). Let 𝐺 be a connected graph such that its node set is partitioned into

two disjoint nonempty types 𝑉1 and 𝑉2. Then, it merely exists an edge connecting a node of

𝑉1 to some node of 𝑉2 and vice versa.

Proof. Since we want to prove a proposition, let us apply the elimination principle of the

propositional truncation to the fact of 𝐺 being connected. One can obtain a function 𝑓 ,
which returns a walk connecting any two nodes of 𝐺. Let 𝑣1, 𝑣2 be nodes in 𝑉1 and 𝑉2,
respectively, and 𝑤 be the walk obtained by 𝑓 (𝑣1, 𝑣2).

154 On Trees and Their Topological Realisation

V1

V2

v1 v2G w

Figure B.1: The walk 𝑤 in Lemma B.9’s proof.

Let us proceed by induction on the length of 𝑤 . We will exhibit an edge in the walk

𝑤 that must have one node in 𝑉1 and the other node in 𝑉2, as illustrated in Figure B.1. If

the walk has zero length, then there is nothing to prove since such a case is impossible by

construction. Then, we can assume the induction hypothesis holds for a walk of length

𝑛. Let 𝑝 ⋅ 𝑒 be a walk of length 𝑛 + 1 where 𝑝 is a walk from 𝑥 to 𝑦 and 𝑒 is an edge from

𝑦 to 𝑣2. Since the node set of 𝐺 is equivalent to 𝑉1 + 𝑉2, the node 𝑦 is either in 𝑉1 or 𝑉2.
If 𝑦 is in 𝑉1, the required edge is 𝑒. Otherwise, we get the required edge by induction on

the walk 𝑝. □

Figure B.2: The term ∃-edgecut defined below is the Agda term for the Lemma B.9’s proof.

module EdgeCutLemma {𝓁 : Level} {V₁ V₂ : Type 𝓁}

(G : Graph {𝓁}) (G-is-connected : isGConnected G)

(e : N G ≃ V₁ + V₂)

(v₁ : V₁) (v₂ : V₂) where

∃-edgecut : ∥ Σ[x ∈ V₁] Σ[y ∈ V₂] E G (from-V₁ x) (from-V₂ y) ∥

∃-edgecut = trunc-elim isPropPropTrunc (λ {(n , w) → f v₁ v₂ n w}) w

where

isoN : Iso (N G) (V₁ + V₂)

isoN = equivToIso e

w : ∥ Σ[n ∈ ℕ] W G n (from-V₁ v₁) (from-V₂ v₂) ∥

w = G-is-connected _ _

f : (a : V₁) (b : V₂) (n : ℕ) → W G n (from-V₁ a) (from-V₂ b)

→ ∥ Σ[x ∈ V₁] Σ[y ∈ V₂] E G (from-V₁ x) (from-V₂ y) ∥

f _ _ zero w = ⊥-elim (inlinr-→-⊥ (isoInvInjective isoN _ _ w))

f v₁ v₂ (suc n) (b , w , ed)

with from-NG b | inspect from-NG b

... | inl x | [from-NGb≡inlx]

= ∣ x , v₂ , subst (λ o → E G o _) helper ed ∣

where

helper : b ≡ from-V₁ x

helper = sym (retEq e b) ∙ cong to-NG from-NGb≡inlx

... | inr x | [from-NGb≡inrx]

= f v₁ x n (subst (λ o → W G n _ o) helper w)

where

helper : b ≡ from-V₂ x

helper = sym (retEq e b) ∙ cong to-NG from-NGb≡inrx

B.4 Enlarging rooted subtrees 155

Lemma B.10 (decompose-image). Let 𝐴, 𝐵 ∶ U and 𝑓 be an embedding from 𝐴 to 𝐵 such that

the type of fibers fib𝑓 (𝑥) is a decidable set for any 𝑥 ∶ 𝐵. Then, the following equivalence

holds.

𝐵 ≃ 𝐴 + ∑
(𝑥∶𝐵)

¬ fib𝑓 (𝑥),

where fib𝑓 (𝑏) ∶≡ ∑(𝑎∶𝐴) 𝑓 (𝑎) = 𝑏.

Lemma B.11 (∃-subtree). Let 𝐺 be a connected graph with a discrete node set such that each

type of edges E𝐺(𝑥, 𝑦) is a set for any pair of nodes 𝑥, 𝑦 . If 𝐻 is a subtree of 𝐺 such that

there is a node 𝑢 in 𝐻 and a node 𝑣 in 𝐺 but not in 𝐻 , then there merely exists a subtree of 𝐺
enlarging 𝐻 with one additional node.

Proof. Since 𝐻 is a subtree, then, there must be a pair (ℎ, 𝑔) ∶ 𝐻 ↪ 𝐺. We can decompose

the set of nodes of 𝐺 as in (B.4–4) by applying Lemma B.10 to the embedding ℎ and the fact

that the set of nodes of 𝐻 is a discrete set. We write N𝐺⧵𝐻 for the set ∑(𝑥∶N𝐻) ¬ fibℎ(𝑥).

N𝐺 ≃ N𝐻 + N𝐺⧵𝐻 . (B.4–4)

Let 𝑝 be of type ‖Σ(𝑥∶N𝐻) Σ(𝑦∶N𝐺⧵𝐻) E𝐺(𝑥, 𝑦)‖, obtained by applying Lemma B.9 to the

fact that 𝐺 is connected, and the node set of 𝐺 is partitioned as the coproduct of two

nonempty sets. The sets N𝐻 and N𝐺⧵𝐻 are nonempty by assumption. Now, since the

goal of this proof is a proposition, by eliminating of the propositional truncation applied

to 𝑝, we can assume that there is an edge 𝑒 from a node in 𝐻 to some node in N𝐺⧵𝐻 .

Finally, by Lemma B.20, the graph 𝐻 can be extended by adding to it the edge 𝑒 to get the

subgraph 𝐻 ∗ of 𝐺, similarly as illustrated in Figure B.4. The definition of 𝐻 ∗ is given in

Definition B.12. The proof 𝐻 ∗ is a subtree of 𝐺 is given in Lemma B.20. □

The remainder of this section is devoted to supporting the construction of the ex-

tended subtree 𝐻 ∗ of 𝐺, which is crucial for the proof of Lemma B.11. The definition of

𝐻 ∗ is given in Definition B.12. The proofs that 𝐻 ∗ is a subgraph and a subtree are given

in Lemmas B.14 and B.20, respectively. We assume below that 𝐻 is a subgraph of 𝐺, de-

fined by (ℎ, 𝑔) ∶ 𝐻 ↪ 𝐺. Additionally, there is a designated edge ̂𝑒 from �̂� in 𝐻 to ̂𝑦 in 𝐺.

The node ̂𝑦 is not in 𝐻 , as illustrated in Figure B.4. As a matter of notation, the singleton

graph formed by the node 𝑥 with no edges is denoted by {𝑥}.

Definition B.12. The graph obtained from adding to 𝐻 the edge ̂𝑒 is referred as to 𝐻 ∗. For-
mally speaking, the set of nodes N𝐻 ∗ is the set N𝐻 + { ̂𝑦} and the family of edges in 𝐻 ∗ is

defined below. Recall that the function ℎ, appearing below in (B.4–5), is the embedding from

156 On Trees and Their Topological Realisation

Figure B.3: An excerpt of the Agda term for Lemma B.11.

module _ (G : Graph {𝓁})

(G-is-connected : isGConnected G)

(_≟Node_ : (x y : N G) → Dec (x ≡ y))

(E-is-set : (x y : N G) → isSet (E G x y)) where

∃-subtree

: (H : Graph)

→ (H-subtree : isSubtree G H)

→ (u : N H) → (v : N G)

→ ¬ (fiber (Subgraph.h (isSubtree.is-subgraph H-subtree)) v)

→ ∥ Σ[H* ∈ Graph] isSubtree G H* × (N H* ≃ (N H + 𝟙)) ∥

∃-subtree H H-subtree u v v-not-in-H =

trunc-elim isPropPropTrunc helper ∃-edgecut

where

H-subgraph = isSubtree.is-subgraph H-subtree

h = Subgraph.h H-subgraph

h-is-emb = Subgraph.h-is-emb H-subgraph

h-has-dec-image = isSubtree.dec-fiber H-subtree

V₁ = N H

isoN : N G ≃ V₁ + V₂

isoN = decompose-image _ _ h h-is-emb h-has-dec-image

open EdgeCutLemma G G-is-connected

isoN u (v , v-not-in-H) hiding (E*)

helper : Σ[x ∈ V₁] Σ[y ∈ V₂] E G (from-V₁ x) (from-V₂ y) → _

helper (x , y , ed) = ∣ H* , H*-subtree , e' ∣

where

 H* is the graph obtained by adding an edge to H.

 H*-subtree is a term constructed in Lemma 4.5-4.16

N𝐻 to N𝐻 ∗ given by the fact that 𝐻 is a subgraph of 𝐺.

E𝐻 ∗(𝑥, 𝑦) ∶≡
⎧⎪
⎨⎪
⎩

E𝐻 (𝑎, 𝑏) if 𝑥 ≡ inl(𝑎), 𝑦 ≡ inl(𝑏),
ℎ(𝑎) = ℎ(�̂�) if 𝑥 ≡ inl(𝑎), 𝑦 ≡ inr(𝑏),
0 otherwise.

(B.4–5)

Lemma B.13. Let 𝐻 ∗ be the graph defined in Definition B.12. The following properties hold

for 𝑎, 𝑏 ∶ N𝐻 and 𝑐 ∶ N{ ̂𝑦 }.

x̂ ŷ

H

ê

H∗

Figure B.4: The graph𝐻 ∗, mentioned in Lemmas B.13 to B.20, obtained by adding an edge
̂𝑒 to 𝐻 . The edge ̂𝑒 is given by Lemma B.9.

B.4 Enlarging rooted subtrees 157

1. The type E𝐻 ∗(inl(𝑎), inr(𝑏)) is a proposition.

2. The type E𝐻 ∗(inl(�̂�), inr(𝑐)) is contractible.
3. The type Σ(𝑎∶N𝐻)E𝐻 ∗(inl(𝑎), inr(̂𝑦)) is contractible.

Lemma B.14 (H*-subgraph). The graph 𝐻 ∗ is a subgraph of 𝐺.

Proof. To show that 𝐻 ∗ is a subgraph of 𝐺, it suffices to provide an embedding ℎ∗ ∶
N𝐻 ∗ → N𝐺 and a function 𝑔∗ ∶ Π(𝑥,𝑦∶𝑁𝐻) E𝐻 ∗(𝑥, 𝑦) → E𝐺(ℎ(𝑥), ℎ(𝑦)) such that for all

𝑥, 𝑦 ∶ 𝑁𝐻 , the function 𝑔∗(𝑥, 𝑦) is an embedding.

Since 𝐻 is a subgraph of 𝐺, let (ℎ, 𝑔) ∶ 𝐻 ↪ 𝐺, as stated in Definition B.7.

ℎ∗(𝑥) ∶≡ {ℎ(𝑎) if 𝑥 ∶≡ inl(𝑎) for 𝑎 ∶ N𝐻 ,
̂𝑦 otherwise.

It is clear that ℎ∗ is an embedding, since when restricting to 𝐻 , it is the embedding ℎ.
Otherwise, it is a map from a contractible domain, which is clearly an embedding.

Finally, let 𝑔∗ ∶ Π(𝑎,𝑏∶N𝐻∗)E𝐻 ∗(𝑎, 𝑏) → E𝐻 ∗(ℎ∗(𝑎), ℎ∗(𝑏)) be the mapping on edges in

𝐻 ∗ defined as follows.

𝑔∗(𝑥, 𝑦 , 𝑒) ∶≡

⎧⎪⎪
⎨⎪⎪
⎩

𝑔(𝑎, 𝑏, 𝑒) if 𝑥 ≡ inl(𝑎), 𝑦 ≡ inl(𝑏),
tr(apℎ(ℎ−1(𝑒)), ̂𝑒) if 𝑥 ≡ inl(𝑎), 𝑦 ≡ inr(𝑏),

and 𝑒 ∶ ℎ(𝑎) = ℎ(�̂�),
0 otherwise.

By definition, the function 𝑔∗ restricted to 𝐻 is the embedding 𝑔. Otherwise, the next

corresponding nontrivial case is 𝑔∗(inl(𝑎), inr(𝑏)). By Lemma B.13-(1), it is possible to

show that any fiber of 𝑔∗(inl(𝑎), inr(𝑏)) is a proposition, and it is then an embedding. In

any case, we conclude that 𝑔∗(𝑥, 𝑦) is an embedding, from where the conclusion follows.

□

To prove Lemmas B.19 and B.20, we need to show a few intermediate results, which

we now state. In Lemmas B.15 to B.17, let 𝑛 ∶ N and 𝑎, 𝑏 be two nodes in 𝐻 .

Lemma B.15. The following equivalence holds.

𝑊 𝑛𝐻 (𝑎, 𝑏) ≃ 𝑊𝐻 ∗(inl(𝑎), inl(𝑏)). (B.4–6)

Lemma B.16. The following types are empty.

1. 𝑊 𝑛𝐻 ∗(̂𝑦 , inl(𝑎)).

158 On Trees and Their Topological Realisation

2. Π(𝑣∶N𝐻) isContr(𝑊 𝑛𝐻 ∗(inl(𝑎), inl(𝑣))).
3. Σ(𝑛∶N) 𝑊 𝑛+1𝐻 ∗ (̂𝑦 , ̂𝑦).

Lemma B.17. The following types are contractible.

1. 𝑊 0𝐻 ∗(̂𝑦 , ̂𝑦).
2. Σ(𝑛∶N) 𝑊 𝑛𝐻 ∗(̂𝑦 , ̂𝑦).

Lemma B.18. The type in (B.4–7) is empty.

∑
(𝑦∶{ ̂𝑦})

∏
(𝑣∶N𝐻∗)

isContr(∑
(𝑛∶N)

𝑊 𝑛𝐻 ∗(inr(𝑦), 𝑣)) . (B.4–7)

Proof. It suffices to show that there is no walk from 𝑦 to some node in 𝐻 . Let 𝑦 be a node

in { ̂𝑦 } and 𝑣 be a node in 𝐻 ∗.

𝑃(𝑦, 𝑣) ∶≡ isContr(∑
(𝑛∶N)

𝑊 𝑛𝐻 ∗(inr(𝑦), 𝑣)) .

Then,

∑
(𝑦∶{ ̂𝑦})

∏
(𝑣∶N𝐻∗)

𝑃(𝑦, 𝑣) ≃ ∏
(𝑣∶N𝐻∗)

𝑃(̂𝑦 , 𝑣)

≃ ∏
(𝑣∶N𝐻)

𝑃(̂𝑦 , inl(𝑣)) × ∏
(𝑣∶{ ̂𝑦})

𝑃(̂𝑦 , inr(𝑣))

≃ 0 × ∏
(𝑣∶{ ̂𝑦})

𝑃(̂𝑦 , inr(𝑣))

≃ 0. □

Lemma B.19 (Bottleneck). Let 𝐺 be a connected graph, 𝐻 be a subtree of 𝐺 with root r𝐻 .
Then, there is a unique walk in the graph 𝐻 ∗ from inl(r𝐻) to ̂𝑦 .

Proof. It suffices to show that the following type is contractible.

∑
(𝑛∶N)

𝑊 𝑛𝐻 ∗(inl(r𝐻), ̂𝑦). (B.4–8)

Then,

∑
(𝑛∶N)

𝑊 𝑛𝐻 ∗(inl(r𝐻), ̂𝑦) ≃ 0 + ∑
(𝑛∶N)

𝑊 𝑛+1𝐻 ∗ (r𝐻 , ̂𝑦)

B.4 Enlarging rooted subtrees 159

≃ ∑
(𝑛∶N)

∑
(𝑣∶N𝐻∗)

𝑊 𝑛𝐻 ∗(inl(r𝐻), 𝑣) × E𝐻 ∗(𝑣 , ̂𝑦)

≃ ∑
(𝑛∶N)

(∑
(𝑣∶N𝐻)

𝑊 𝑛𝐻 ∗(inl(r𝐻), inl(𝑣)) × E𝐻 ∗(inl(𝑣), ̂𝑦))

+ (∑
(𝑣∶{ ̂𝑦})

𝑊 𝑛𝐻 ∗(inl(r𝐻), inr(𝑣)) × E𝐻 ∗(inr(𝑣), ̂𝑦))

≃ ∑
(𝑛∶N)

∑
(𝑣∶N𝐻)

𝑊 𝑛𝐻 (r𝐻 , 𝑣) × E𝐻 ∗(inl(𝑣), ̂𝑦)

+ (𝑊 𝑛𝐻 ∗(inl(r𝐻), ̂𝑦) × 0)

≃ ∑
(𝑣∶N𝐻)

(∑
(𝑛∶N)

𝑊 𝑛𝐻 (r𝐻 , 𝑣)) × E𝐻 ∗(inl(𝑣), ̂𝑦)

≃ ∑
(𝑣∶N𝐻)

1 × E𝐻 ∗(inl(𝑣), ̂𝑦)

≃ ∑
(𝑣∶N𝐻)

E𝐻 ∗(inl(𝑣), ̂𝑦)

≃ 1. □

Lemma B.20 (H*-subtree). The graph 𝐻 ∗ is a subtree of 𝐺.

Proof. To show that 𝐻 ∗ is a subtree, the following must hold:

1. The graph 𝐻 ∗ is a connected subgraph of 𝐺, i.e., there is an embedding from 𝐻 ∗ to

𝐺 given as a pair of mappings (ℎ∗, 𝑔∗), as in Definition B.7.

2. The type of fibers fibℎ∗(𝑥) is a decidable set for any node 𝑥 in 𝐺.

3. The following type is contractible.

∑
(𝑟∶N𝐻∗)

∏
(𝑣∶N𝐻∗)

isContr(∑
(𝑛∶N)

𝑊 𝑛𝐻 ∗(𝑢, 𝑣)) . (B.4–10)

The first condition is satisfied by Lemma B.14. Since 𝐻 is a subgraph of 𝐺, we have access

to the embedding given by (ℎ, 𝑔) ∶ 𝐻 ↪ 𝐺. Then, the second condition follows, since

the type in question is equivalent to the fibℎ(𝑏) + (̂𝑦 = 𝑏) for any 𝑏 in 𝐺, by the following

calculation, and any equivalence of types preserve any property.

fibℎ∗(𝑏) ∶≡ ∑
(𝑎∶N𝐻∗)

ℎ∗(𝑎) = 𝑏

160 On Trees and Their Topological Realisation

≃ (∑
(𝑎∶N𝐻)

ℎ∗(inl(𝑎)) = 𝑏) + ∑
(𝑎∶{ ̂𝑦})

ℎ∗(inr(𝑎)) = 𝑏

≃ (∑
(𝑎∶N𝐻)

ℎ(𝑎) = 𝑏) + (̂𝑦 = 𝑏)

≃ fibℎ(𝑏) + (̂𝑦 = 𝑏).

Themapping ℎ∗ has a decidable image inherited from ℎ, since𝐻 is a tree, and the nodes of

𝐻 form a discrete set. Finally, for the third condition, we have the following calculation.

For brevity, let 𝑃 be a shorthand for the type family in (B.4–10).

∑
(𝑟∶N𝐻∗)

∏
(𝑣∶N𝐻∗)

𝑃(𝐻 ∗, 𝑟 , 𝑣)

≃ ∑
(𝑟∶N𝐻)

∏
(𝑣∶N𝐻∗)

𝑃(𝐻 ∗, inl(𝑟), 𝑣) + ∑
(𝑟∶{ ̂𝑦})

∏
(𝑣∶N𝐻∗)

𝑃(𝐻 ∗, inr(𝑟), 𝑣)

≃ ∑
(𝑟∶N𝐻)

∏
(𝑣∶N𝐻∗)

𝑃(𝐻 ∗, inl(𝑟), 𝑣) + 0

≃ ∑
(𝑟∶N𝐻)

∏
(𝑣∶N𝐻∗)

𝑃(𝐻 ∗, inl(𝑟), 𝑣)

≃ ∑
(𝑟∶N𝐻)

(∏
(𝑣∶N𝐻)

𝑃(𝐻 ∗, inl(𝑟), inl(𝑣)) × ∏
(𝑣∶{ ̂𝑦})

𝑃(𝐻 ∗, inl(𝑟), inr(𝑣)))

≃ ∑
(𝑟∶N𝐻)

(∏
(𝑣∶N𝐻)

𝑃(𝐻 , 𝑟 , 𝑣) × 𝑃(𝐻 ∗, inl(𝑟), ̂𝑦))

≃ ∑
((𝑟 ,!)∶∑(𝑎∶N𝐻) ∏(𝑣∶N𝐻) 𝑃(𝐻 ,𝑎,𝑣))

𝑃(𝐻 ∗, inl(𝑟), ̂𝑦)

≃ 𝑃(𝐻 ∗, inl(r𝐻), ̂𝑦)

≡ isContr(∑
(𝑛∶N)

𝑊 𝑛𝐻 ∗(inl(r𝐻), ̂𝑦))

≃ isContr(1)
≃ 1. □

B.4.1 Oriented spanning trees

In graph theory, any connected undirected graph has at least one spanning tree. In our

setting, we can prove that any strongly connected and directed multigraph has at least

one oriented spanning tree.

B.4 Enlarging rooted subtrees 161

Definition B.21 (isSpanningTree). An oriented spanning tree of 𝐺 is a subtree that contains all

the vertices of 𝐺.

record isSpanningTree (H : Graph) : Type 𝓁 where

open isSubtree; open Graph

field

is-subtree : isSubtree G H

h = Subgraph.h (is-subgraph is-subtree)

g = Subgraph.g (is-subgraph is-subtree)

field

cover-all-nodes : isEquiv h

We are ready now to prove the main result of this section.

Lemma B.22. Let 𝐺 be a nonempty strongly connected graph such that the node set of 𝐺
is finite and the family of edges of 𝐺 consists of sets. Then there merely exists an oriented

spanning tree of 𝐺.

Proof. Let 𝑛 be the cardinality of the node set of 𝐺. We proceed by induction on 𝑛. If 𝑛 = 1,
then the graph has only one node, and its spanning tree is the same one-point graph with

no edges. Otherwise, let 𝑛 > 1. We state the induction hypothesis as the mere existence

of a subtree of 𝐺 with 𝑘 nodes where 𝑘 < 𝑛. Since the goal of the lemma is a proposition,

we can apply the elimination principle of the truncation to the induction hypothesis to

get a subtree of 𝐺 with 𝑛−1 nodes, namely, 𝐻𝑛−1. Finally, since there is a missing node of

𝐺 not in 𝐻𝑛−1, we can apply Lemma B.11 to 𝐺 and 𝐻𝑛−1 to obtain the required spanning

tree, a graph 𝐻𝑛 including all the nodes of 𝐺. □

The previous proof suggests that Lemma B.22 can be generalised to the case where

the node set of 𝐺 has a principle of choice. One can construct a chain of subtrees, ordered

by the subgraph relation, using a construction similar to the argument in Lemma B.22’s

proof. Then, the spanning tree of the infinite graph is the maximal element in such a

chain, assuming the axiom of choice, see Lemma 4.7 (Swan 2022, §4). However, we do

not attempt to formalise this generalisation here.

On the other hand, one version of the Kőnig’s lemma states that if an infinite graph

is locally finite and connected, then the graph contains a ray. A ray is a simple walk

that starts at one node and continues from it through infinitely many nodes. It seems

natural to consider a proof of this result using Lemma B.9 and the axiom of choice. This

direction is, however, left for future work. Here we only give a first proposal for the type

of rays. A ray in the current setting can be defined as an infinite walk starting at the node

𝑥 such that the type of occurrences of 𝑥 in the walk is contractible. We can define these

definitions in Agda as follows.

162 On Trees and Their Topological Realisation

record InfiniteWalk (x : N G) : Type 𝓁 where

coinductive

field

head : Σ[y ∈ N G] E G x y

tail : InfiniteWalk (fst head)

open InfiniteWalk

{-# TERMINATING #-}

∈w : (x : N G) → {y : N G} → (w : InfiniteWalk y) → Type 𝓁

∈w x {y} w = (x ≡ y) + (x ∈w tail w)

isRay : (x : N G) → InfiniteWalk x → Type 𝓁

isRay x w = isContr (x ∈w w)

B.5 Topological realisation of graphs

The topological realisation of a graph can be represented by the coequalizer of the cor-

responding source and target functions. Every node in the graph is mapped to a point in

the space. Moreover, any edge in the graph gives rise to a path in the space glued to the

endpoints.

This topological point of view for representing graphs is further described in type

theory by Swan (Swan 2022). It is worth noting that the type of graphs in this appendix

is equivalent to the type of graphs in their setting, as the following equivalence shows.

Graph ∶ ≡ ∑
(𝑁 ∶ U)

(𝑁 → 𝑁 → U)

≃ ∑
(𝑁 ∶ U)

(𝑁 × 𝑁 → U)

≃ ∑
(𝑁 ,𝐸 ∶ U)

(𝐸 → (𝑁 × 𝑁))

≃ ∑
(𝑁 ,𝐸 ∶ U)

((𝐸 → 𝑁) × (𝐸 → 𝑁)).

Therefore, one benefit of working in Univalent mathematics is that one can transport

their results to the setting of this appendix and vice versa. Now, back to Cubical Agda, let

us define the topological realisation of a graph 𝐺 as the following higher inductive data

type.

module realisation {𝓁 : Level} (G : Graph {𝓁}) where

data 𝕋¹ : Type 𝓁 where

B.5 Topological realisation of graphs 163

𝕟 : N G → 𝕋¹

𝕖 : ∀ {a b} → E G a b → 𝕟 a ≡ 𝕟 b

To prove a few properties of this geometric realisation below, we define two handy elim-

ination principles into propositions.

elimProp

: {B : 𝕋¹ → Type 𝓁}

→ ((x : 𝕋¹) → isProp (B x))

→ ((a : N G) → B (𝕟 a))

→ (x : 𝕋¹) → B x

elimProp _ f (𝕟 a) = f a

elimProp B-fiber-prop f (𝕖 {a}{b} e i) =

isOfHLevel→isOfHLevelDep 1 B-fiber-prop (f a) (f b) (𝕖 e) i

For the particular case of relations, we obtain the following elimination principle.

elimPropRel

: {R : 𝕋¹ → 𝕋¹ → Type 𝓁}

→ ((x y : 𝕋¹) → isProp (R x y))

→ ((a b : N G) → R (𝕟 a) (𝕟 b))

→ (x y : 𝕋¹) → R x y

elimPropRel Rprop f = elimProp (λ x → isPropΠ (λ y → Rprop x y))

(λ x → elimProp (λ y → Rprop (𝕟 x) y) (f x))

The walks in the graph give rise to paths in the geometric realisation, as shown in the

following Agda code. As a consequence, the connectedness of a graph implies the con-

nectedness of its geometric realisation.

𝕨 : {n : ℕ} {a b : N G} → W G n a b → 𝕟 a ≡ 𝕟 b

𝕨 {zero} a=b = cong 𝕟 a=b

𝕨 {suc _} (_ , w , e) = (𝕨 w) ∙ 𝕖 e

The realisation of walks using the function 𝕨 respects the concatenation of walks. In

particular, it respects backward edge addition, as in the Agda code below.

comp-edge

: {a b c : N G} {n : ℕ}

→ (w : W G n a b) (e : E G b c)

→ 𝕨 ((_ , w , e)) ≡ (𝕨 w) ∙ (𝕖 e)

comp-edge {n = zero} w e = reflc

comp-edge {n = suc n} (_ , w , e₁) e₂ = cong (λ x → x ∙ (𝕖 e₂)) (comp-edge w e₁)

Let us introduce the following notions to not clash with the names of some definitions

defined earlier.

164 On Trees and Their Topological Realisation

Definition B.23. A graph is topologically connected if its geometric realisation is connected.

isConnected : Type 𝓁 → Type 𝓁

isConnected A = (x y : A) → ∥ x ≡ y ∥

isTConnected : Graph → Type 𝓁

isTConnected G = isConnected (realisation.𝕋¹ G)

Lemma B.24. Being connected for the realisation of a graph is a proposition.

isProp-isTConnected : (G : Graph) → isProp (isTConnected G)

isProp-isTConnected _ = isPropΠ λ _ → isPropΠ λ _ → isPropPropTrunc

Lemma B.25. Being connected for a graph implies its geometric realisation is connected.

isGConnected-isTConnected : (G : Graph) → isGConnected G → isTConnected G

isGConnected-isTConnected G G-is-connected =

elimPropRel (λ _ _ → isPropPropTrunc) helper

where

open realisation G

helper : (a b : N G) → ∥ 𝕟 a ≡c 𝕟 b ∥

helper a b = trunc-elim isPropPropTrunc (λ {(_ , w) ∣ 𝕨 w ∣}) (G-is-connected a b)

Definition B.26. A graph is a topological tree if its geometric realisation is contractible.

isTopTree : Graph → Type 𝓁

isTopTree G = isContr (realisation.𝕋¹ G)

Using this topological point of view for graphs, we can prove that any tree, as in Defi-

nition B.5 is topologically connected and tree in a topological way. The converse is not

true; see, for example, the triangle graph, where an edge connects any pair of nodes. The

realisation of such a graph contains a non-trivial loop and thus is not contractible.

Lemma B.27. If the graph is a tree then it is topologically connected.

Proof. For this proof, we are only interested in what happens when we apply the geo-

metric realisation on nodes and how the nodes are glued. Since the graph is a tree, we

have access to its root node equipped with a walk to every other node, see Definition B.5.

Finally, one can use the walks given by the tree to connect the nodes in the geometric

realisation, as illustrated in Figure B.5 and proved in Agda code below. □

B.5 Topological realisation of graphs 165

•𝑟 •𝑎 n 𝑟 n 𝑎

•𝑏 n 𝑏

𝑝

𝑞

w 𝑝

(w 𝑞)−1 (w 𝑞)−1⋅w 𝑝

Figure B.5: It is shown the walks and paths mentioned in Lemma B.27’s proof. The node
𝑟 on the left represents the root of the given tree. The node 𝑎 is the node connected to 𝑟
by the walk 𝑝, and similarly, the node 𝑏 is the node connected to 𝑟 by the walk 𝑞. Then,
we can connect the realisation of 𝑎 and 𝑏 by the walk (w(𝑞))−1 ⋅ w(𝑝).

module _ {𝓁 : Level}(G : Graph {𝓁}) where

open realisation

open walk-concat G

isTree-isTConnected : isTree G → isConnected (𝕋¹ G)

isTree-isTConnected ((r , unique-walk-from-r-to) , _) =

elimPropRel G ((λ _ _ → isPropPropTrunc)) helper

where

helper : (a b : N G) → ∥ 𝕟 {G = G} a ≡c 𝕟 b ∥

helper a b = ∣ (sym (𝕨 G (snd p))) ∙ 𝕨 G (snd q) ∣

where

p : Σ[n ∈ ℕ] W G n r a

p = fst (unique-walk-from-r-to a)

q : Σ[n ∈ ℕ] W G n r b

q = fst (unique-walk-from-r-to b)

Lemma B.28. If the graph is a tree and its topological realisation is a set, then it can be

concluded that the graph is a topological tree.

isTree-isSet-isTopTree : isTree G → isSet (𝕋¹ G) → isTopTree G

isTree-isSet-isTopTree

G-is-graph-tree@((r , unique-walk-from-r-to) , _)

𝕋¹G-is-set = 𝕟 r , λ y →

trunc-elim (𝕋¹G-is-set (𝕟 r) y)

(λ nr=y → nr=y)

(isTree-isTConnected G-is-graph-tree (𝕟 r) y)

Finally, we can prove that a tree, in a combinatorial way, is topologically a tree.

Lemma B.29. Being a tree for a graph implies its realisation is a contractible type.

Proof. Let 𝐺 be a graph tree. Then, we must show that 𝕋1(𝐺) is a contractible type. To

show that, let 𝕟(𝑟) be the centre of contraction of 𝕋1(𝐺), where 𝑟 is the root of 𝐺. Then,

166 On Trees and Their Topological Realisation

we must construct a function that returns a path from 𝕟(𝑟) to 𝑎 for any 𝑎 ∶ 𝕋1(𝐺). We

do this by induction on the constructors of 𝕋1(𝐺). The first case is the point constructor

𝕟(𝑥) for 𝑥 ∶ N𝐺 , for which we can just return the realisation of the unique walk from 𝑟
to 𝑥 given by the proof that 𝐺 is a tree. The second and last case is the path constructor

case. Given a path 𝕖(𝑒), where 𝑒 is an edge from 𝑎 to 𝑏 in 𝐺, we must construct a path from

𝕟(𝑟) to every point in the path 𝕖(𝑒). Since 𝐺 is a tree, we have access to a unique walk

from the root 𝑟 to the nodes 𝑎 and 𝑏, respectively. Let 𝑝 and 𝑞 be such walks, as illustrated

in Figure B.6. Then, the required path can be obtained considering the path 𝕨(𝑝) ⋅ 𝕖(𝑒).

•𝑟 •𝑎 •𝑏

𝕟 𝑟 𝕟 𝑎 𝕟 𝑏

∃! 𝑝

𝕨𝑝

𝑒

𝕖 𝑒 𝑖

∃! 𝑞

𝕨 𝑞

Figure B.6: The construction of a path from 𝕟(𝑟) to any point in the path 𝕖(𝑒).

However, for coherence, we must make sure that there is a homotopy between the

paths 𝕨(𝑝) ⋅ 𝕖(𝑒) and 𝕨(𝑞), which is the right face of the cube as illustrated in Figure B.7.

The back face is the whole square of deforming the path 𝕨(𝑝) to 𝕨(𝑝) · 𝕨(𝑞), which is

precisely Lemma compPath-filler in the Cubical Agda library. □

• •

• •

• •

• •

w 𝑝 𝑗

e 𝑒 𝑖

w 𝑝 ⋅ e 𝑒 𝑗

n 𝑟
n 𝑟 n 𝑟

n 𝑟

w 𝑞 𝑗

n 𝑏n 𝑎
e 𝑒 𝑖

w 𝑝 𝑗

Figure B.7: The constructed cube for Lemma B.29’s proof.

B.6 Discussion

Here we present one short example of transferring some concepts and results from graph

theory in a classical setting to Cubical type theory. As part of this process, we have used a

B.6 Discussion 167

Figure B.8: An Agda term for Lemma B.29.

isTree-isTopTree : isTree G → isTopTree G

isTree-isTopTree ((r , unique-walk-from-r-to) , _) =

𝕟 r , helper

where

walk = snd

helper : (x : 𝕋¹ G) → 𝕟 r ≡c x

helper (𝕟 x) = 𝕨 G (walk (fst (unique-walk-from-r-to x)))

helper (𝕖 {a}{b} e i) j

= hcomp (λ k → λ { (i = i0) → 𝕨p j

; (i = i1) → 𝕨p·𝕖e≡𝕨q k j

; (j = i0) → reflc {x = 𝕟 r} i

; (j = i1) → 𝕖 e i

})

(compPath-filler 𝕨p (𝕖 e) i j)

where

p : Σ[n ∈ ℕ] W G n r a

p = fst (unique-walk-from-r-to a)

length-walk-p = fst p

q : Σ[n ∈ ℕ] W G n r b

q = fst (unique-walk-from-r-to b)

𝕨p : 𝕟 r ≡ 𝕟 a

𝕨p = 𝕨 G (walk p)

𝕨q : 𝕟 r ≡ 𝕟 b

𝕨q = 𝕨 G (walk q)

q-is-unique : q ≡c (suc (length-walk-p) , _ , walk p , e)

q-is-unique = snd (unique-walk-from-r-to b) _

𝕨p·𝕖e≡𝕨q : (𝕨p ∙ 𝕖 e) ≡ 𝕨q

𝕨p·𝕖e≡𝕨q = 𝕨 G (walk p) ∙ 𝕖 e

≡⟨ sym (comp-edge G (walk p) e) ⟩

𝕨 G ((_ , walk p , e))

≡⟨ cong (λ w → 𝕨 G (walk w)) (sym q-is-unique) ⟩

𝕨 G (walk q) ∎

proof assistant to support this goal. Precisely, we have characterised the notion of rooted

trees to construct oriented spanning trees for directed multigraphs. These concepts are

the generalisation of the notion of a tree and spanning tree for undirected graphs, re-

spectively. A proof is given for the existence of an oriented rooted spanning tree for any

strongly connected graph with a finite node set and a family of edges consisting of sets.

To this end, we introduce a few lemmas that suggest algorithms for constructing span-

ning trees. Furthermore, we show that any rooted tree is a tree in the topological sense,

inspired by Swan’s work on defining free groups in HoTT and using higher—inductive

types to model the topological realisation of graphs (Swan 2022). The results here can

168 On Trees and Their Topological Realisation

then be used to study free groups, particularly the fundamental group of a graph. In this

direction, the realisation of a graph maps any of its spanning trees to a point in the space,

and the remaining edges not in such a tree, become loops around the point. The loop

edges then correspond to the elements of the group associated with the graph, some-

times called the fundamental group. We left this investigation for future work.

Most results here are formalised in Agda (The Agda Development Team 2023). Ex-

cept for proofs in Appendix B.5, we conjecture it is only required intensional Martin-Löf

type theory equipped with universes, function extensionality, and propositional trunca-

tion. To ease the work with higher–inductive types, especially in Appendix B.5, we used

the Cubical mode (Vezzosi, Mörtberg, and Abel 2021) in Agda and the Cubical Agda li-

brary (Mörtberg, Andrea, and Evan 2021). Nevertheless, the type theory as presented in

the HoTT Book (Univalent Foundations Program 2013) suffices to prove the results in this

appendix.

Even when graph theory has been formalised before in type theory with proof-

assistants, as the formalisation of the 4CT in Coq (Gonthier 2008), there are still a few

works in homotopy type theory (Kraus and Raumer 2020, 2021; Prieto-Cubides 2022). As

far as we know, the proofs and some types given here are original in this context. We

believe this development contributes to the project of this thesis and the formalisation

of mathematical content in type theories alike. We expect more contributions in this

direction in the future.

A notable work close to ours is the recent work in Agda–UniMath (Rijke et al. 2023),

an Agda library for Univalent mathematics. Their authors formalised the notion of trees,

rooted and quasi–rooted trees, for the case of undirected graphs. In future, we plan to

transfer the results shown here to Agda–UniMath and make them available to a broader

audience. In addition, ongoing work explores other topics, such as the 2-cells realisation

of a graph, where 2-cells correspond to faces of a graph map.

C
Yet Another HIT for Graphs

In Appendix B, we describe the topological realisation of graphs considering 0-cells
(nodes) and 1-cells (edges). Building upon this, we pair a graph 𝐺 with a graph map

ℳ, and adds 2-cells to the realisation of 𝐺 for considering faces withinℳ. This yields an

enhanced higher inductive type T2(𝐺,ℳ), referred to as the 2-cell realisation of 𝐺 with

respect to ℳ, extending the type T1(𝐺) detailed in Appendix B.5.

The first two constructors for T2(𝐺,ℳ), n and e, are the same as those for T1(𝐺). The
2-path constructor f in (C.0–1) yields identifications between the realisations of walks on

the boundary of each face. Precisely, given two nodes 𝑎 and 𝑏 in the boundary of a face,

we identify the realisations of the counter-clockwise walk and the clockwise walk from 𝑎
to 𝑏, lifting the notion of homotopy of walks in the graph map to actual paths in the space.

The function w used to lift walks into the space is defined similarly as in Appendix B.5.

data T2 (𝐺 ∶ Graph) (ℳ ∶ Map(𝐺)) ∶ U

n ∶ N𝐺 → T2(𝐺,ℳ)
e ∶ Π(𝑎 𝑏 ∶N𝐺) . E𝐺(𝑎, 𝑏) → n(𝑎) = n(𝑏)
f ∶ Π(F∶Face(𝐺,M)) . Π(𝑎 𝑏 ∶NF) .w(cw(F, 𝑎, 𝑏)) = w(ccw(F, 𝑎, 𝑏)).

(C.0–1)

Consideringwalk homotopies as defined in Section 5.4, we show that any pair of walks

in a graph 𝐺 with a discrete node set and subject to the graph map ℳ, when homotopic,

170 Yet Another HIT for Graphs

yield identical 2-cell topological realisations (refer to Lemma C.1). Moreover, when such

homotopies are restricted to the plane, one can show that the corresponding realisations

of homotopic walks are merely equal (see Corollary C.3).

In the rest of this appendix, we present definitions and theorems using Agda syntax,

specifically employing Agda (v2.6.2.2) for type-checking our constructions. To ensure

compatibility with HoTT, we invoke the flag without-K.

{-# OPTIONS without-K exact-split rewriting #-}
module HIT where
open import foundations.Core
open import lib.graph-definitions.Graph
open Graph

open import lib.graph-embeddings.Map
open import lib.graph-walks.Walk
open import lib.graph-walks.Walk.Composition
open import lib.graph-embeddings.Map.Face
open import lib.graph-homomorphisms.Hom

open import lib.graph-classes.UndirectedGraph
open import lib.graph-transformations.U
open import foundations.Rewriting

To ease theworkwith higher inductive types in this setting, we use the flag rewriting

that alow us to define custom rewriting rules for the HIT path constructions and the cor-

responding computation rules. Agda uses these reduction rules during the type-checking

process. As an example, the following rule, the runit law for path allows us to treat as

definitionally equal the paths 𝑝 and 𝑝 ⋅ refl, where 𝑝 is a path in a type 𝐴.

postulate

runit : ∀ {𝓁} {A : Type 𝓁} {a a' : A} {p : a ≡ a'} → p · idp ↦ p

{-# REWRITE runit #-}

(2)

The reduction relation, denoted by (↦), is defined as follows.

infix 30 _↦_

postulate

↦ : ∀ {𝓁} {A : Type 𝓁} → A → A → Type 𝓁

{-# BUILTIN REWRITE _↦_ #-}

Careful attention is needed when augmenting Agda with manual rewriting rules as

done above. However, the rule in (2) has been proven to enhance type-checking efficiency

without inducing confluence problems. Lastly, some im- ports and definitions are hidden

in the following Agda excerpts for brevity. We refer the reader to the corresponding files

for the complete detail. See Appendix A.

C.1 The 2-cell topological realisation of graphs 171

C.1 The 2-cell topological realisation of graphs

module construction {𝓁 : Level} (G : Graph 𝓁) (M : Map G) where

open import foundations.Core

open import lib.graph-embeddings.Map.Face.Walk

open FaceWalks G

The 2-cell topological realisation of a graph with a graph map is defined as the HIT

with three constructors, one for each type of cells. The 0-cells are constructed by n, 1-
cells by e and 2-cells by f below. These constructors need to be defined as postulates in

Agda since there is no support for defining HITS natively.

postulate

𝕋² : Type 𝓁

𝕟 : Node G → 𝕋²

𝕖 : ∀ {x y} → Edge G x y → 𝕟 x ≡ 𝕟 y

To define the 2-cell constructor f, we need to consider the faces of the graph map

and the walks in them promoted as paths in the geometric realisation, for which a few

auxiliary functions are needed and stated below.

C.1.1 Promoting walks to equalities

As part of the construction of the geometric realisation of a graph, we need to be able

to lift a walk into an arbitrary space. To do so, we require a function mapping nodes

to points and another function mapping edges to paths. Then, it is possible to define

edge-by-edge a function mapping a walk into a path in the space as follows.

to-eq : (f : Node G → A)

→ ({x y : Node G} → Edge G x y → f x ≡ f y)

→ {x y : Node G} → Walk (U G) x y → f x ≡ f y

to-eq f g = λ {⟨ x ⟩ → refl (f x)

; (inl xz ⊙ w) → g xz · to-eq f g w

; (inr zx ⊙ w) → ! (g zx) · to-eq f g w

}

As suggested in Appendix B, one can prove that lifting walks into the space is an

operation that respects the composition of walks. Meaning that the function to-eq maps

a composition of walks to the composition of the corresponding paths.

to-eq-comp-·w : (f : Node G → A)

→ (g : {x y : Node G} → Edge G x y → f x ≡ f y)

→ {x y z : Node G} → (p : Walk (U G) x y) (q : Walk (U G) y z)

→ to-eq f g (p ·w q) ≡ (to-eq f g p) · (to-eq f g q)

to-eq-comp-·w f g = λ {

172 Yet Another HIT for Graphs

⟨ x ⟩ w₂ → idp

; (inl a ⊙ w₁) w₂ → ap (λ w → (g a) · w) (to-eq-comp-·w f g w₁ w₂)

· (! (·-assoc (g a) (to-eq f g w₁) (to-eq f g w₂)))

; (inr a ⊙ w₁) w₂ → ap (λ w → (! (g a)) · w) (to-eq-comp-·w f g w₁ w₂)

· (! (·-assoc (! (g a)) (to-eq f g w₁) (to-eq f g w₂)))

}

We use a shorthand for the above function to-eq specialised to type 𝕋2(𝐺,ℳ) for

convenience.

𝕨 : ∀ {x y} → Walk (U G) x y → 𝕟 x ≡ 𝕟 y

𝕨 = to-eq 𝕟 𝕖

Finally, we define the 2-cell constructor 𝕗, which identifies the realisation of walks on

the boundary of each face. Precisely, given two nodes 𝑥 and 𝑦 in the boundary of a face,

the 2-cell constructor of 𝕋2(𝐺,ℳ) is the homotopy between the counter-clockwise walk

and the clockwise walk from 𝑥 to 𝑦 .
postulate

𝕗 : (𝓕 : Face G M) → (a b : Node (Face.A 𝓕))

→ 𝕨 (cw-walk 𝓕 a b) ≡ 𝕨 (ccw-walk 𝓕 a b)

C.1.2 Recursion principle

The non-dependent eliminator 𝕋²-rec for 𝕋2(𝐺,ℳ) allows us defining a function of type

𝕋2(𝐺,ℳ) → 𝐴 for any 𝐴 ∶ U.

module Recursion {𝓁₂} (A : Type 𝓁₂)

(A-𝕟 : Node G → A)

(A-𝕖 : ∀ {x y} → (e : Edge G x y) → A-𝕟 x ≡ A-𝕟 y)

(A-𝕗 : (𝓕 : Face G M) → (a b : Node (Face.A 𝓕)) → let A-𝕨 = to-eq A-𝕟 A-𝕖 in

A-𝕨 (cw-walk 𝓕 a b) ≡ A-𝕨 (ccw-walk 𝓕 a b)) where

postulate

𝕋²-rec : 𝕋² → A

The corresponding computation rules for nodes, edges and faces are introduced as

rewriting rules and named as 𝕋²-β-rec-nodes, 𝕋²-β-rec-edges, and 𝕋²-β-rec-faces, respec-

tively.

postulate

𝕋²-β-rec-nodes : (x : Node G) → 𝕋²-rec (𝕟 x) ↦ A-𝕟 x

{-# REWRITE 𝕋²-β-rec-nodes #-}

𝕋²-β-rec-edges : {x y : Node G} → (e : Edge G x y) → ap 𝕋²-rec (𝕖 e) ↦ A-𝕖 e

{-# REWRITE 𝕋²-β-rec-edges #-}

The computation rule for faces, 𝕋²-β-rec-faces, is a bit more involved since we need

to consider the functorial application of a function on two-dimensional paths.

C.1 The 2-cell topological realisation of graphs 173

lhs : ∀ {x y} → (g : Walk (U G) x y) → ap 𝕋²-rec (𝕨 g) ≡ A-𝕨 g

lhs ⟨ x ⟩ = idp

lhs (inl e ⊙ w) =

ap 𝕋²-rec (𝕖 e · 𝕨 w) ≡⟨ ap-· _ (𝕖 e) _ ⟩

ap 𝕋²-rec (𝕖 e) · ap 𝕋²-rec (𝕨 w) ≡⟨ ap (A-𝕖 e ·_) (lhs w) ⟩

(A-𝕖 e) · A-𝕨 w ≡⟨⟩

A-𝕨 (inl e ⊙ w) ∎

lhs (inr e ⊙ w) =

ap 𝕋²-rec (! 𝕖 e · 𝕨 w) ≡⟨ ap-· _ (! 𝕖 e) _ ⟩

ap 𝕋²-rec (! 𝕖 e) · ap 𝕋²-rec (𝕨 w) ≡⟨ ap (_· _) (ap-inv 𝕋²-rec (𝕖 e)) ⟩

! A-𝕖 e · ap 𝕋²-rec (𝕨 w) ≡⟨ ap (! A-𝕖 e ·_) (lhs w) ⟩

! A-𝕖 e · A-𝕨 w ≡⟨⟩

A-𝕨 (inr e ⊙ w) ∎

postulate

𝕋²-β-rec-faces

: (𝓕 : Face G M) → (a b : Node (Face.A 𝓕))

→ ap (ap 𝕋²-rec) (𝕗 𝓕 a b)

↦ lhs (cw-walk 𝓕 a b) · A-𝕗 𝓕 a b · ! lhs (ccw-walk 𝓕 a b)

{-# REWRITE 𝕋²-β-rec-faces #-}

C.1.3 Induction principle

We define in this subsection the dependent eliminator for G, for which, we must gen-

eralise the walk lifting function defined above. We believe that Figure C.2 may help

to understand how this generalisation works. Additionally, the notation for heteroge-

neous equalities introduced by Licata and Brunerie (Licata and Brunerie 2015), namely

pathovers, is used below, similarly as defined in the HoTT-Agda library (Brunerie, Hou

(Favonia), Cavallo, et al. n.d.), see the intuition behind it in Figure C.1.

to-deq : {𝓁' : Level} {A : 𝕋² → Type 𝓁'}

→ (f : (x : Node G) → A (𝕟 x))

→ (g : ∀ {x y : Node G} → (e : Edge G x y)

→ f x ≡ f y [A ↓ (𝕖 e)])

→ {x y : Node G} → (w : Walk (U G) x y)

→ f x ≡ f y [A ↓ 𝕨 w]

to-deq f _ ⟨ x ⟩ = refl (f x)

to-deq f g (inl e ⊙ w) = pathover-comp {p = 𝕖 e} {q = 𝕨 w} (g e) (to-deq f g w)

to-deq f g (inr e ⊙ w) = pathover-comp {p = (𝕖 e) ⁻¹} {q = 𝕨 w}

(! move-transport {α = 𝕖 e} (g e))

(to-deq f g w)

174 Yet Another HIT for Graphs

� ����

����� �����
�� ����� ����� �� � ���� � ��

Figure C.1: The type denoted by 𝑐1 = 𝑐2[𝐶 ↓ 𝛼] is a shorthand for the type of paths
between tr𝐶(𝛼, 𝑐1) and 𝑐2, where 𝛼 ∶ 𝑎 = 𝑎′ is a path in 𝐴 ∶ U, and 𝑐1 ∶ 𝐶(𝑎) and
𝑐2 ∶ 𝐶(𝑎′) are points in the fibre of the type family 𝐶 over 𝐴.

Finally, it is now possible to declare the required data for defining a dependent func-

tion of type Π(𝑥∶𝕋2(𝐺,ℳ)) 𝐴(𝑥) for any type family 𝐴 over 𝕋2(𝐺,ℳ), which are the de-

pendent functions 𝐴-𝕟, 𝐴-𝕖, and 𝐴-𝕗 of type as in (3).
module Induction

(A : 𝕋² → Type 𝓁)

(A-𝕟 : (x : Node G) → A (𝕟 x))

(A-𝕖 : ∀ {x y} → (e : Edge G x y) → A-𝕟 x ≡ A-𝕟 y [A ↓ 𝕖 e])

(A-𝕗 : (𝓕 : Face G M) → (a b : Node (Face.A 𝓕))

→ let 𝕨ᵈ = to-deq A-𝕟 A-𝕖

in 𝕨ᵈ (cw-walk 𝓕 a b) ≡ 𝕨ᵈ (ccw-walk 𝓕 a b)

[(λ x≡y → A-𝕟 (Hom.α (Face.h 𝓕) a) ≡ A-𝕟 (Hom.α (Face.h 𝓕) b)

[A ↓ x≡y])

↓ 𝕗 𝓕 a b

])

where

(3)

The dependent eliminator is defined below as 𝕋²-ind. The corresponding computation

rules are 𝕋²-β-ind-nodes, 𝕋²-β-ind-edges, and 𝕋²-β-ind-faces, respectively, and stated as

rewriting rules using the REWRITE pragma.

postulate

𝕋²-ind : (x : 𝕋²) → A x

𝕋²-β-ind-nodes : (x : Node G) → 𝕋²-ind (𝕟 x) ↦ A-𝕟 x

{-# REWRITE 𝕋²-β-ind-nodes #-}

𝕋²-β-ind-edges : ∀ {x y} → (e : Edge G x y) → apd 𝕋²-ind (𝕖 e) ↦ A-𝕖 e

{-# REWRITE 𝕋²-β-ind-edges #-}

However, the computation rule for the face constructor requires a more involved

equality reasoning as one has to consider the path over the 2-cell associated with the

face 𝐹 and the walks (cw-walk and ccw-walk) in the definition. This requires us to construct

C.1 The 2-cell topological realisation of graphs 175

two additional paths, rhs and lhs, given below. The function apd² is defined in Lemma

6.4.6 in the HoTT Book (Univalent Foundations Program 2013, § 6).

module _ (𝓕 : Face G M) (a b : Node (Face.A 𝓕)) where

F' : ∀ {x y} p → Type _

F' {x} {y} p = A-𝕟 x ≡ A-𝕟 y [A ↓ p]

rhs : ∀ {x y} → (w : Walk (U G) x y)

→ apd 𝕋²-ind (𝕨 w) ≡ (𝕨ᵈ w) [(F' {x}{y}) ↓ refl (𝕨 w)]

rhs ⟨ x ⟩ = idp

rhs w'@(inl e ⊙ w) = begin

tr F' (refl (𝕨 w')) (apd 𝕋²-ind (𝕨 w')) ≡⟨⟩

apd 𝕋²-ind (𝕨 w') ≡⟨⟩

apd 𝕋²-ind (𝕖 e · 𝕨 w) ≡⟨ i ⟩

apd 𝕋²-ind (𝕖 e) ·d apd 𝕋²-ind (𝕨 w) ≡⟨⟩

A-𝕖 e ·d apd 𝕋²-ind (𝕨 w) ≡⟨ ii ⟩

A-𝕖 e ·d 𝕨ᵈ w ≡⟨⟩

𝕨ᵈ w' ∎

where

i = apd-· 𝕋²-ind (𝕖 e) (𝕨 w)

ii = ap (λ o → pathover-comp {p = (𝕖 e)} {q = 𝕨 w} _ o) (rhs w)

rhs w'@(inr e ⊙ w) = begin

tr F' (refl (𝕨 w')) (apd 𝕋²-ind (𝕨 w')) ≡⟨⟩

apd 𝕋²-ind (𝕨 w') ≡⟨⟩

apd 𝕋²-ind (((𝕖 e) ⁻¹) · 𝕨 w) ≡⟨ i ⟩

apd 𝕋²-ind ((𝕖 e) ⁻¹) ·d apd 𝕋²-ind (𝕨 w) ≡⟨ ii ⟩

(! move-transport {α = 𝕖 e} (apd 𝕋²-ind (𝕖 e))) ·d apd 𝕋²-ind (𝕨 w)

≡⟨ iii ⟩

(! move-transport {α = 𝕖 e} (apd 𝕋²-ind (𝕖 e))) ·d 𝕨ᵈ w

≡⟨⟩

𝕨ᵈ w' ∎

where

i = apd-· 𝕋²-ind ((𝕖 e) ⁻¹) (𝕨 w)

ii = ap (λ o → pathover-comp {p = (𝕖 e) ⁻¹} o _) (apd-! 𝕋²-ind (𝕖 e))

iii = ap (λ o → pathover-comp {p = (𝕖 e) ⁻¹}{q = 𝕨 w} _ o) (rhs w)

lhs : ∀ {x y} → (w : Walk (U G) x y)

→ 𝕨ᵈ w ≡ apd 𝕋²-ind (𝕨 w) [(F' {x}{y}) ↓ refl (𝕨 w)]

lhs w = ! rhs w

pathover

176 Yet Another HIT for Graphs

: apd 𝕋²-ind (𝕨 (cw-walk 𝓕 a b)) ≡ apd 𝕋²-ind (𝕨 (ccw-walk 𝓕 a b))

[F' ↓ 𝕗 𝓕 a b]

pathover = pathover-comp {p = refl (𝕨 (cw-walk 𝓕 a b))} {q = 𝕗 𝓕 a b}

(rhs (cw-walk 𝓕 a b))

(pathover-comp {p = 𝕗 𝓕 a b} {q = refl (𝕨 (ccw-walk 𝓕 a b))}

(A-𝕗 𝓕 a b)

(lhs (ccw-walk 𝓕 a b)))

postulate

𝕋²-β-ind-faces

: apd² 𝕋²-ind (𝕗 𝓕 a b) ↦ pathover

{-# REWRITE 𝕋²-β-ind-faces #-}

Figure C.2: The figure shows on the top a face 𝐹 of a graph map ℳ for graph 𝐺. The
face can be seen as the highlighted region between two walks from 𝑥 to 𝑧 in a graph
𝐺. Such walks are promoted into equalities in the 2-cell realisation of 𝐺 by using the
function to-eq. The 2-cell associated with 𝐹 is denoted by f(𝓕). Later, one can define a
depending function of type Π(𝑥∶𝕋2(𝐺,ℳ)) 𝐴(𝑥) for a type family 𝐴. The required data is
the dependent functions 𝐴-𝕟, 𝐴-𝕖, and 𝐴-𝕗 of type as in (3).

����� �
��� �

��� � ���
������ � ���������� ������� �� � ��� �� � ��� �� � ���

����� � ��������
�� � �������� U ����� � �������� ����� � �������� ����� � ��������

������
���� ������ ������ ������

������

�����
������

�
������

������
�

���

����� � ����� � �������������

������� �
������� �

��������������
Let us look at the elimination principle in some particular situations.

C.1.4 Eliminating into propositions

module toProp {𝓁 : Level} (G : Graph 𝓁) (𝓜 : Map G) where

open ∙-walk (U G)

open construction G 𝓜

The recursion principle and the induction principle, Appendices C.1.2 and C.1.3, are the

main tools to prove lemmas about the 2-cell topological realisation of a graph. However,

in the particular case, where a lemma is a proposition, another simpler principle can be

used, since, the path space of a proposition is a proposition.

C.1 The 2-cell topological realisation of graphs 177

Recursion Principle

𝕋²-rec : (A : Type 𝓁) → isProp A → (Node G → A) → (𝕋² → A)

𝕋²-rec A A-is-prop A-𝕟 = Recursion.𝕋²-rec A A-𝕟 A-𝕖 A-𝕗

where

A-𝕖 : ∀ {x y} → (e : Edge G x y) → A-𝕟 x ≡ A-𝕟 y

A-𝕖 {x = x}{y} _ = A-is-prop (A-𝕟 x) (A-𝕟 y)

A-𝕗 : _

A-𝕗 𝓕 a b = isProp-isSet A-is-prop _ _ _ _

Induction principle

𝕋²-ind : (A : 𝕋² → Type 𝓁)

→ ((x : Node G) → A (𝕟 x))

→ ((x : Node G) → isProp (A (𝕟 x)))

→ (x : 𝕋²) → A x

𝕋²-ind A A-𝕟 A-forms-props = Induction.𝕋²-ind A A-𝕟 A-𝕖 A-𝕗

where

A-𝕖 : {x y : Node G} → (e : Edge G x y) → A-𝕟 x ≡ A-𝕟 y [A ↓ 𝕖 e]

A-𝕖 {y = y} e = A-forms-props y _ _

A-𝕗 : _

A-𝕗 𝓕 a b = isProp-isSet (A-forms-props _) _ _ _ _

C.1.5 Eliminating into sets

module toSet {𝓁 : Level} (G : Graph 𝓁) (𝓜 : Map G) where

open ∙-walk (U G)

open construction G 𝓜

Recursion principle

𝕋²-rec : (A : Type 𝓁) → isSet A

→ (A-𝕟 : Node G → A)

→ (∀ {x y} → Edge G x y → A-𝕟 x ≡ A-𝕟 y)

→ (𝕋² → A)

𝕋²-rec A A-is-set A-𝕟 A-𝕖 = Recursion.𝕋²-rec A A-𝕟 A-𝕖 (λ _ _ _ → A-is-set _ _ _ _)

Induction principle

𝕋²-ind : (A : 𝕋² → Type 𝓁)

→ (A-𝕟 : (x : Node G) → A (𝕟 x))

178 Yet Another HIT for Graphs

→ (A-𝕖 : ∀ {x y} → (e : Edge G x y) → A-𝕟 x ≡ A-𝕟 y [A ↓ 𝕖 e])

→ (∀ x → isSet (A (𝕟 x)))

→ (x : 𝕋²) → A x

𝕋²-ind A A-𝕟 A-𝕖 A-sets = Induction.𝕋²-ind A A-𝕟 A-𝕖 (λ _ _ _ → A-sets _ _ _ _ _)

C.2 Promoting walk homotopies to 2-paths
{-# OPTIONS without-K exact-split rewriting #-}

module Homotopic-are-equal

where

open import foundations.Core

open import foundations.Rewriting

open import lib.graph-definitions.Graph

open import lib.graph-embeddings.Map

open import lib.graph-embeddings.Map.Spherical

open import lib.graph-transformations.U

open Graph

In Section 5.4, we establish a combinatorial definition for the notion of homotopy

between walks using a graph map. This notion is a congruence relation on the set of

walks of the same endpoints, to say that walks are related if one can deform one into

another. In this subsection, we focus on relating the walk homotopy notion with the

internal notion of path homotopy in HoTT. First, in Lemma C.1, we prove that if there

is a walk homotopy between any pair of walks, assuming that the node set of the graph

is discrete, then their corresponding topological realisation are equal. Second, if one

only considers walk homotopies in the plane, then the corresponding realisations of such

walks are merely equal; see Corollary C.3

Lemma C.1. Let 𝐺 be a graph with discrete set of nodes and ℳ be a map for 𝐺. If 𝑝 and 𝑞 are

walks in the symmetrisation of 𝐺 such that 𝑝 ∼ℳ 𝑞, then 𝑝 and 𝑞 are merely equal.

Proof. It follows by induction on the given walk homotopy 𝑝 ∼ℳ 𝑞 for any walk 𝑝 and 𝑞
in the symmetrisation of 𝐺. The detailed proof is given below in (4). □

module _ {𝓁 : Level} (G : Graph 𝓁)

(_≟Node_ : (x y : Node (U G)) → (x ≡ y) + (x ≠ y)) (𝓜 : Map G)

where

open import lib.graph-embeddings.Map.Face.Walk

open import lib.graph-embeddings.Map.Face.Walk.Homotopy

open import lib.graph-embeddings.Map.Spherical-is-enough

C.2 Promoting walk homotopies to 2-paths 179

open import lib.graph-walks.Walk hiding (length)

open import lib.graph-walks.Walk.Composition

open import lib.graph-walks.Walk.QuasiSimple

open import HIT

open ∙-walk (U G)

open FaceWalks

open HomotopyWalks

open WR (U G) _≟Node_ hiding (P)

open construction G 𝓜

𝕨[_] = to-eq 𝕟 𝕖

walk-homotopy-gives-homotopy

: ∀ {x y} {p q : Walk (U G) x y}

→ p ∼⟨ 𝓜 ⟩∼ q → 𝕨 p ≡ 𝕨 q

walk-homotopy-gives-homotopy = λ {

hwalk-refl → idp

; (hwalk-symm q∼p) → ! walk-homotopy-gives-homotopy q∼p

; (hwalk-trans {w₂ = r} p∼r r∼q) → let

p=r = walk-homotopy-gives-homotopy {q = r} p∼r

r=q = walk-homotopy-gives-homotopy {p = r} r∼q

in p=r · r=q

; (collapse 𝓕 {a}{b} p q) →

let

i = to-eq-comp-·w 𝕟 𝕖 p (cw-walk _ 𝓕 a b ∙w q)

ii = ap (𝕨[p] ·_) (to-eq-comp-·w 𝕟 𝕖 (cw-walk _ 𝓕 a b) q)

iii = ap (λ r → 𝕨[p] · (r · 𝕨 q)) (𝕗 𝓕 a b)

iv = ap (λ r → 𝕨[p] · r) (! to-eq-comp-·w 𝕟 𝕖 (ccw-walk _ 𝓕 a b) q)

v = ! to-eq-comp-·w 𝕟 𝕖 p (ccw-walk _ 𝓕 a b ∙w q)

in begin

𝕨[p ·w cw-walk _ 𝓕 a b ∙w q] ≡⟨ i ⟩

𝕨[p] · 𝕨[cw-walk _ 𝓕 a b ∙w q] ≡⟨ ii ⟩

𝕨[p] · (𝕨[cw-walk _ 𝓕 a b] · 𝕨[q]) ≡⟨ iii ⟩

𝕨[p] · (𝕨[ccw-walk _ 𝓕 a b] · 𝕨[q]) ≡⟨ iv ⟩

𝕨[p] · 𝕨[ccw-walk _ 𝓕 a b ∙w q] ≡⟨ v ⟩

𝕨[p ·w ccw-walk _ 𝓕 a b ∙w q] ∎

}

(4)

180 Yet Another HIT for Graphs

Corollary C.2. Under the same assumptions as in Lemma C.1, if 𝑝 and 𝑞 are walks in the

symmetrisation of 𝐺 such that 𝑝 ∼ℳ 𝑞, then any normal form of 𝑝 is equal to any normal

form of 𝑞 in the geometric realisation.

Proof. Let 𝑃(𝑥, 𝑦 , 𝑤) be the collection of normal forms for the walk 𝑤 in the symmetrisa-

tion of 𝐺 from 𝑥 to 𝑦 , defined as follows.

𝑃(𝑤) ∶≡ ∑
(𝑟∶𝑊𝑈 (𝐺)(𝑥,𝑦))

(𝑤 ∼ℳ 𝑟) × Normal(𝑟).

The proof of this lemma follows, almost inmediately, from Lemma C.1, as in the following

Agda proof.

P : ∀ {x y} → Walk (U G) x y → Type (lsuc 𝓁)

P {x}{y} w = ∑[r ∶ Walk (U G) x y] (w ∼⟨ 𝓜 ⟩∼ r) × Normal r

corollary₁ : ∀ {x y} (p q : Walk (U G) x y)

→ ((nf-p , _) : P p) → ((nf-q , _) : P q) → nf-p ≡ nf-q → 𝕨 p ≡ 𝕨 q

corollary₁ p q (nf-p , (p∼nf-p , _)) (nf-q , (q∼nf-q , _)) nf-p≡nf-q = begin

𝕨[p] ≡⟨ walk-homotopy-gives-homotopy p∼nf-p ⟩

𝕨[nf-p] ≡⟨ cong 𝕨 nf-p≡nf-q ⟩

𝕨[nf-q] ≡⟨ ! walk-homotopy-gives-homotopy q∼nf-q ⟩

𝕨[q] ∎

□

Corollary C.3. Let 𝐺 be a graph with discrete set of nodes and ℳ be a spherical map for 𝐺.

Then, any pair of walks 𝑝 and 𝑞 in the symmetrisation of 𝐺 are merely equal.

Proof. Since the graph has a discrete set of nodes, by Corollary 5.49, we can freely use

the most general definition of spherical maps to obtain the mere existence of a walk

homotopy for any pair of walks (Prieto-Cubides 2022). The conclusion then follows by

applying the elimination principle of the propositional truncation to Lemma C.1 and the

walk homotopy obtained earlier. □

corollary₂ : isSphericalMap G 𝓜 → ∀ {x y} → (p q : Walk (U G) x y) → ∥ 𝕨 p ≡ 𝕨 q ∥

corollary₂ 𝓜-is-spherical p q = trunc-elim trunc-is-prop

(λ p∼q → ∣ walk-homotopy-gives-homotopy p∼q ∣) ∣p∼q∣

where

∣p∼q∣ : ∥ p ∼⟨ 𝓜 ⟩∼ q ∥

∣p∼q∣ = lemap (spherical-equiv G (_≟Node_) 𝓜) 𝓜-is-spherical _ _ p q

D
Other Constructions

The complete bipartite graph 𝐾3,3 is a well-known example of the smallest non-planar

graph. It comprises six nodes, evenly divided into two independent sets. Herein, we

define 𝐾3,3, its automorphism group Aut(𝐾3,3), and one of its maps into the torus.

A graph 𝐺 with an 𝑛-colouring is described by a homomorphism of type Hom(𝐺, 𝐾𝑛).
Each node in 𝐾𝑛 signifies a unique colour for the nodes in 𝐺. If 𝐺 has an 𝑛-colouring,
we denote 𝐺 as 𝑛-colourable or 𝑛-partite. Consequently, a *bipartite* graph possesses a 2-
colouring. The graph 𝐾3,3 is such a bipartite complete graph with six nodes. We illustrate

this graph in Appendix D, each arrow symbolises a pair of edges, one in each direction.

K3,3

1

3 4 5

K2

20

The collection of all 𝑛-colourings of a graph forms a set by Lemma 3.4, and the collec-

tion of 𝑛-partite graphs forms a 1-groupoid. Since there are some 𝑛-partite graphs that are
equal up to isomorphism, we have the following distinction. Two graph colourings of 𝐺,

namely, 𝑓 , 𝑔 ∶ Hom(𝐺, 𝐾𝑛) are essentially equal if a nontrivial isomorphism 𝜎 ∶ 𝐾𝑛 ≅ 𝐾𝑛
exists and if the functions 𝑓 and 𝜎 ∘ 𝑔 are equal. The type of essentially equal colourings

of a graph 𝐺 is (D.0–1).

182 Other Constructions

EssentiallyPartite(𝑛, 𝐺) ∶≡ ∑
(𝐴 ∶ Graph)

Hom(𝐺, 𝐴) × ‖𝐴 ≅ 𝐾𝑛‖. (D.0–1)

Example D.1. We compute the identity type of the essentially equal colourings of the path

graph 𝑃3 in Calculation (D.0–2). As we will see, there can only be two graph homo-

morphisms from 𝑃3 to 𝐾2, namely 𝜑0 and 𝜑1 as in Figure D.1. Let 𝑐1 and 𝑐2 be of type

EssentiallyPartite(2, 𝑃3).

(𝑐1 = 𝑐2) ≃ ((𝐾2, 𝜑0, !) = (𝐾2, 𝜑1, !)) (D.0–2a)

≃ ∑
(𝜏∶𝐾2=𝐾2)

tr 𝜆𝑋 .Hom(𝑃3 ,𝑋)(𝜏 , 𝜑0) = 𝜑1 (D.0–2b)

≃ ∑
(𝜏∶𝐾2=𝐾2)

coe (𝜏) ∘ 𝜑0 = 𝜑1. (D.0–2c)

In Equivalence (D.0–2b), the equality 𝜏 ∶ 𝐾2 = 𝐾2 is one of two alternatives: the trivial

path or the path from the equivalence that swaps the only two nodes in 𝐾2. Only the latter

possibility, the equation, coe (𝜏) ∘ 𝜑0 = 𝜑1 can hold.

0

1

0

1

ϕ0

2

1

0

0

1

2

ϕ1

Figure D.1: Two graph homomorphisms 𝜑0 and 𝜑1 from 𝑃3 to 𝐾2. The dashed arrows
represent how 𝜑0 and 𝜑1 map the nodes of 𝑃3 into 𝐾2. We represent the colours of the
2-coloring of 𝑃3 by the nodes black and white in 𝐾2.

Thus, Aut(𝐾3,3) can be identified as the subgroup Z2 × 𝑆3 × 𝑆3 in 𝑆6. This is due to

the nodes of 𝐾3,3 being partitionable into two independent sets of three, which can be

permuted independently. Furthermore, these two partitions are interchangeable.

We now outline a graph map, M, for 𝐾3,3 as per (D.0–3), along with its faces 𝐹1, 𝐹2,
and 𝐹3. Although surface holds no significance in our context, as there is no a type that

define such a concept, the map M described above would correspond to the torus in a

traditional setting. This can be depicted using the polygonal schema shown in Figure D.2.

183

F1

F2

F3

0

4

2

5

1

3

Figure D.2: A map for 𝐾3,3 in the surface of the torus.

M ∶≡ (0 ↦ ((03) (04) (05)), 1 ↦ ((13) (15) (14)),
2 ↦ ((24) (25) (23)), 3 ↦ ((32) (31) (30)),
4 ↦ ((40) (41) (42)), 5 ↦ ((51) (50) (52))).

𝐹1 ∶≡ ((30) (04) (41) (13)).
𝐹2 ∶≡ ((14) (42) (25) (51)).
𝐹3 ∶≡ ((03) (32) (24) (40) (05) (52) (23) (31) (15) (50)).

(D.0–3)

Bibliography

Ahrens, Benedikt and Paige Randall North (2019). “Univalent Foundations and the Equivalence

Principle.” In: Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory
and General Thoughts, pp. 137–150. url: https://doi.org/10.1007/978-3-030-15655-8_6 (cit. on

pp. 20, 49).

Ahrens, Benedikt, Paige Randall North, Michael Shulman, et al. (2021). The Univalence Principle.

url: https://arxiv.org/abs/2102.06275 (cit. on p. 17).

Ahrens, Benedikt, Paige Randall North, Michael Shulman, and Dimitris Tsementzis (2020). A

Higher Structure Identity Principle. In: Proceedings of the 35th Annual ACM/IEEE Sympo-

sium on Logic in Computer Science. url: https://doi.org/10.1145/3373718.3394755 (cit. on

p. 49).

Avigad, Jeremy and John Harrison (2014). Formally Verified Mathematics. Communications of the

ACM 57.4, pp. 66–75 (cit. on p. 30).

Awodey, Steve (2012). Type Theory and Homotopy. In: Epistemology versus Ontology, pp. 183–

201. url: https://doi.org/10.1007/978-94-007-4435-6_9 (cit. on p. 33).

— (2018). Univalence as a principle of logic. Indagationes Mathematicae 29.6, pp. 1497–1510. url:

https://doi.org/10.1016/j.indag.2018.01.011 (cit. on pp. 17, 33).

Awodey, Steve andMichael A.Warren (2009). Homotopy theoretic models of identity types. Math-

ematical Proceedings of the Cambridge Philosophical Society 146.1, pp. 45–55. url: https :

//doi.org/10.1017/s0305004108001783 (cit. on p. 17).

Baez, John C., Alexander E. Hoffnung, and Christopher D. Walker (2009-08). Higher-Dimensional

Algebra VII: Groupoidification. Theory and Applications of Categories 24, pp. 489–553. url:

http://arxiv.org/abs/0908.4305 (cit. on p. 34).

Bagaria, Joan (2021). Set Theory. In: The Stanford Encyclopedia of Philosophy. Winter 2021. url:

https://plato.stanford.edu/archives/win2021/entries/set-theory/ (cit. on p. 2).

Bang-Jensen, Jørgen and Gregory Z. Gutin (2009). Digraphs. Springer London. url: https://doi.

org/10.1007/978-1-84800-998-1 (cit. on p. 108).

Barendregt, Henk (1997). The Impact of the Lambda Calculus in Logic and Computer Science.

Bulletin of Symbolic Logic 3.2, pp. 181–215. url: https://doi.org/10.2307/421013 (cit. on p. 9).

Barendregt, Henk, Wil Dekkers, and Richard Statman (2013). Lambda Calculus with Types. Cam-

bridge University Press. url: https://doi.org/10.1017/CBO9781139032636 (cit. on p. 4).

Bauer, Andrej (2017). Five stages of accepting constructive mathematics. Bulletin of the American

Mathematical Society 54.3, pp. 481–498. url: https://doi.org/10.1090/bull/1556 (cit. on p. 4).

Bauer, Andrej, J. Gross, Peter LeFanu Lumsdaine, et al. (2017). The HoTT Library: A Formalization

of Homotopy Type Theory in Coq. In: Proceedings of the 6th ACM SIGPLAN Conference on

https://doi.org/10.1007/978-3-030-15655-8_6
https://arxiv.org/abs/2102.06275
https://doi.org/10.1145/3373718.3394755
https://doi.org/10.1007/978-94-007-4435-6_9
https://doi.org/10.1016/j.indag.2018.01.011
https://doi.org/10.1017/s0305004108001783
https://doi.org/10.1017/s0305004108001783
http://arxiv.org/abs/0908.4305
https://plato.stanford.edu/archives/win2021/entries/set-theory/
https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.2307/421013
https://doi.org/10.1017/CBO9781139032636
https://doi.org/10.1090/bull/1556

Certified Programs and Proofs, pp. 164–172. url: https://doi.org/10.1145/3018610.3018615 (cit.

on p. 41).

Bauer, Gertrud and Tobias Nipkow (2002). The 5 Colour Theorem in Isabelle/Isar. In: Theorem

Proving in Higher Order Logics, 15th International Conference, TPHOLs 2002, Hampton, VA,

USA, August 20-23, 2002, Proceedings, pp. 67–82. url: https://doi.org/10.1007/3-540-45685-

6_6 (cit. on p. 31).

Bauer, Gertrud Josefine (2005). Formalizing Plane Graph Theory: Towards a Formalized Proof of

the Kepler Conjecture. PhD thesis. Technische Universität München. url: https://mediatum.

ub.tum.de/doc/601794/document.pdf (cit. on pp. 31, 121).

Baur, Melanie (2012). Combinatorial Concepts and Algorithms for Drawing Planar Graphs. PhD

thesis. Universität Konstanz. url: http://nbn-resolving.de/urn:nbn:de:bsz:352-202281 (cit. on

p. 105).

Bezem, Marc, Ulrik Buchholtz, Pierre Cagne, et al. (19, 2022). Symmetry. https : / / github . com /

UniMath/SymmetryBook. Commit: 870cb20. url: https://gitub.com/UniMath/SymmetryBook (cit. on

pp. 19, 44).

Bezem, Marc, Thierry Coquand, and Simon Huber (2017). The univalence axiom in cubical sets.

url: https://doi.org/10.1007/s10817-018-9472-6 (cit. on p. 18).

Bishop, Errett andDouglas Bridges (1985). Constructive Analysis. Springer BerlinHeidelberg. url:

https://doi.org/10.1007/978-3-642-61667-9 (cit. on p. 3).

Brady, Edwin (2013). Idris, a general-purpose dependently typed programming language: Design

and implementation. Journal of Functional Programming 23 (05), pp. 552–593. url: https :

//journals.cambridge.org/article_S095679681300018X (cit. on p. 29).

Bruijn, N. G. de (1983). AUTOMATH, a Language for Mathematics. In: Automation of Reasoning,

pp. 159–200. url: https://doi.org/10.1007/978-3-642-81955-1%5F11 (cit. on p. 13).

Brunerie, Guillaume, Kuen-Bang Hou (Favonia), Evan Cavallo, et al. (n.d.). Homotopy Type The-

ory in Agda. url: https://github.com/HoTT/HoTT-Agda (cit. on p. 173).

Chih, Tien and Laura Scull (2020). A homotopy category for graphs. Journal of Algebraic Combi-

natorics. url: https://doi.org/10.1007/s10801-020-00960-5 (cit. on p. 101).

Church, Alonzo (1932). A Set of Postulates for the Foundation of Logic. TheAnnals ofMathematics

33.2, p. 346. url: https://doi.org/10.2307/1968337 (cit. on p. 9).

— (1940). A formulation of the simple theory of types. Journal of Symbolic Logic 5.2, pp. 56–68.

url: https://doi.org/10.2307/2266170 (cit. on pp. 5, 13).

Cockx, Jesper, Dominique Devriese, and Frank Piessens (2016). Eliminating dependent pattern

matching without K. Journal of Functional Programming 26, e16. url: https://doi.org/10.

1017/s0956796816000174 (cit. on p. 131).

Cohen, Cyril, Thierry Coquand, Simon Huber, et al. (2017). Cubical Type Theory: A Con-

structive Interpretation of the Univalence Axiom. FLAP 4.10, pp. 3127–3170. url: http : / /

collegepublications.co.uk/ifcolog/?00019 (cit. on p. 18).

Coquand, Thierry and Nils Anders Danielsson (2013). Isomorphism is equality. Indagationes

Mathematicae 24.4, pp. 1105–1120. url: https : / / doi . org / 10 . 1016 / j . indag . 2013 . 09 . 002

(cit. on p. 49).

Coquand, Thierry, Simon Huber, and Anders Mörtberg (2018). On Higher Inductive Types in Cu-

bical Type Theory. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in

https://doi.org/10.1145/3018610.3018615
https://doi.org/10.1007/3-540-45685-6_6
https://doi.org/10.1007/3-540-45685-6_6
https://mediatum.ub.tum.de/doc/601794/document.pdf
https://mediatum.ub.tum.de/doc/601794/document.pdf
http://nbn-resolving.de/urn:nbn:de:bsz:352-202281
https://github.com/UniMath/SymmetryBook
https://github.com/UniMath/SymmetryBook
https://gitub.com/UniMath/SymmetryBook
https://doi.org/10.1007/s10817-018-9472-6
https://doi.org/10.1007/978-3-642-61667-9
https://journals.cambridge.org/article_S095679681300018X
https://journals.cambridge.org/article_S095679681300018X
https://doi.org/10.1007/978-3-642-81955-1%5F11
https://github.com/HoTT/HoTT-Agda
https://doi.org/10.1007/s10801-020-00960-5
https://doi.org/10.2307/1968337
https://doi.org/10.2307/2266170
https://doi.org/10.1017/s0956796816000174
https://doi.org/10.1017/s0956796816000174
http://collegepublications.co.uk/ifcolog/?00019
http://collegepublications.co.uk/ifcolog/?00019
https://doi.org/10.1016/j.indag.2013.09.002

Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pp. 255–264. url: https://doi.

org/10.1145/3209108.3209197 (cit. on p. 18).

Coquand, Thierry and Gérard Huet (1988). The calculus of constructions. Information and Com-

putation 76.2-3, pp. 95–120. url: https : / / doi . org / 10 . 1016 / 0890 - 5401(88) 90005 - 3 (cit. on

p. 4).

Diestel, Reinhard (2012). Graph Theory, 4th Edition. Vol. 173. Springer. url: https://doi.org/10.

1007/978-3-662-53622-3 (cit. on pp. 83, 105, 118, 120).

Diestel, Reinhard and Daniela Kühn (2004). Topological paths, cycles and spanning trees in infinite

graphs. European Journal of Combinatorics 25.6, pp. 835–862. url: https://doi.org/10.1016/

j.ejc.2003.01.002 (cit. on p. 148).

Doczkal, Christian (2021). A Variant of Wagner’s Theorem Based on Combinatorial Hypermaps.

working paper or preprint. url: https://hal.archives-ouvertes.fr/hal-03142192 (cit. on pp. 30,

31).

Doczkal, Christian and Damien Pous (2020). Graph Theory in Coq: Minors, Treewidth, and Iso-

morphisms. J. Autom. Reason. 64.5, pp. 795–825. url: https://doi.org/10.1007/s10817-020-

09543-2 (cit. on p. 30).

Dubois, Catherine, AlainGiorgetti, and RichardGenestier (2016). Tests and Proofs for Enumerative

Combinatorics. In: Tests and Proofs - 10th International Conference, TAPSTAF 2016, Vienna,

Austria, July 5-7, 2016, Proceedings. Vol. 9762, pp. 57–75. url: https://doi.org/10.1007/978-3-

319-41135-4%5C_4 (cit. on p. 30).

Dufourd, Jean François (2009). An intuitionistic proof of a discrete form of the Jordan curve

theorem formalised in Coq with combinatorial hypermaps. Journal of Automated Reasoning

43.1, pp. 19–51. url: https://doi.org/10.1007/s10817-009-9117-x (cit. on pp. 30, 31).

Dufourd, Jean-François and François Puitg (2000). Functional specification and prototyping with

oriented combinatorial maps. Computational Geometry 16.2, pp. 129–156. url: https://www.

sciencedirect.com/science/article/pii/S0925772100000043 (cit. on pp. 30, 31).

Ellis-Monaghan, Joanna and Iain Moffatt (2013). Graphs on Surfaces: Dualities, Polynomials, and

Knots. 1st ed. Springer (cit. on p. 56).

Escardó, Martín (2004). Synthetic Topology. Electronic Notes in Theoretical Computer Science 87,

pp. 21–156. url: https://doi.org/10.1016/j.entcs.2004.09.017 (cit. on p. 128).

— (2018). A self-contained, brief and complete formulation of Voevodsky’s Univalence Axiom.

url: https://arxiv.org/abs/1803.02294 (cit. on p. 33).

— (2019). Introduction to Univalent Foundations of Mathematics with Agda. url: http://arxiv.

org/abs/1911.00580 (cit. on pp. 19, 50).

Gentzen, Gerhard (1964). Investigations Into Logical Deduction. American Philosophical Quar-

terly 1.4, pp. 288–306 (cit. on p. 5).

Gonthier, Georges (2008). The Four Colour Theorem: Engineering of a Formal Proof. In: Computer

Mathematics, pp. 333–333. url: https://doi.org/10.1007/978-3-540-87827-8_28 (cit. on pp. 30,

105, 121, 128, 168).

Grayson, Daniel (2018). An introduction to univalent foundations for mathematicians. Bulletin of

the American Mathematical Society 55.4, pp. 427–450. url: https://doi.org/10.1090/bull/1616

(cit. on p. 19).

https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1145/3209108.3209197
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/j.ejc.2003.01.002
https://doi.org/10.1016/j.ejc.2003.01.002
https://hal.archives-ouvertes.fr/hal-03142192
https://doi.org/10.1007/s10817-020-09543-2
https://doi.org/10.1007/s10817-020-09543-2
https://doi.org/10.1007/978-3-319-41135-4%5C_4
https://doi.org/10.1007/978-3-319-41135-4%5C_4
https://doi.org/10.1007/s10817-009-9117-x
https://www.sciencedirect.com/science/article/pii/S0925772100000043
https://www.sciencedirect.com/science/article/pii/S0925772100000043
https://doi.org/10.1016/j.entcs.2004.09.017
https://arxiv.org/abs/1803.02294
http://arxiv.org/abs/1911.00580
http://arxiv.org/abs/1911.00580
https://doi.org/10.1007/978-3-540-87827-8_28
https://doi.org/10.1090/bull/1616

Grigor’yan, Alexander, Yong Lin, Yuri Muranov, et al. (2014). Homotopy theory for digraphs. url:

http://arxiv.org/abs/1407.0234 (cit. on p. 101).

Gross, J., Jay Yellen, andMark Anderson (2018). Graph Theory and Its Applications. Chapman and

Hall/CRC. url: https://doi.org/10.1201/9780429425134 (cit. on pp. 108, 120).

Gross and Tucker (1987). Topological graph theory. A Wiley-Interscience Publication. John Wiley

& Sons Inc., pp. xvi+351 (cit. on pp. 24, 60, 104).

Hales, Thomas, Mark Adams, Gertrud Bauer, et al. (2017). A Formal Proof Of The Kepler Con-

jecture. Forum of Mathematics, Pi 5, e2. url: https://doi.org/10.1017/fmp.2017.1 (cit. on

p. 30).

Hofmann, Martin and Thomas Streicher (1998). The groupoid interpretation of type theory. In:

Twenty-five years of constructive type theory (Venice, 1995). Vol. 36, pp. 83–111 (cit. on p. 17).

Howard,William Alvin (1980). The Formulae-as-Types Notion of Construction. In: To H. B. Curry:

Essays on Combinatory Logic, Lambda Calculus, and Formalism (cit. on p. 9).

Kamareddine, Fairouz, Twan Laan, and Rob Nederpelt (2005). A Modern Perspective on Type

Theory: From its Origins Until Today. Kluwer Academic Publishers. url: https://doi.org/

10.1007%2F1-4020-2335-9 (cit. on p. 5).

Kokke, Wen, Jeremy G. Siek, and Philip Wadler (2020). Programming language foundations in

Agda. Sci. Comput. Program. 194, p. 102440. url: https://doi.org/10.1016/j.scico.2020.102440

(cit. on pp. 90, 91, 128).

Kraus, Nicolai and Jakob von Raumer (2020). Coherence via Well-Foundedness. In: Proceedings

of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. url: https://doi.

org/10.1145/3373718.3394800 (cit. on pp. 101, 168).

— (2021). A Rewriting Coherence Theoremwith Applications in Homotopy Type Theory (cit. on

pp. 101, 102, 168).

Licata, Daniel R. and Guillaume Brunerie (2015). A Cubical Approach to Synthetic Homotopy

Theory. url: https://doi.org/10.1109/lics.2015.19 (cit. on p. 173).

Linsky, Bernard and Andrew David Irvine (2022). Principia Mathematica. In: The Stanford En-

cyclopedia of Philosophy. Spring 2022. url: https://plato.stanford.edu/archives/spr2022/

entries/principia-mathematica/ (cit. on p. 5).

Lucas, Maxime (2019). An implementation of polygraphs. working paper or preprint. url: https:

//hal.archives-ouvertes.fr/hal-02385110 (cit. on p. 102).

— (2020). Abstract rewriting internalized (cit. on p. 102).

MacLane, Saunders (1937). A combinatorial condition for planar graphs (cit. on p. 105).

Martin-Löf, Per (1975). An Intuitionistic Theory of Types: Predicative Part. In: Logic Colloquium

’73, Proceedings of the Logic Colloquium, pp. 73–118. url: https://doi.org/10.1016/s0049-

237x(08)71945-1 (cit. on pp. 4, 5, 11).

McBride, Conor (n.d.). A polynomial testing principle. url: https://personal.cis.strath.ac.uk/

conor.mcbride/PolyTest.pdf (cit. on p. 90).

Mohar, Bojan (1988). Embeddings of infinite graphs. Journal of Combinatorial Theory, Series B

44.1, pp. 29–43. url: https://doi.org/10.1016/0095-8956(88)90094-9 (cit. on p. 60).

Mörtberg, Anders, Vezzosi Andrea, and Cavallo Evan (2021). A Standard library for Cubical Agda.

url: https://github.com/agda/cubical (cit. on p. 168).

http://arxiv.org/abs/1407.0234
https://doi.org/10.1201/9780429425134
https://doi.org/10.1017/fmp.2017.1
https://doi.org/10.1007%2F1-4020-2335-9
https://doi.org/10.1007%2F1-4020-2335-9
https://doi.org/10.1016/j.scico.2020.102440
https://doi.org/10.1145/3373718.3394800
https://doi.org/10.1145/3373718.3394800
https://doi.org/10.1109/lics.2015.19
https://plato.stanford.edu/archives/spr2022/entries/principia-mathematica/
https://plato.stanford.edu/archives/spr2022/entries/principia-mathematica/
https://hal.archives-ouvertes.fr/hal-02385110
https://hal.archives-ouvertes.fr/hal-02385110
https://doi.org/10.1016/s0049-237x(08)71945-1
https://doi.org/10.1016/s0049-237x(08)71945-1
https://personal.cis.strath.ac.uk/conor.mcbride/PolyTest.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/PolyTest.pdf
https://doi.org/10.1016/0095-8956(88)90094-9
https://github.com/agda/cubical

Mörtberg, Anders and Loıc̈ Pujet (2020). Cubical Synthetic Homotopy Theory. In: Proceedings of

the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, pp. 158–

171. url: https://doi.org/10.1145/3372885.3373825 (cit. on p. 128).

Moura, Leonardo de, Soonho Kong, Jeremy Avigad, et al. (2015). The Lean theorem prover (System

Description). In: International Conference on Automated Deduction. Springer, pp. 378–388.

url: https://doi.org/10.1007/978-3-319-21401-6_26 (cit. on pp. 4, 29, 30).

Nordström, Bengt (1988). Terminating general recursion. Bit 28.3, pp. 605–619. url: 10 . 1007 /

bf01941137 (cit. on p. 80).

Nordström, Bengt, Kent Petersson, and Jan M. Smith (1990). Programming in Martin-Lo¨f’s Type

Theory: An Introduction. Clarendon Press (cit. on pp. 4, 11, 16).

Norrell, Ulf (2007). Towards a practical programming language based on dependent type the-

ory. PhD thesis. Chalmers University of Technology. url: https://research.chalmers.se/en/

publication/46311 (cit. on p. 34).

Noschinski, Lars (2014). A Graph Library for Isabelle. Mathematics in Computer Science 9.1,

pp. 23–39. url: https://doi.org/10.1007/s11786-014-0183-z (cit. on p. 30).

— (2015). Formalizing Graph Theory and Planarity Certificates. PhD thesis. Technischen Uni-

versität München. url: https://d-nb.info/1104933624/34 (cit. on pp. 19, 30).

Petrakis, Iosif (2019). Dependent Sums and Dependent Products in Bishop’s Set Theory. In: 24th

International Conference on Types for Proofs and Programs (TYPES 2018). Vol. 130, 3:1–3:21.

url: http://drops.dagstuhl.de/opus/volltexte/2019/11407 (cit. on p. 3).

Prawitz, Dag (1967). Natural deduction. A proof-theoretical study. Journal of Symbolic Logic 32.2,

pp. 255–256. url: https://doi.org/10.2307/2271676 (cit. on p. 13).

Prieto-Cubides, Jonathan (2022). On Homotopy of Walks and Spherical Maps in Homotopy Type

Theory. In: Proceedings of the 11th ACM SIGPLAN International Conference on Certified

Programs and Proofs, pp. 338–351. url: https://doi.org/10.1145/3497775.3503671 (cit. on

pp. 114, 122, 150, 168, 180).

— (2023). Artefact for the manuscript “Investigations in Graph-theoretical Constructions in Homo-
topy Type Theory”. url: https://jonaprieto.github.io/synthetic-graph-theory (cit. on p. 102).

Prieto-Cubides, Jonathan and Håkon Robbestad Gylterud (2022). On Planarity of Graphs in Ho-

motopy Type Theory. Submitted, Mathematical Structures in Computer Science. url: https :
//arxiv.org/abs/2112.06633 (cit. on p. 94).

Prieto-Cubides, Jonathan and Håkon Robbstand Gylterud (2019). Planar graphs in HoTT. 25th

International Conference on Types for Proofs and Programs, TYPES. url: http://www.ii.uib.

no/~bezem/abstracts/TYPES%5F2019%5Fpaper%5F37 (cit. on p. 128).

Rahman, Md. Saidur (2017). “Planar Graphs.” In: Basic Graph Theory, pp. 77–89. url: https://doi.
org/10.1007/978-3-319-49475-3_6 (cit. on p. 105).

Reck, Erich and Georg Schiemer (2020). Structuralism in the Philosophy of Mathematics. In: The

Stanford Encyclopedia of Philosophy. Spring 2020. url: https://plato.stanford.edu/archives/

spr2020/entries/structuralism-mathematics/ (cit. on p. 1).

Rijke, Egbert, Elisabeth Bonnevier, Jonathan Prieto-Cubides, Fredrik Bakke, et al. (2023). Univalent
mathematics in Agda. url: https://github.com/UniMath/agda-unimath/ (cit. on pp. 30, 152, 168).

Schütte, K. (1972). The collected papers of Gerhard Gentzen. 37.4, pp. 752–753. url: https://doi.

org/10.2307/2272429 (cit. on p. 13).

https://doi.org/10.1145/3372885.3373825
https://doi.org/10.1007/978-3-319-21401-6_26
10.1007/bf01941137
10.1007/bf01941137
https://research.chalmers.se/en/publication/46311
https://research.chalmers.se/en/publication/46311
https://doi.org/10.1007/s11786-014-0183-z
https://d-nb.info/1104933624/34
http://drops.dagstuhl.de/opus/volltexte/2019/11407
https://doi.org/10.2307/2271676
https://doi.org/10.1145/3497775.3503671
https://jonaprieto.github.io/synthetic-graph-theory
https://arxiv.org/abs/2112.06633
https://arxiv.org/abs/2112.06633
http://www.ii.uib.no/~bezem/abstracts/TYPES%5F2019%5Fpaper%5F37
http://www.ii.uib.no/~bezem/abstracts/TYPES%5F2019%5Fpaper%5F37
https://doi.org/10.1007/978-3-319-49475-3_6
https://doi.org/10.1007/978-3-319-49475-3_6
https://plato.stanford.edu/archives/spr2020/entries/structuralism-mathematics/
https://plato.stanford.edu/archives/spr2020/entries/structuralism-mathematics/
https://github.com/UniMath/agda-unimath/
https://doi.org/10.2307/2272429
https://doi.org/10.2307/2272429

Stahl, Saul (1978). The embeddings of a graph–A survey. Journal of Graph Theory 2.4, pp. 275–

298. url: https://doi.org/10.1002/jgt.3190020402 (cit. on pp. 56, 60).

Suppes, Patrick (1972). Axiomatic set theory. Dover publications (cit. on p. 12).

Swan, Andrew W (2022). On the Nielsen-Schreier Theorem in Homotopy Type Theory. Logical

Methods in Computer Science Volume 18, Issue 1. url: https://doi.org/10.46298%2Flmcs-

18%281%3A18%292022 (cit. on pp. 128, 148, 149, 161, 162, 167).

The Agda Development Team (2023). Agda 2.6.3 documentation. url: https://agda.readthedocs.

io/en/v2.6.3/ (cit. on pp. 4, 29, 131, 168).

The Coq Development Team (2021). The Coq Proof Assistant. en. url: https://zenodo.org/record/

4501022 (cit. on pp. 4, 29).

Troelstra, A. S. (2011). History of constructivism in the 20th century. In: Set Theory, Arithmetic,

and Foundations of Mathematics, pp. 150–179. url: https://doi.org/10.1017/cbo9780511910616.

009 (cit. on pp. 1, 3, 5).

Univalent Foundations Program, The (2013). Homotopy Type Theory: Univalent Foundations of

Mathematics. https://homotopytypetheory.org/book. url: https://homotopytypetheory.org/book

(cit. on pp. 13, 18, 33, 34, 36, 44, 48, 80, 105, 123, 124, 168, 175).

Vezzosi, Andrea, Anders Mörtberg, and Andreas Abel (2021). Cubical Agda: A dependently typed

programming language with univalence and higher inductive types. Journal of Functional

Programming 31, e8. doi: 10.1017/s0956796821000034 (cit. on pp. 18, 168).

Voevodsky, Vladimir (2010). The equivalence axiom and univalent models of type theory. (Talk

at CMU on February 4, 2010). url: https://arxiv.org/abs/1402.5556 (cit. on pp. 17, 33).

Whitney, Hassler (1932). Non-separable and planar graphs. Transactions of the American Math-

ematical Society 34.2, pp. 339–339. url: https://doi.org/10.1090/s0002-9947-1932-1501641-2

(cit. on p. 108).

Yamamoto, Mitsuharu, Shin-ya Nishizaki, Masami Hagiya, et al. (1995). Formalization of Pla-

nar Graphs. In: Higher Order Logic Theorem Proving and Its Applications, 8th International

Workshop, Aspen Grove, UT, USA, September 11-14, 1995, Proceedings. Vol. 971, pp. 369–384.

url: https://doi.org/10.1007/3-540-60275-5_77 (cit. on pp. 26, 31, 119–122).

Yorgey, Brent Abraham (2014). Combinatorial Species And Labelled Structures. PhD thesis. Uni-

versity of Pennsylvania, p. 206. url: https://www.cis.upenn.edu/~sweirich/papers/yorgey-

thesis.pdf (cit. on p. 34).

https://doi.org/10.1002/jgt.3190020402
https://doi.org/10.46298%2Flmcs-18%281%3A18%292022
https://doi.org/10.46298%2Flmcs-18%281%3A18%292022
https://agda.readthedocs.io/en/v2.6.3/
https://agda.readthedocs.io/en/v2.6.3/
https://zenodo.org/record/4501022
https://zenodo.org/record/4501022
https://doi.org/10.1017/cbo9780511910616.009
https://doi.org/10.1017/cbo9780511910616.009
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://doi.org/10.1017/s0956796821000034
https://arxiv.org/abs/1402.5556
https://doi.org/10.1090/s0002-9947-1932-1501641-2
https://doi.org/10.1007/3-540-60275-5_77
https://www.cis.upenn.edu/~sweirich/papers/yorgey-thesis.pdf
https://www.cis.upenn.edu/~sweirich/papers/yorgey-thesis.pdf

	Scientific Environment
	Abstract
	Acknowledgements
	Introduction
	Foundations of mathematics
	Set theories
	Constructive formal systems
	Type theories
	Martin-Löf type theories
	Typing rules
	Types, terms, and logic
	Formulas as types
	Dependent types
	Identity types
	Extensional and intensional type theories
	The groupoid model and the homotopy interpretation

	Exploring graph theory in univalent mathematics
	Structure identity principle
	The type of graphs and their symmetries
	Drawing graphs on surfaces
	The notion of graph maps and faces
	Planar drawings

	Formalisation of mathematics
	Formalisation of graph-theoretical concepts
	Short outline of this thesis

	Mathematical Foundations
	Notation
	Homotopy levels
	Handy equivalences
	Finite types
	Cyclic types

	Graphs in Univalent Mathematics
	The type of graphs
	The category of graphs
	Subtypes and structures on graphs
	Finite graphs
	Walks and strongly connected graphs
	Graph families
	Cyclic graphs
	The identity type on graphs

	Graph Maps
	Symmetrisation of graphs
	Stars and locally finite graphs
	The type of combinatorial maps
	The type of faces
	The finiteness property
	The boundary of a face

	Examples of graph maps
	Generating graph maps

	Walks and Spherical Maps
	The type of walks
	Structural induction for walks
	A well-founded order for walks
	Walk splitting

	The type of quasi-simple walks
	The finiteness property

	Normal forms for walks
	The notion of walk homotopy
	The type of spherical maps
	Discussion

	Planar Maps
	Planarity in graph theory
	A type of planar maps for a graph
	Planar extensions
	Path additions
	Planar synthesis of graphs
	Biconnected planar graphs

	Concluding Remarks and Future Work
	Directions of further developments
	Formalisation

	Epilogue
	Computer Formalisation in Agda
	Proof assistants
	Agda notation
	Library
	Short excerpts from the library

	On Trees and Their Topological Realisation
	Introduction
	Computer formalisation in Cubical Agda
	Basic concepts
	The type of graphs
	The type of walks
	Rooted trees and subgraphs

	Enlarging rooted subtrees
	Oriented spanning trees

	Topological realisation of graphs
	Discussion

	Yet Another HIT for Graphs
	The 2-cell topological realisation of graphs
	Promoting walks to equalities
	Recursion principle
	Induction principle
	Eliminating into propositions
	Eliminating into sets

	Promoting walk homotopies to 2-paths

	Other Constructions

