
Investigations on graph-
theoretical constructions in HoTT

Jonathan Prieto-Cubides j.w.w. Håkon R. Gylterud

November 18, 2021

Bergen Univalent Foundations Meeting

a

d

x

b

i

y

g

h

f

e

Setup
How to formulate planarity of graphs in HoTT?

In graph theory, a planar graph is a graph that can be embedded in the plane.
I Topological graph theory is about the placement of graphs on surfaces
I A graph embedding in a surface is a continuous one-to-one function from a

topological representation of the graph into the surface

z

Setup
How to formulate planarity of graphs in HoTT?
In graph theory, a planar graph is a graph that can be embedded in the plane.

a

d

x

b

i

y

g

h

f

e
I Topological graph theory is about the placement of graphs on surfaces
I A graph embedding in a surface is a continuous one-to-one function from a

topological representation of the graph into the surface
z

Setup
How to formulate planarity of graphs in HoTT?
In graph theory, a planar graph is a graph that can be embedded in the plane.
I Topological graph theory is about the placement of graphs on surfaces
I A graph embedding in a surface is a continuous one-to-one function from a

topological representation of the graph into the surface

z

Overview

1. The category of graphs
1. Planarity as structure on a graph
3. Intermediate results
4. Realisation of graphs (w.i.p)

Graphs
I A (directed multigraph) graph is an object of type Graph:

Graph :≡
∑

(Node:U)

∑
(Edge:Node→Node→U)

isSet(Node)×
∏

(x ,y :Node)
isSet(Edge(x , y)).

I isFiniteGraph(G) :≡ isFinite(Node(G)) ×
∏

x ,y :Node(G) isFinite(Edge(G)(x , y))
I The empty graph is (0, λ{()}, !, !)
I The unit graph is (1, λ u v .0, !, !)
I The graph with n points and no edges ([n], λ u v .0, !, !)
I The cycle graph of n points is (n, λ u v .u = pred(v), !, !)

Graphs
I A (directed multigraph) graph is an object of type Graph:

Graph :≡
∑

(Node:U)

∑
(Edge:Node→Node→U)

isSet(Node)×
∏

(x ,y :Node)
isSet(Edge(x , y)).

I isFiniteGraph(G) :≡ isFinite(Node(G)) ×
∏

x ,y :Node(G) isFinite(Edge(G)(x , y))

I The empty graph is (0, λ{()}, !, !)
I The unit graph is (1, λ u v .0, !, !)
I The graph with n points and no edges ([n], λ u v .0, !, !)
I The cycle graph of n points is (n, λ u v .u = pred(v), !, !)

Graphs
I A (directed multigraph) graph is an object of type Graph:

Graph :≡
∑

(Node:U)

∑
(Edge:Node→Node→U)

isSet(Node)×
∏

(x ,y :Node)
isSet(Edge(x , y)).

I isFiniteGraph(G) :≡ isFinite(Node(G)) ×
∏

x ,y :Node(G) isFinite(Edge(G)(x , y))
I The empty graph is (0, λ{()}, !, !)

I The unit graph is (1, λ u v .0, !, !)
I The graph with n points and no edges ([n], λ u v .0, !, !)
I The cycle graph of n points is (n, λ u v .u = pred(v), !, !)

Graphs
I A (directed multigraph) graph is an object of type Graph:

Graph :≡
∑

(Node:U)

∑
(Edge:Node→Node→U)

isSet(Node)×
∏

(x ,y :Node)
isSet(Edge(x , y)).

I isFiniteGraph(G) :≡ isFinite(Node(G)) ×
∏

x ,y :Node(G) isFinite(Edge(G)(x , y))
I The empty graph is (0, λ{()}, !, !)
I The unit graph is (1, λ u v .0, !, !)

I The graph with n points and no edges ([n], λ u v .0, !, !)
I The cycle graph of n points is (n, λ u v .u = pred(v), !, !)

Graphs
I A (directed multigraph) graph is an object of type Graph:

Graph :≡
∑

(Node:U)

∑
(Edge:Node→Node→U)

isSet(Node)×
∏

(x ,y :Node)
isSet(Edge(x , y)).

I isFiniteGraph(G) :≡ isFinite(Node(G)) ×
∏

x ,y :Node(G) isFinite(Edge(G)(x , y))
I The empty graph is (0, λ{()}, !, !)
I The unit graph is (1, λ u v .0, !, !)
I The graph with n points and no edges ([n], λ u v .0, !, !)

I The cycle graph of n points is (n, λ u v .u = pred(v), !, !)

Graphs
I A (directed multigraph) graph is an object of type Graph:

Graph :≡
∑

(Node:U)

∑
(Edge:Node→Node→U)

isSet(Node)×
∏

(x ,y :Node)
isSet(Edge(x , y)).

I isFiniteGraph(G) :≡ isFinite(Node(G)) ×
∏

x ,y :Node(G) isFinite(Edge(G)(x , y))
I The empty graph is (0, λ{()}, !, !)
I The unit graph is (1, λ u v .0, !, !)
I The graph with n points and no edges ([n], λ u v .0, !, !)
I The cycle graph of n points is (n, λ u v .u = pred(v), !, !)

The category of graphs
I A (directed multigraph) graph is an object of type Graph:

Graph :≡
∑

(Node:U)

∑
(Edge:Node→Node→U)

isSet(Node)×
∏

(x ,y :Node)
isSet(Edge(x , y)).

I Structure-preserving functions are the graph homomorphisms (α, β)
I The canonical map G = H → G ∼= H is an equivalence
I Graphs and graph homomorphisms form a category
I Isomorphic graphs hold the same properties
I The type Graph is a groupoid

The category of graphs
I A (directed multigraph) graph is an object of type Graph:

Graph :≡
∑

(Node:U)

∑
(Edge:Node→Node→U)

isSet(Node)×
∏

(x ,y :Node)
isSet(Edge(x , y)).

I Structure-preserving functions are the graph homomorphisms (α, β)

β(x, y)

α

α
G H

x

y

α(x)

α(y)

I The canonical map G = H → G ∼= H is an equivalence
I Graphs and graph homomorphisms form a category
I Isomorphic graphs hold the same properties
I The type Graph is a groupoid

The category of graphs
I A (directed multigraph) graph is an object of type Graph:

Graph :≡
∑

(Node:U)

∑
(Edge:Node→Node→U)

isSet(Node)×
∏

(x ,y :Node)
isSet(Edge(x , y)).

I Structure-preserving functions are the graph homomorphisms (α, β)
I The canonical map G = H → G ∼= H is an equivalence

I Graphs and graph homomorphisms form a category
I Isomorphic graphs hold the same properties
I The type Graph is a groupoid

The category of graphs
I A (directed multigraph) graph is an object of type Graph:

Graph :≡
∑

(Node:U)

∑
(Edge:Node→Node→U)

isSet(Node)×
∏

(x ,y :Node)
isSet(Edge(x , y)).

I Structure-preserving functions are the graph homomorphisms (α, β)
I The canonical map G = H → G ∼= H is an equivalence
I Graphs and graph homomorphisms form a category

I Isomorphic graphs hold the same properties
I The type Graph is a groupoid

The category of graphs
I A (directed multigraph) graph is an object of type Graph:

Graph :≡
∑

(Node:U)

∑
(Edge:Node→Node→U)

isSet(Node)×
∏

(x ,y :Node)
isSet(Edge(x , y)).

I Structure-preserving functions are the graph homomorphisms (α, β)
I The canonical map G = H → G ∼= H is an equivalence
I Graphs and graph homomorphisms form a category
I Isomorphic graphs hold the same properties

I The type Graph is a groupoid

The category of graphs
I A (directed multigraph) graph is an object of type Graph:

Graph :≡
∑

(Node:U)

∑
(Edge:Node→Node→U)

isSet(Node)×
∏

(x ,y :Node)
isSet(Edge(x , y)).

I Structure-preserving functions are the graph homomorphisms (α, β)
I The canonical map G = H → G ∼= H is an equivalence
I Graphs and graph homomorphisms form a category
I Isomorphic graphs hold the same properties
I The type Graph is a groupoid

How to formulate planarity for graphs in HoTT?

A graph is planar if and only if
I it has an embedding into the sphere or into the plane.
I it contains no subdivisions of K5 or K3,3 (Kuratowski 1930)
I it has an abstract dual (Whitney 1932)
I its cycle space has a sparse basis (Mac Lane 1937)
I the dimension of its incidence order is < 4 (Schnyder 1989)

Works on formal verification of results on planar graphs define planarity by:
I hypermaps as in the proof of The Four-colour theorem [4]
I inductive definitions (e.g. graph cycles [7], near triangulations [1], and

directed face walks [2]

Ingredients:
Planar map

Connected graph Spherical map Faces

Walks Map Cyclic graph

Cyclic sets Stars Walk homotopies Cycle graph

Basics:
I A walk in a graph G is build by one of the following constructors.

I If x : Node(G) then 〈x〉 : W(x , x)
I If x , y , z : Node(G), e : Edge(G , x , y),w : W(y , z), then e � w : W(x , z)

I isGraphConnected(G) :≡
∏

(x ,y :Node(G)) ‖W(x , y)‖

Ingredients: walks and connected graphs
Planar map

Connected graph Spherical map Faces

Walks Map Cyclic graph

Cyclic sets Stars Walk homotopies Cycle graph
Basics:
I A walk in a graph G is build by one of the following constructors.

I If x : Node(G) then 〈x〉 : W(x , x)
I If x , y , z : Node(G), e : Edge(G , x , y),w : W(y , z), then e � w : W(x , z)

I isGraphConnected(G) :≡
∏

(x ,y :Node(G)) ‖W(x , y)‖

Ingredients: Graph embeddings/combinatorial maps

a

d

b

x

Theorem (pp. 113 in [5])
I Every locally oriented embedding from a

graph G to a surface S defines a rotation
system for G.

I Conversely, every rotation system on a
graph G defines, up to equivalence of
embeddings, a unique locally oriented graph
embedding from G to S.

I U(G) :≡ (Node(G),Edge(G)(x , y) + Edge(G)(y , x), !, !)
I StarG(x) :≡

∑
(y :Node(G)) Edge(H)(x , y)

I Cyclic(A) :≡
∑

(ϕ:A→A)
∑

(n:N) ‖
∑

(e:A'[n]) e ◦ ϕ = pred ◦ e‖

A A

[n] [n]

f

pred

n − 1 0 1

i i − 1

predn−i−1

pred pred

pred

predi−2

Ingredients: Graph embeddings/combinatorial maps

a

d

b

x

The essential information of a graph embedding is stored in the cyclic order of the edges
incident at each node.

I Map(G) :≡
∏

(x :Node(G)) Cyclic(StarU(G)(x))
I U(G) :≡ (Node(G),Edge(G)(x , y) + Edge(G)(y , x), !, !)

I StarG(x) :≡
∑

(y :Node(G)) Edge(H)(x , y)
I Cyclic(A) :≡

∑
(ϕ:A→A)

∑
(n:N) ‖

∑
(e:A'[n]) e ◦ ϕ = pred ◦ e‖

A A

[n] [n]

f

pred

n − 1 0 1

i i − 1

predn−i−1

pred pred

pred

predi−2

Ingredients: Graph embeddings/combinatorial maps

a

d

b

x

The essential information of a graph embedding is stored in the cyclic order of the edges
incident at each node.

I Map(G) :≡
∏

(x :Node(G)) Cyclic(StarU(G)(x))
I U(G) :≡ (Node(G),Edge(G)(x , y) + Edge(G)(y , x), !, !)

I StarG(x) :≡
∑

(y :Node(G)) Edge(H)(x , y)
I Cyclic(A) :≡

∑
(ϕ:A→A)

∑
(n:N) ‖

∑
(e:A'[n]) e ◦ ϕ = pred ◦ e‖

A A

[n] [n]

f

pred

n − 1 0 1

i i − 1

predn−i−1

pred pred

pred

predi−2

Ingredients: Graph embeddings/combinatorial maps

a

d

b

x

The essential information of a graph embedding is stored in the cyclic order of the edges
incident at each node.

I Map(G) :≡
∏

(x :Node(G)) Cyclic(StarU(G)(x))
I U(G) :≡ (Node(G),Edge(G)(x , y) + Edge(G)(y , x), !, !)
I StarG(x) :≡

∑
(y :Node(G)) Edge(H)(x , y)

I Cyclic(A) :≡
∑

(ϕ:A→A)
∑

(n:N) ‖
∑

(e:A'[n]) e ◦ ϕ = pred ◦ e‖

A A

[n] [n]

f

pred

n − 1 0 1

i i − 1

predn−i−1

pred pred

pred

predi−2

Ingredients: Graph embeddings/combinatorial maps

a

d

b

x

The essential information of a graph embedding is stored in the cyclic order of the edges
incident at each node.

I Map(G) :≡
∏

(x :Node(G)) Cyclic(StarU(G)(x))
I U(G) :≡ (Node(G),Edge(G)(x , y) + Edge(G)(y , x), !, !)
I StarG(x) :≡

∑
(y :Node(G)) Edge(H)(x , y)

I Cyclic(A) :≡
∑

(ϕ:A→A)
∑

(n:N) ‖
∑

(e:A'[n]) e ◦ ϕ = pred ◦ e‖

A A

[n] [n]

f

pred

n − 1 0 1

i i − 1

predn−i−1

pred pred

pred

predi−2

Ingredients: Graph embeddings/combinatorial maps

a

d

b

x

The essential information of a graph embedding is stored in the cyclic order of the edges
incident at each node.

I Map(G) :≡
∏

(x :Node(G)) Cyclic(StarU(G)(x))
I U(G) :≡ (Node(G),Edge(G)(x , y) + Edge(G)(y , x), !, !)
I StarG(x) :≡

∑
(y :Node(G)) Edge(H)(x , y)

I Cyclic(A) :≡
∑

(ϕ:A→A)
∑

(n:N) ‖
∑

(e:A'[n]) e ◦ ϕ = pred ◦ e‖

A A

[n] [n]

f

pred

n − 1 0 1

i i − 1

predn−i−1

pred pred

pred

predi−2

How many maps does a graph have?

a b

a b

a b

a b

a b

a b

(a)

(d)

(b)

(e)

(c)

(f)

Figure: The six possible maps of the bouquet B2.

I The surface arising from the maps Ma and Mb is the two-dimensional plane.
I For the map Mc , the surface is the topological torus.

Ma :≡ (0 7→ (a→a←b←b→)).
Mb :≡ (0 7→ (a→a←b→b←)).
Mc :≡ (0 7→ (a→b→a←b←)).

What maps embed a graph in the plane/sphere?

F2

F4

F5

x
a

d

f

g

h
iy

F1

b

F6

F3

e

Face of a map
A face of a mapM is a circuit in the graph with some special condition:
A face consists of the following data:

I A cyclic graph A,
I an edge-injective homomorphism h ≡ (α, β) : Hom(A,U(G)), such that ...
I for any node x in A, if ‖Star(U(G))(h(x))‖ then ‖Star(A)(x)‖, and
I any corner in A is mapped to a corner in U(G) respecting the mapM.

a

x

suc(x)

pred(x)
A U(G)

α(suc(x))

α(pred(x))

α(x)

a+

β(a)

β(a+)
(α, β)

F
h

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

Face of a map
A face of a mapM is a circuit in the graph with some special condition:
A face consists of the following data:
I A cyclic graph A,

I an edge-injective homomorphism h ≡ (α, β) : Hom(A,U(G)), such that ...
I for any node x in A, if ‖Star(U(G))(h(x))‖ then ‖Star(A)(x)‖, and
I any corner in A is mapped to a corner in U(G) respecting the mapM.

a

x

suc(x)

pred(x)
A U(G)

α(suc(x))

α(pred(x))

α(x)

a+

β(a)

β(a+)
(α, β)

F
h

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

Face of a map
A face of a mapM is a circuit in the graph with some special condition:
A face consists of the following data:
I A cyclic graph A,

CyclicGraph(G) :≡
∑

(ϕ:Hom(G,G))

∑
(n:N)
‖(G , ϕ) = (Cn, rot)‖︸ ︷︷ ︸

iscyclic(G,ϕ,n)

.

C1 C2 C3 C4 C5C0

I an edge-injective homomorphism h ≡ (α, β) : Hom(A,U(G)), such that ...
I for any node x in A, if ‖Star(U(G))(h(x))‖ then ‖Star(A)(x)‖, and
I any corner in A is mapped to a corner in U(G) respecting the mapM.

a

x

suc(x)

pred(x)
A U(G)

α(suc(x))

α(pred(x))

α(x)

a+

β(a)

β(a+)
(α, β)

F
h

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

Face of a map
A face of a mapM is a circuit in the graph with some special condition:
A face consists of the following data:
I A cyclic graph A,
I an edge-injective homomorphism h ≡ (α, β) : Hom(A,U(G)), such that ...

I for any node x in A, if ‖Star(U(G))(h(x))‖ then ‖Star(A)(x)‖, and
I any corner in A is mapped to a corner in U(G) respecting the mapM.

a

x

suc(x)

pred(x)
A U(G)

α(suc(x))

α(pred(x))

α(x)

a+

β(a)

β(a+)
(α, β)

F
h

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

Face of a map
A face of a mapM is a circuit in the graph with some special condition:
A face consists of the following data:
I A cyclic graph A,
I an edge-injective homomorphism h ≡ (α, β) : Hom(A,U(G)), such that ...

A graph homomorphism h, (α, β) : Hom(G ,H), is edge-injective if for any
e1, e2 : EG(x , y), x , y : NG , when β(x , y , e1) =EH(α(x),α(y)) β(x , y , e2) then
e1 =EG (x ,y) e2.

I for any node x in A, if ‖Star(U(G))(h(x))‖ then ‖Star(A)(x)‖, and
I any corner in A is mapped to a corner in U(G) respecting the mapM.

a

x

suc(x)

pred(x)
A U(G)

α(suc(x))

α(pred(x))

α(x)

a+

β(a)

β(a+)
(α, β)

F
h

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

Face of a map
A face of a mapM is a circuit in the graph with some special condition:
A face consists of the following data:
I A cyclic graph A,
I an edge-injective homomorphism h ≡ (α, β) : Hom(A,U(G)), such that ...
I for any node x in A, if ‖Star(U(G))(h(x))‖ then ‖Star(A)(x)‖, and

I any corner in A is mapped to a corner in U(G) respecting the mapM.

a

x

suc(x)

pred(x)
A U(G)

α(suc(x))

α(pred(x))

α(x)

a+

β(a)

β(a+)
(α, β)

F
h

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

Face of a map
A face of a mapM is a circuit in the graph with some special condition:
A face consists of the following data:
I A cyclic graph A,
I an edge-injective homomorphism h ≡ (α, β) : Hom(A,U(G)), such that ...
I for any node x in A, if ‖Star(U(G))(h(x))‖ then ‖Star(A)(x)‖, and
I any corner in A is mapped to a corner in U(G) respecting the mapM.

a

x

suc(x)

pred(x)
A U(G)

α(suc(x))

α(pred(x))

α(x)

a+

β(a)

β(a+)
(α, β)

F
h

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

What else do we know when embedding a graph in the sphere?
I The implicit surface given by the embedding has to be simply connected, i.e. any

loop can be contracted/deformed to one point

x

y

F

cwF (x, y)
U(G)

ccwF (x, y)

J. Prieto-Cubides | 11 / 33

What else do we know when embedding a graph in the sphere?
I The implicit surface given by the embedding has to be simply connected, i.e. any

loop can be contracted/deformed to one point

x

y

F

cwF (x, y)
U(G)

ccwF (x, y)

J. Prieto-Cubides | 11 / 33

Maps into a sphere: Spherical maps
A mapM of a graph G is spherical, of type Spherical(M), if any pair of walks sharing
the same endpoints are merely walk-homotopic.

Spherical(M) :≡
∏

(x ,y :NodeG)

∏
(w1,w2:WalkU(G)(x ,y))

‖ w1 ∼M w2 ‖ .

w1

w2

⇐

⇐

y

x

⇐

Homotopy for walks is an equiv. relation that collapses faces
Supposing one has the following,
(i) a face F given by 〈A, f 〉 of the mapM,
(ii) a walk w1 of type WU(G)(x , f (a)) for x : NG with one node a : NA, and
(iii) a walk w2 of type WU(G)(f (b), y) for b : NA and y : NG .

Homotopy for walks is an equiv. relation that collapses faces
Supposing one has the following,
(i) a face F given by 〈A, f 〉 of the mapM,
(ii) a walk w1 of type WU(G)(x , f (a)) for x : NG with one node a : NA, and
(iii) a walk w2 of type WU(G)(f (b), y) for b : NA and y : NG .

(w1 · ccwF (a, b) · w2) ∼M (w1 · cwF (a, b) · w2),

Homotopy for walks is an equiv. relation that collapses faces
Supposing one has the following,
(i) a face F given by 〈A, f 〉 of the mapM,
(ii) a walk w1 of type WU(G)(x , f (a)) for x : NG with one node a : NA, and
(iii) a walk w2 of type WU(G)(f (b), y) for b : NA and y : NG .

•x •f (a) •f (b) •y
w1

ccwF (a,b)

w2

cwF (a,b)

Homotopy for walks is an equiv. relation that collapses faces
Supposing one has the following,
(i) a face F given by 〈A, f 〉 of the mapM,
(ii) a walk w1 of type WU(G)(x , f (a)) for x : NG with one node a : NA, and
(iii) a walk w2 of type WU(G)(f (b), y) for b : NA and y : NG .
I Whiskering lemmas are available!

w1

w2

w1

w2

w1

w2

⇐

⇐

⇐
⇐

⇐
⇐

⇐ ⇒

⇒

J. Prieto-Cubides | 14 / 33

Planar map
I A planar mapM of a connected and locally finite graph G is of type

Planar(G) :≡
∑

(M:MapG)
isSpherical(M)× Face(G ,M)︸ ︷︷ ︸

outer face

a

b

c

e

a

de

b

c

b

e d

a c

d

a

b

c

e d

e1

e2

e3

G

Lemmas

I (Finite) sets are closed under (co) products, type equivalences, Σ-types, Π-types and
prop. truncation.

I If G is a (finite) graph, then the following types are (finite) sets.

I The star at x for any node x is a (finite) set
I The maps of G is a (finite) set
I The spherical maps of G is a (finite) set
I The faces of any map for G is a (finite) set, and
I The walks without inner loops in G is a (finite) set.

I The collection of planar maps of G is a (finite) set.
I One can construct for every graph Cn a planar map, which can help us to construct

more planar graphs!

Lemmas

I (Finite) sets are closed under (co) products, type equivalences, Σ-types, Π-types and
prop. truncation.

I If G is a (finite) graph, then the following types are (finite) sets.
I The star at x for any node x is a (finite) set

I The maps of G is a (finite) set
I The spherical maps of G is a (finite) set
I The faces of any map for G is a (finite) set, and
I The walks without inner loops in G is a (finite) set.

I The collection of planar maps of G is a (finite) set.
I One can construct for every graph Cn a planar map, which can help us to construct

more planar graphs!

Lemmas

I (Finite) sets are closed under (co) products, type equivalences, Σ-types, Π-types and
prop. truncation.

I If G is a (finite) graph, then the following types are (finite) sets.
I The star at x for any node x is a (finite) set
I The maps of G is a (finite) set

I The spherical maps of G is a (finite) set
I The faces of any map for G is a (finite) set, and
I The walks without inner loops in G is a (finite) set.

I The collection of planar maps of G is a (finite) set.
I One can construct for every graph Cn a planar map, which can help us to construct

more planar graphs!

Lemmas

I (Finite) sets are closed under (co) products, type equivalences, Σ-types, Π-types and
prop. truncation.

I If G is a (finite) graph, then the following types are (finite) sets.
I The star at x for any node x is a (finite) set
I The maps of G is a (finite) set
I The spherical maps of G is a (finite) set

I The faces of any map for G is a (finite) set, and
I The walks without inner loops in G is a (finite) set.

I The collection of planar maps of G is a (finite) set.
I One can construct for every graph Cn a planar map, which can help us to construct

more planar graphs!

Lemmas

I (Finite) sets are closed under (co) products, type equivalences, Σ-types, Π-types and
prop. truncation.

I If G is a (finite) graph, then the following types are (finite) sets.
I The star at x for any node x is a (finite) set
I The maps of G is a (finite) set
I The spherical maps of G is a (finite) set
I The faces of any map for G is a (finite) set, and

I The walks without inner loops in G is a (finite) set.
I The collection of planar maps of G is a (finite) set.
I One can construct for every graph Cn a planar map, which can help us to construct

more planar graphs!

Lemmas

I (Finite) sets are closed under (co) products, type equivalences, Σ-types, Π-types and
prop. truncation.

I If G is a (finite) graph, then the following types are (finite) sets.
I The star at x for any node x is a (finite) set
I The maps of G is a (finite) set
I The spherical maps of G is a (finite) set
I The faces of any map for G is a (finite) set, and
I The walks without inner loops in G is a (finite) set.

I The collection of planar maps of G is a (finite) set.
I One can construct for every graph Cn a planar map, which can help us to construct

more planar graphs!

Lemmas

I (Finite) sets are closed under (co) products, type equivalences, Σ-types, Π-types and
prop. truncation.

I If G is a (finite) graph, then the following types are (finite) sets.
I The star at x for any node x is a (finite) set
I The maps of G is a (finite) set
I The spherical maps of G is a (finite) set
I The faces of any map for G is a (finite) set, and
I The walks without inner loops in G is a (finite) set.

I The collection of planar maps of G is a (finite) set.

I One can construct for every graph Cn a planar map, which can help us to construct
more planar graphs!

Lemmas

I (Finite) sets are closed under (co) products, type equivalences, Σ-types, Π-types and
prop. truncation.

I If G is a (finite) graph, then the following types are (finite) sets.
I The star at x for any node x is a (finite) set
I The maps of G is a (finite) set
I The spherical maps of G is a (finite) set
I The faces of any map for G is a (finite) set, and
I The walks without inner loops in G is a (finite) set.

I The collection of planar maps of G is a (finite) set.
I One can construct for every graph Cn a planar map, which can help us to construct

more planar graphs!

A refinement for spherical maps
How to construct terms of type Planar(G) for some given graph G?

x

y

J. Prieto-Cubides | 17 / 33

A refinement for spherical maps
How to construct terms of type Planar(G) for some given graph G?

x

y

J. Prieto-Cubides | 17 / 33

A refinement for spherical maps
How to construct terms of type Planar(G) for some given graph G?

isSpherical2(G ,M) :≡
∏

(x ,y :NodeG)

∏
(w1,w2:WG (x ,y))

isQuasi(w1)×isQuasi(w2)→ ‖w1 ∼M w2‖.

I Examples of walks that are quasi-simple

•x •x •y •x •x •y
w1

w2

w3

w4

I Examples of walks that are not quasi-simple

•x

w1

w2 •x •y

w3

w4 •x •y •z
w5

w6

w7

J. Prieto-Cubides | 18 / 33

Quasi-simple walks
Assuming the node set is discrete, let x , y , z : NodeG and w : WG(x , z).

I The membership relation (∈) on a walk w for a node y is defined as the node y
belonging to w whenever the type (y ∈ w) is inhabited.
I z ∈ 〈y〉 :≡ 0.
I z ∈ (e � w) :≡ (z = head(e)) + (z ∈ w).

I isQuasi(w) :≡
∏

(z:NodeG) isProp(z ∈ w)
I One can define a relation on walks () to remove loops
I Normal(p) :≡ isQuasi(p)× ¬

∑
(q:WG (x ,y))(p q).

I Thm. (∈), isQuasi, Normal are all decidable propositions.
I Thm. The type

∑
(v :W(x ,z))(w ∗ v)× Normal(v) is inhabited for any walk w .

I Thm. Given a spherical mapM, the type∑
(v :W(x ,z))(w ∗ v)× Normal(v)× ‖w ∼M v‖ is inhabited for any walk w .

I The two spherical definitions are locally equivalent!

Quasi-simple walks
Assuming the node set is discrete, let x , y , z : NodeG and w : WG(x , z).
I The membership relation (∈) on a walk w for a node y is defined as the node y

belonging to w whenever the type (y ∈ w) is inhabited.

I z ∈ 〈y〉 :≡ 0.
I z ∈ (e � w) :≡ (z = head(e)) + (z ∈ w).

I isQuasi(w) :≡
∏

(z:NodeG) isProp(z ∈ w)
I One can define a relation on walks () to remove loops
I Normal(p) :≡ isQuasi(p)× ¬

∑
(q:WG (x ,y))(p q).

I Thm. (∈), isQuasi, Normal are all decidable propositions.
I Thm. The type

∑
(v :W(x ,z))(w ∗ v)× Normal(v) is inhabited for any walk w .

I Thm. Given a spherical mapM, the type∑
(v :W(x ,z))(w ∗ v)× Normal(v)× ‖w ∼M v‖ is inhabited for any walk w .

I The two spherical definitions are locally equivalent!

Quasi-simple walks
Assuming the node set is discrete, let x , y , z : NodeG and w : WG(x , z).
I The membership relation (∈) on a walk w for a node y is defined as the node y

belonging to w whenever the type (y ∈ w) is inhabited.
I z ∈ 〈y〉 :≡ 0.

I z ∈ (e � w) :≡ (z = head(e)) + (z ∈ w).
I isQuasi(w) :≡

∏
(z:NodeG) isProp(z ∈ w)

I One can define a relation on walks () to remove loops
I Normal(p) :≡ isQuasi(p)× ¬

∑
(q:WG (x ,y))(p q).

I Thm. (∈), isQuasi, Normal are all decidable propositions.
I Thm. The type

∑
(v :W(x ,z))(w ∗ v)× Normal(v) is inhabited for any walk w .

I Thm. Given a spherical mapM, the type∑
(v :W(x ,z))(w ∗ v)× Normal(v)× ‖w ∼M v‖ is inhabited for any walk w .

I The two spherical definitions are locally equivalent!

Quasi-simple walks
Assuming the node set is discrete, let x , y , z : NodeG and w : WG(x , z).
I The membership relation (∈) on a walk w for a node y is defined as the node y

belonging to w whenever the type (y ∈ w) is inhabited.
I z ∈ 〈y〉 :≡ 0.
I z ∈ (e � w) :≡ (z = head(e)) + (z ∈ w).

I isQuasi(w) :≡
∏

(z:NodeG) isProp(z ∈ w)
I One can define a relation on walks () to remove loops
I Normal(p) :≡ isQuasi(p)× ¬

∑
(q:WG (x ,y))(p q).

I Thm. (∈), isQuasi, Normal are all decidable propositions.
I Thm. The type

∑
(v :W(x ,z))(w ∗ v)× Normal(v) is inhabited for any walk w .

I Thm. Given a spherical mapM, the type∑
(v :W(x ,z))(w ∗ v)× Normal(v)× ‖w ∼M v‖ is inhabited for any walk w .

I The two spherical definitions are locally equivalent!

Quasi-simple walks
Assuming the node set is discrete, let x , y , z : NodeG and w : WG(x , z).
I The membership relation (∈) on a walk w for a node y is defined as the node y

belonging to w whenever the type (y ∈ w) is inhabited.
I z ∈ 〈y〉 :≡ 0.
I z ∈ (e � w) :≡ (z = head(e)) + (z ∈ w).

I isQuasi(w) :≡
∏

(z:NodeG) isProp(z ∈ w)

I One can define a relation on walks () to remove loops
I Normal(p) :≡ isQuasi(p)× ¬

∑
(q:WG (x ,y))(p q).

I Thm. (∈), isQuasi, Normal are all decidable propositions.
I Thm. The type

∑
(v :W(x ,z))(w ∗ v)× Normal(v) is inhabited for any walk w .

I Thm. Given a spherical mapM, the type∑
(v :W(x ,z))(w ∗ v)× Normal(v)× ‖w ∼M v‖ is inhabited for any walk w .

I The two spherical definitions are locally equivalent!

Quasi-simple walks
Assuming the node set is discrete, let x , y , z : NodeG and w : WG(x , z).
I The membership relation (∈) on a walk w for a node y is defined as the node y

belonging to w whenever the type (y ∈ w) is inhabited.
I z ∈ 〈y〉 :≡ 0.
I z ∈ (e � w) :≡ (z = head(e)) + (z ∈ w).

I isQuasi(w) :≡
∏

(z:NodeG) isProp(z ∈ w)
I One can define a relation on walks () to remove loops

I Normal(p) :≡ isQuasi(p)× ¬
∑

(q:WG (x ,y))(p q).
I Thm. (∈), isQuasi, Normal are all decidable propositions.
I Thm. The type

∑
(v :W(x ,z))(w ∗ v)× Normal(v) is inhabited for any walk w .

I Thm. Given a spherical mapM, the type∑
(v :W(x ,z))(w ∗ v)× Normal(v)× ‖w ∼M v‖ is inhabited for any walk w .

I The two spherical definitions are locally equivalent!

Quasi-simple walks
Assuming the node set is discrete, let x , y , z : NodeG and w : WG(x , z).
I The membership relation (∈) on a walk w for a node y is defined as the node y

belonging to w whenever the type (y ∈ w) is inhabited.
I z ∈ 〈y〉 :≡ 0.
I z ∈ (e � w) :≡ (z = head(e)) + (z ∈ w).

I isQuasi(w) :≡
∏

(z:NodeG) isProp(z ∈ w)
I One can define a relation on walks () to remove loops
I Normal(p) :≡ isQuasi(p)× ¬

∑
(q:WG (x ,y))(p q).

I Thm. (∈), isQuasi, Normal are all decidable propositions.
I Thm. The type

∑
(v :W(x ,z))(w ∗ v)× Normal(v) is inhabited for any walk w .

I Thm. Given a spherical mapM, the type∑
(v :W(x ,z))(w ∗ v)× Normal(v)× ‖w ∼M v‖ is inhabited for any walk w .

I The two spherical definitions are locally equivalent!

Quasi-simple walks
Assuming the node set is discrete, let x , y , z : NodeG and w : WG(x , z).
I The membership relation (∈) on a walk w for a node y is defined as the node y

belonging to w whenever the type (y ∈ w) is inhabited.
I z ∈ 〈y〉 :≡ 0.
I z ∈ (e � w) :≡ (z = head(e)) + (z ∈ w).

I isQuasi(w) :≡
∏

(z:NodeG) isProp(z ∈ w)
I One can define a relation on walks () to remove loops
I Normal(p) :≡ isQuasi(p)× ¬

∑
(q:WG (x ,y))(p q).

I Thm. (∈), isQuasi, Normal are all decidable propositions.

I Thm. The type
∑

(v :W(x ,z))(w ∗ v)× Normal(v) is inhabited for any walk w .
I Thm. Given a spherical mapM, the type∑

(v :W(x ,z))(w ∗ v)× Normal(v)× ‖w ∼M v‖ is inhabited for any walk w .
I The two spherical definitions are locally equivalent!

Quasi-simple walks
Assuming the node set is discrete, let x , y , z : NodeG and w : WG(x , z).
I The membership relation (∈) on a walk w for a node y is defined as the node y

belonging to w whenever the type (y ∈ w) is inhabited.
I z ∈ 〈y〉 :≡ 0.
I z ∈ (e � w) :≡ (z = head(e)) + (z ∈ w).

I isQuasi(w) :≡
∏

(z:NodeG) isProp(z ∈ w)
I One can define a relation on walks () to remove loops
I Normal(p) :≡ isQuasi(p)× ¬

∑
(q:WG (x ,y))(p q).

I Thm. (∈), isQuasi, Normal are all decidable propositions.
I Thm. The type

∑
(v :W(x ,z))(w ∗ v)× Normal(v) is inhabited for any walk w .

I Thm. Given a spherical mapM, the type∑
(v :W(x ,z))(w ∗ v)× Normal(v)× ‖w ∼M v‖ is inhabited for any walk w .

I The two spherical definitions are locally equivalent!

Quasi-simple walks
Assuming the node set is discrete, let x , y , z : NodeG and w : WG(x , z).
I The membership relation (∈) on a walk w for a node y is defined as the node y

belonging to w whenever the type (y ∈ w) is inhabited.
I z ∈ 〈y〉 :≡ 0.
I z ∈ (e � w) :≡ (z = head(e)) + (z ∈ w).

I isQuasi(w) :≡
∏

(z:NodeG) isProp(z ∈ w)
I One can define a relation on walks () to remove loops
I Normal(p) :≡ isQuasi(p)× ¬

∑
(q:WG (x ,y))(p q).

I Thm. (∈), isQuasi, Normal are all decidable propositions.
I Thm. The type

∑
(v :W(x ,z))(w ∗ v)× Normal(v) is inhabited for any walk w .

I Thm. Given a spherical mapM, the type∑
(v :W(x ,z))(w ∗ v)× Normal(v)× ‖w ∼M v‖ is inhabited for any walk w .

I The two spherical definitions are locally equivalent!

Quasi-simple walks
Assuming the node set is discrete, let x , y , z : NodeG and w : WG(x , z).
I The membership relation (∈) on a walk w for a node y is defined as the node y

belonging to w whenever the type (y ∈ w) is inhabited.
I z ∈ 〈y〉 :≡ 0.
I z ∈ (e � w) :≡ (z = head(e)) + (z ∈ w).

I isQuasi(w) :≡
∏

(z:NodeG) isProp(z ∈ w)
I One can define a relation on walks () to remove loops
I Normal(p) :≡ isQuasi(p)× ¬

∑
(q:WG (x ,y))(p q).

I Thm. (∈), isQuasi, Normal are all decidable propositions.
I Thm. The type

∑
(v :W(x ,z))(w ∗ v)× Normal(v) is inhabited for any walk w .

I Thm. Given a spherical mapM, the type∑
(v :W(x ,z))(w ∗ v)× Normal(v)× ‖w ∼M v‖ is inhabited for any walk w .

I The two spherical definitions are locally equivalent!

Planar extensions∗: planar synthesis

p′

uû

v̂

a

a+

b+

b

v

F1

0

n-1

(a) Addition of p to G .

p q

r

(b) The embedded graph U(G • p • q • r).

J. Prieto-Cubides | 20 / 33

Planar extensions∗: planar synthesis

F1 F3F
F2 F2

F4

Figure: The figure is a planar synthesis of the construction of a planar map for K4 from a planar
map of C3. One first divides the face F into F1 and F2. Then one splits F1 into F3 and F4.

I In a synthesis from a connected graph, every graph in the sequence is connected.
I In a planar synthesis, every graph in the sequence is planar.

J. Prieto-Cubides | 20 / 33

Planar extensions∗: construct any biconnected planar graph
I Biconnected(G) :≡

∏
x :NG

Connected(G − x).
I If G is a cyclic graph, then U(G) is 2-connected.
I The 2-connectedness of a graph is not preserved by simple path additions.
I Suppose G is a 2-connected graph, then the following claims hold.

1. Every node in G has degree of minimum two.
2. There exists a cyclic graph H and an injective morphism from U(H) to G .
3. The graphs G • p, U(G • p), and U(G) • p are all 2-connected.

I In a non-simple Whitney synthesis of G of length n from a 2-connected cyclic graph
H, every graph Gi in the sequence is a 2-connected planar graph.

J. Prieto-Cubides | 21 / 33

Realisations of graphs
Let G be a directed multigraph. We denote by Gn(G) the topological realisation of G that
considers the first n layers, i.e. 0-, 1-, · · · , and n-cells.

I One layer:

data G1(G : Graph) : U
n : Node(G)→ G1(G)
e : Π(a b : Node(G)) .Edge(G , a, b)→ n(a) = n(b).

I Two layer: Given a combinatorial mapM for G :

data G2(G : Graph) : U
n : Node(G)→ G2(G)
e : Π(a b : Node(G)) .Edge(G , a, b)→ n(a) = n(b)
f : Π(F :Face(G,M)) .Π(a b :Node(F) .w(cw(F , a, b)) = w(ccw(F , a, b)).

F a •

b •
ccw cw

Realisations of graphs
Let G be a directed multigraph. We denote by Gn(G) the topological realisation of G that
considers the first n layers, i.e. 0-, 1-, · · · , and n-cells.
I One layer:

data G1(G : Graph) : U
n : Node(G)→ G1(G)
e : Π(a b : Node(G)) .Edge(G , a, b)→ n(a) = n(b).

I Two layer: Given a combinatorial mapM for G :

data G2(G : Graph) : U
n : Node(G)→ G2(G)
e : Π(a b : Node(G)) .Edge(G , a, b)→ n(a) = n(b)
f : Π(F :Face(G,M)) .Π(a b :Node(F) .w(cw(F , a, b)) = w(ccw(F , a, b)).

F a •

b •
ccw cw

Realisations of graphs
Let G be a directed multigraph. We denote by Gn(G) the topological realisation of G that
considers the first n layers, i.e. 0-, 1-, · · · , and n-cells.
I One layer:

data G1(G : Graph) : U
n : Node(G)→ G1(G)
e : Π(a b : Node(G)) .Edge(G , a, b)→ n(a) = n(b).

I Two layer: Given a combinatorial mapM for G :

data G2(G : Graph) : U
n : Node(G)→ G2(G)
e : Π(a b : Node(G)) .Edge(G , a, b)→ n(a) = n(b)
f : Π(F :Face(G,M)) .Π(a b :Node(F) .w(cw(F , a, b)) = w(ccw(F , a, b)).

F a •

b •
ccw cw

The elimination principle for the two-level top. realisation

𝐴-𝕗 𝐹 𝑎 𝑏

𝕗 𝐹 𝑎 𝑏

𝐹 𝑎 𝑏

(𝑙 ∶ N𝐺)

(𝐺 ∶ Graph) (𝑥 ∶ N𝐺) (𝑦 ∶ N𝐺) (𝑧 ∶ N𝐺)

(𝕟 𝑙 ∶ 𝔾)

(𝑔 ∶ 𝔾) Type (𝕟 𝑥 ∶ 𝔾) (𝕟 𝑦 ∶ 𝔾) (𝕟 𝑧 ∶ 𝔾)

𝐴-𝕟 𝑙

𝐴 𝑔 𝐴-𝕟 𝑥 𝐴-𝕟 𝑦 𝐴-𝕟 𝑧

walk𝑙𝑧

2-HIT

𝑒𝑥𝑦

𝑒𝑥𝑙

𝕟

walk𝑦𝑧

𝔾-ind

𝐴

𝐴-𝕟

𝕖 𝑒𝑥𝑙

𝕖 𝑒𝑥𝑦 to-eq(walkyz)

𝐴-𝕖 𝑒𝑥𝑦

𝐴-𝕖 𝑒𝑥𝑙

to-deq(walkyz)

Work in progress

Goal
Let G be a nonempty finite planar graph with n nodes. Then G2(G) ' S2.

I Lem. 1.
a. G2(•) ' S2.
b. G2(T) ' G2(•) for a tree T .

I Let G be a graph with a mapM.
I Lem. 2. Face contraction preserves planarity
I Lem. 3. H is obtained by contracting a face F ofM, then G2(G) ' G2(H).

Work in progress

Goal
Let G be a nonempty finite planar graph with n nodes. Then G2(G) ' S2.

I Lem. 1.
a. G2(•) ' S2.
b. G2(T) ' G2(•) for a tree T .

I Let G be a graph with a mapM.
I Lem. 2. Face contraction preserves planarity
I Lem. 3. H is obtained by contracting a face F ofM, then G2(G) ' G2(H).

Goal
Let G be a nonempty finite planar graph with n nodes. Then G2(G) ' S2.

Proof.
I Case n = 1. Apply Lemma 1a. The graph is •.
I Case n > 1. LetM be a planar map for G . Because G is a nonempty finite graph,

then let m be the number of faces ofM. We proceed by induction on m.
I Case m = 0. Impossible.
I Case m = 1. Apply Lemma 1b. The graph G is a tree.
I Case m > 1. Let F be a face ofM. By contracting the face F , one obtains a graph G ′

and a mapM′ such that (G ,M) F (G ′,M′). Therefore, G ′ has m − 1 faces and by
Lemma 3, one gets that G2(G) ' G2(G ′). By Lemma 2, the mapM′ is planar. Now, if
n′ and k denote the number of nodes of G ′ and F , respectively, then n′ = n − (k − 1)
and k > 0. By applying the induction hypothesis to G ′,M′, an equivalence
G2(G ′) ' S2 is obtained. Finally, the conclusion follows from the chain of equivalences:

G2(G) ' G2(G ′) ' S2.

Bonus slides

J. Prieto-Cubides | 25 / 33

Notation

definitions :≡
jugdemental equalities ≡

identity type =
type equivalences '
univalent universe U
“a is of type A” (a : A)

Σ-types Σx :AB(x)
Π-types Πx :AB(x)

natural numbers N
empty type and unit type 0 and 1
the type with n points [n] where n : N

propositional truncation of A ‖A‖

References I

I G. Bauer and T. Nipkow.
The 5 colour theorem in isabelle/isar.
In V. A. Carreño, C. A. Muñoz, and S. Tahar, editors, Theorem Proving in Higher
Order Logics, 15th International Conference, TPHOLs 2002, Hampton, VA, USA,
August 20-23, 2002, Proceedings, pages 67–82, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

I G. J. Bauer.
Formalizing Plane Graph Theory: Towards a Formalized Proof of the Kepler
Conjecture.
PhD thesis, Technische Universität München, Germany, 2005.

J. Prieto-Cubides | 26 / 33

References II
I P. Giblin.

Graphs, Surfaces and Homology.
Springer, 2010.

I G. Gonthier.
Formal proof–the four-color theorem.
Notices of the AMS, 55(11):1382–1393, 2008.

I J. L. Gross and T. W. Tucker.
Topology Graph Theory.
Dover, Ny, Usa, 1987.

I T. Univalent Foundations Program.
Homotopy Type Theory: Univalent Foundations of Mathematics.
https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

J. Prieto-Cubides | 26 / 33

https://homotopytypetheory.org/book

References III
I M. Yamamoto, S. Nishizaki, M. Hagiya, and Y. Toda.

Formalization of planar graphs.
In E. T. Schubert, P. J. Windley, and J. Alves-Foss, editors, Higher Order Logic
Theorem Proving and Its Applications, 8th International Workshop, Aspen Grove, UT,
USA, September 11-14, 1995, Proceedings, volume 971 of Lecture Notes in Computer
Science, pages 369–384, Ut, Usa, 1995. Springer.

J. Prieto-Cubides | 26 / 33

university of bergen

Combinatorial methods for graph embeddings

I Graph embeddings in surfaces can be analyzed by combinatorial methods. (See §
3.1.4 in [5]) e.g., rotation systems

I The generalization of the Schoenflies theorem states that for any embedding G to S,
the graph G is contained in the 1-skeleton of a triangulation of the surface S

P

→
P

Structure on a graph

Definition (Graph class)
A class C of graphs is given by the collection of graphs that holds some given structure
P : Graph → U

C :≡
∑

(G:Graph)
P(G)

Examples:
I isUndirected(G) :≡ Πx ,y :NodeG EdgeG(x , y)→ EdgeG(y , x)
I isFiniteGraph(G) :≡ isFinite(NodeG) ×

∏
x ,y :NodeG

isFinite(EdgeG(x , y))

Definition (Homotopy levels)
Let n : N, n ≥ 2. A type A is called n-type when is-level(n,A).

is-level(−2,A) :≡
∑

(c:A)
∏

(x :A)(c = x) and is-level(n + 1,A) :≡
∏

(x ,y :A) is-level(n,A).

I n −2 −1 0 1
is-level(n,A) isContr(A) isProp(A) isSet(A) isGroupoid(A)

Definition (Propositional truncation)
Propositional truncation of a type A denoted by ‖A‖ is the
universal solution to the problem of mapping A to a
proposition P.

A ‖A‖

P

|-|

f trunc-elim

I P ∨ Q :≡ ‖P + Q‖, P ∧ Q :≡ ‖P × Q‖, and ∃(x : A)P(x) :≡ ‖Σx :APx‖.

Examples of families of graphs (N→ Graph)
I The family of cycle graphs:

Definition (n-cycle graph)
Given n : N, an n-cycle graph denoted by Cn is defined by Cn :≡ ([n], λ u v .u = pred(v))
for n ≥ 1 and C0 as the one-point graph.

C1 C2 C3 C4 C5C0

J. Prieto-Cubides | 28 / 33

Lemmas
Given x , y , z : NG , e : EG(x , y) and a quasi-simple walk w : WG(y , z),
I if x 6∈ w then the walk (e � w) is quasi-simple.
I if the walk (e � w) is a quasi-simple walk then w is also a quasi-simple walk.
I if the lenght of w is n, then JnK ' Σ(y :NG)(y ∈ w).
I If the node-set of G is discrete then

I being quasi-simple for a walk is a decidable proposition.
I the type (x ∈ w) is a finite set.

I Given x , y : NG and n : N, the type qswalk collects all quasi-simple walks of a fixed
length n.

qswalk(n, x , y) :≡
∑

(w :WG (x ,y))
isQuasi(w)× (length(w) = n).

I Given a graph G , n : N, and x , z : NG , the following equivalence holds.

qswalk(S(n), x , z) '
∑

(y :NG)

∑
(e:EG (x ,y))

∑
(w :qswalk(n,y ,z))

(x 6∈ w)

Lemmas
I Given a finite graph, x , y : NG and n : N, the type qswalk(n, x , y) is a finite set.
I Let G be a finite graph. Then the following type is a finite set.∑

(x ,y :NG)

∑
(m:Jn+1K)

qswalk(m, x , y).

I Given a graph G with finite node-set, x , y : NG and a quasi-simple walk w : WG(x , y)
of length m, then it holds that m ≤ n.

I Given a graph G with finite node-set and x , y : NG , the following equivalence holds.∑
(w :WG (x ,y))

isQuasi(w) '
∑

(m:Jn+1K)
qswalk(m, x , y).

I The quasi-simple walks of a finite graph G forms a finite set.∑
(x ,y :NG)

∑
(w :W(x ,y))

isQuasi(w).

Loop-reduction relation on walks

data () : Π {x , y : NG}.WG (x , y)→WG (x , y)→ U
ξ1 : Π {x y} . (p : WG (x , y)) (q : WG (x , y))

→ NonTrivialLoop(p)→ Trivial(q)
→ p q

ξ2 : Π {x y z} . (e : EG (x , y)) (p, q : WG (y , z))
→ ¬ Loop(e � p)→ x 6= y
→ (p q)→ (e � p) (e � q)

ξ3 : Π {x y z} . (e : EG (x , y)) (p : WG (y , x)) (q : WG (x , z))
→ ¬ Loop((e � p) · q)→ Loop(e � p)
→ NonTrivial(q)
→ (w : WG (x , z))→ w = (e � p) · q
→ w q •x •x

•x •y •z •y •ze

p

q q

ξ1

ξ3

I The relation (∗) is the reflexive and transitive closure of the relation ().
I Given x , y : NG and p, q : WG(x , y), the following claims hold:

1. If x ∈ q and p ∗ q then x ∈ p.
2. If p q then length(q) < length(p).

I Given a walk p : WG(x , y), Reduce(p) :≡ Σ(q:WG (x ,y))(p q).
I Given a walk p, one states that p is in normal form if Normal(p). If p q and q is

in normal form, we refer to q as the normal formal of p.

Normal(p) :≡ isQuasi(p)× ¬Reduce(p).

I Being in normal form for a walk is a proposition.

Theorem (Normalisation)

I Given a graph G with discrete node-set, there exists a reduction for each walk to one
of its normal forms.

Σ(v :WG (x ,z))(w ∗ v)× Normal(v).

I Given a graph G and a walk w of type WG(x , y) for two x , y : NG , the following
claims hold.
1. The type Reduce(w) is decidable.
2. The proposition Normal(w) is decidable.
3. The walk w progresses.

	Appendix

