BERGEN UNIVALENT FOUNDATIONS MEETING

Investigations on graph-
theoretical constructionsin HoTT

Jonathan Prieto-Cubides j.w.w. Hakon R. Gylterud

November 18, 2021 UNIVERSITETET I BERGEN [

Setup

How to formulate planarity of graphs in HoTT?

Setup

How to formulate planarity of graphs in HoTT?
In graph theory, a planar graph is a graph that can be embedded in the plane.

Setup

How to formulate planarity of graphs in HoTT?
In graph theory, a planar graph is a graph that can be embedded in the plane.

» Topological graph theory is about the placement of graphs on surfaces

» A graph embedding in a surface is a continuous one-to-one function from a
topological representation of the graph into the surface

Overview

1. -e The category of graphs

1. ,l Planarity as structure on a graph
3. —i Intermediate results

.

Realisation of graphs (w.i.p)

Graphs
» A (directed multigraph) graph is an object of type Graph:

Graph:=)~ > isSet(Node) x [isSet(Edge(x, y)).
(Node:f) (Edge:Node—Node—A) (x,y:Node)

Graphs
» A (directed multigraph) graph is an object of type Graph:

Graph:=)~ > isSet(Node) x [isSet(Edge(x, y)).
(Node:f) (Edge:Node—Node—A) (x,y:Node)

» isFiniteGraph(G) := isFinite(Node(G)) X [1 ,:node(c) isFinite(Edge(G)(x, y))

Graphs
» A (directed multigraph) graph is an object of type Graph:

Graph:=)~ > isSet(Node) x [isSet(Edge(x, y)).
(Node:f) (Edge:Node—Node—A) (x,y:Node)

» isFiniteGraph(G) := isFinite(Node(G)) X [1 ,:node(c) isFinite(Edge(G)(x, y))
» The empty graph is (0, A\{()},!,!)

Graphs
» A (directed multigraph) graph is an object of type Graph:

Graph:=)~ > isSet(Node) x [isSet(Edge(x, y)).
(Node:f) (Edge:Node—Node—A) (x,y:Node)

» isFiniteGraph(G) := isFinite(Node(G)) X [1 ,:node(c) isFinite(Edge(G)(x, y))
» The empty graph is (0, A\{()},!,!)
» The unit graph is (1, Auv.0, 1)

Graphs
» A (directed multigraph) graph is an object of type Graph:

Graph:=)~ > isSet(Node) x [isSet(Edge(x, y)).
(Node:f) (Edge:Node—Node—A) (x,y:Node)

» isFiniteGraph(G) := isFinite(Node(G)) X [1 ,:node(c) isFinite(Edge(G)(x, y))
» The empty graph is (0, A\{()},!,!)

» The unit graph is (1, Auv.0, 1)

» The graph with n points and no edges ([n], A uv.0,!,)

Graphs
» A (directed multigraph) graph is an object of type Graph:

Graph:=)~ > isSet(Node) x [isSet(Edge(x, y)).
(Node:f) (Edge:Node—Node—A) (x,y:Node)

» isFiniteGraph(G) := isFinite(Node(G)) X [1 ,:node(c) isFinite(Edge(G)(x, y))
» The empty graph is (0, A\{()},!,!)

» The unit graph is (1, Auv.0, 1)

» The graph with n points and no edges ([n], A uv.0,!,)

» The cycle graph of n points is (N, A\ uv.u = pred(v),!,!)

O, o
o
o o
O+——0 Oe——0

The category of graphs
» A (directed multigraph) graph is an object of type Graph:

Graph:=)~ > isSet(Node) x [isSet(Edge(x, y)).
(Node:f) (Edge:Node—Node—A) (x,y:Node)

The category of graphs
» A (directed multigraph) graph is an object of type Graph:

Graph:=)~ > isSet(Node) x [isSet(Edge(x, y)).

(Node:Uf) (Edge:Node—Node—/) (x,y:Node)

» Structure-preserving functions are the graph homomorphisms («, ()

x - -
ov ~\Acc>v(z)
B(z,y)
\’“— "~\‘

° On—
o)

\ N
G 5\/"\‘%

The category of graphs
» A (directed multigraph) graph is an object of type Graph:

Graph:=)~ > isSet(Node) x [isSet(Edge(x, y)).
(Node:f) (Edge:Node—Node—A) (x,y:Node)

» Structure-preserving functions are the graph homomorphisms («, /3)

» The canonical map G = H — G = H is an equivalence

The category of graphs
» A (directed multigraph) graph is an object of type Graph:

Graph:=)~ > isSet(Node) x [isSet(Edge(x, y)).
(Node:f) (Edge:Node—Node—A) (x,y:Node)

» Structure-preserving functions are the graph homomorphisms («, /3)
» The canonical map G = H — G = H is an equivalence

» Graphs and graph homomorphisms form a category

The category of graphs
» A (directed multigraph) graph is an object of type Graph:

Graph:=)~ > isSet(Node) x [isSet(Edge(x, y)).
(Node:f) (Edge:Node—Node—A) (x,y:Node)

» Structure-preserving functions are the graph homomorphisms («, /3)
» The canonical map G = H — G = H is an equivalence
» Graphs and graph homomorphisms form a category

» Isomorphic graphs hold the same properties

The category of graphs
» A (directed multigraph) graph is an object of type Graph:

Graph:=)~ > isSet(Node) x [isSet(Edge(x, y)).
(Node:f) (Edge:Node—Node—A) (x,y:Node)

Structure-preserving functions are the graph homomorphisms (a, 3)
The canonical map G = H — G = H is an equivalence
Graphs and graph homomorphisms form a category

Isomorphic graphs hold the same properties

vVvyyYyyVvyy

The type Graph is a groupoid

How to formulate planarity for graphs in HoTT?

A graph is planar if and only if
» it has an embedding into the sphere or into the plane.
» it contains no subdivisions of Ks or K33 (Kuratowski 1930)
» it has an abstract dual (Whitney 1932)
» its cycle space has a sparse basis (Mac Lane 1937)
» the dimension of its incidence order is < 4 (Schnyder 1989)
Works on formal verification of results on planar graphs define planarity by:
» hypermaps as in the proof of The Four-colour theorem [4]

» inductive definitions (e.g. graph cycles [7], near triangulations [1], and
directed face walks [2]

Ingredients:

Planar map
Connected graph Spherical map Faces
Walks Map Cyclic graph

— | |

Cyclic sets Stars Walk homotopies Cycle graph

Ingredients: walks and connected graphs

Planar map
/
Connected graph Sphericlal map Faces
— !
W(}Iks Map Cyclic graph
—
Cyclic sets Stlars Walk homotopies Cyclelgraph

Basics:
> A walk in a graph G is build by one of the following constructors.
» If x : Node(G) then (x) : W(x, x)
> If x,y,z: Node(G), e : Edge(G, x,y),w : W(y, z), then e ® w : W(x, z)
» isGraphConnected(G) :=]« y:Node(c)) WX, Y)

Ingredients: Graph embeddings/combinatorial maps

Theorem (pp. 113 in [5])

» Every locally oriented embedding from a
graph G to a surface S defines a rotation
system for G.

» Conversely, every rotation system on a
graph G defines, up to equivalence of
embeddings, a unique locally oriented graph
embedding from G to S.

Ingredients: Graph embeddings/combinatorial maps

The essential information of a graph embedding is stored in the cyclic order of the edges
incident at each node.

> Map(G) = [1(xNode()) Cyclic(Stary(c)(x))
» U(G) := (Node(G), Edge(G)(x,y) + Edge(G)(y,x),!,!) b

{7

Ingredients: Graph embeddings/combinatorial maps

The essential information of a graph embedding is stored in the cyclic order of the edges
incident at each node.

> Map(G) = [1(xNode()) Cyclic(Stary(c)(x))
» U(G) := (Node(G), Edge(G)(x,y) + Edge(G)(y,x),!,!) b

{7

Ingredients: Graph embeddings/combinatorial maps

The essential information of a graph embedding is stored in the cyclic order of the edges
incident at each node.

> Map(G) = [I(x:node(c)) Cyelic(Stary(g)(x))
» U(G) := (Node(G), Edge(G)(x,y) + Edge(G)(y,x),!,!) b
> StarG(X = Z(y:Node(G)) Edge(H)(Xay)

{7

Ingredients: Graph embeddings/combinatorial maps

The essential information of a graph embedding is stored in the cyclic order of the edges
incident at each node.

> Map(G) = [I(x:node(c)) Cyelic(Stary(g)(x))

» U(G) := (Node(G), Edge(G)(x,y) + Edge(G)(y,x),!,!) b
> Starg(x) := X (y:Node(c)) Edge(H)(x,)

> Cyclic(A) := 3 (p:a54) 2(nN) | Z(eavn)) €0 9 = pred o e

a
R ~

[n] T pred [n]

8

Ingredients: Graph embeddings/combinatorial maps

The essential information of a graph embedding is stored in the cyclic order of the edges
incident at each node.

> Map(G) = [(x:Node(c)) Cyclic(Stary(c)(x))

» U(G) := (Node(G), Edge(G)(x,y) + Edge(G)(y,x),!,!) b
> Starg(x) := X (y:Node(c)) Edge(H)(x,)

> Cyclic(A) := 3 (p:a54) 2(nN) | Z(eavn)) €0 9 = pred o e

a
A A n—1 & g Py _/
l, i pred"——1 pred’—2
[n]

8

— [n] j——— i1 p

How many maps does a graph have?
T (D
Sy Oy)

(d)

Figure: The six possible maps of the bouquet B;.

» The surface arising from the maps M, and M, is the two-dimensional plane.

» For the map M., the surface is the topological torus.
M, =0~ (a”a"b"b7)).
Mp = (0+— (a”a" b7 b")).
Mc:= (00— (a7b7a"b")).

What maps embed a graph in the plane/sphere?

Face of a map

A face of a map M is a circuit in the graph with some special condition:
A face consists of the following data:

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

Face of a map

A face of a map M is a circuit in the graph with some special condition:
A face consists of the following data:

» A cyclic graph A,

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

Face of a map

A face of a map M is a circuit in the graph with some special condition:
A face consists of the following data:

> A cyclic graph A,

CyclicGraph(G) := > > (G, ¢) = (Ca,rot)]| -
(p:Hom(G,G)) (n:N)

iscyclic(G,p,n)

- O= AL O

Co Cy Cs

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

Face of a map

A face of a map M is a circuit in the graph with some special condition:
A face consists of the following data:

» A cyclic graph A,
» an edge-injective homomorphism h = («a, 3) : Hom(A, U(G)), such that ...

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

Face of a map

A face of a map M is a circuit in the graph with some special condition:
A face consists of the following data:

» A cyclic graph A,
» an edge-injective homomorphism h = («,) : Hom(A, U(G)), such that ...

A graph homomorphism h, (a,) : Hom(G, H), is edge-injective if for any
er, e Ec(x,y), x,y : NG, when B(x,y, e1) =g, (a(x),a(y)) B(X, ¥,) then
€1 =Eg(x,y) €2

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

Face of a map

A face of a map M is a circuit in the graph with some special condition:
A face consists of the following data:

» A cyclic graph A,
» an edge-injective homomorphism h = («,) : Hom(A, U(G)), such that ...
» for any node x in A, if ||Star(U(G))(h(x))|| then ||Star(A)(x)||, and

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

Face of a map

A face of a map M is a circuit in the graph with some special condition:
A face consists of the following data:

» A cyclic graph A,

» an edge-injective homomorphism h = («,) : Hom(A, U(G)), such that ...

» for any node x in A, if ||Star(U(G))(h(x))|| then ||Star(A)(x)||, and
» any corner in A is mapped to a corner in U(G) respecting the map M.

A e () U(G) \Oa(predw))

https://jonaprieto.github.io/synthetic-graph-theory/lib.graph-embeddings.Map.Face.html

What else do we know when embedding a graph in the sphere?

» The implicit surface given by the embedding has to be simply connected, i.e. any
loop can be contracted/deformed to one point

J. Prieto-Cubides |

What else do we know when embedding a graph in the sphere?

» The implicit surface given by the embedding has to be simply connected, i.e. any
loop can be contracted/deformed to one point

U(G)

J. Prieto-Cubides |

Maps into a sphere: Spherical maps

A map M of a graph G is spherical, of type Spherical(M), if any pair of walks sharing
the same endpoints are merely walk-homotopic.

Spherical(M) := H H | wi ~pq wa ||

(x,y:Nodeg) (w1,w2:Walky(g)(x,y))

Homotopy for walks is an equiv. relation that collapses faces
Supposing one has the following,
(i) a face F given by (A, f) of the map M,
(i) awalk wy of type Wy (g)(x, f(a)) for x : Ng with one node a: N4, and
(i) a walk wy of type Wy g)(f(b),y) for b: N4 and y : Ng.

Homotopy for walks is an equiv. relation that collapses faces
Supposing one has the following,
(i) a face F given by (A, f) of the map M,
(i) awalk wy of type Wy (g)(x, f(a)) for x : Ng with one node a: N4, and
(i) a walk wy of type Wy g)(f(b),y) for b: N4 and y : Ng.

(w1 - cewr(a, b) - wz) ~am (wr - ewr(a, b) - wa),

Homotopy for walks is an equiv. relation that collapses faces
Supposing one has the following,
(i) a face F given by (A, f) of the map M,
(i) awalk wy of type Wy (g)(x, f(a)) for x : Ng with one node a: N4, and
(i) a walk wy of type Wy g)(f(b),y) for b: N4 and y : Ng.

cw £ (a,b)
wy T w2
.X —_— .f(a) H .f(b) —_— Oy

~_ =

ccw £ (a,b)

Homotopy for walks is an equiv. relation that collapses faces
Supposing one has the following,
(i) a face F given by (A, f) of the map M,
(i) awalk wy of type Wy (g)(x, f(a)) for x : Ng with one node a: N4, and
(i) a walk wy of type Wy g)(f(b),y) for b: N4 and y : Ng.

» Whiskering lemmas are available!

J. Prieto-Cubides |

Planar map

» A planar map M of a connected and locally finite graph G is of type

Planar(G) :== > isSpherical(M) x Face(G, M)
(M:MapG) outer face

e d

G b
b €1 * < es
@, — 6\” o4
a (! S d
egl

Lemmas

» (Finite) sets are closed under (co) products, type equivalences, ¥-types, lN-types and
prop. truncation.

» If G is a (finite) graph, then the following types are (finite) sets.

Lemmas

» (Finite) sets are closed under (co) products, type equivalences, ¥-types, lN-types and
prop. truncation.
» If G is a (finite) graph, then the following types are (finite) sets.
» The star at x for any node x is a (finite) set

Lemmas

» (Finite) sets are closed under (co) products, type equivalences, ¥-types, lN-types and
prop. truncation.
» If G is a (finite) graph, then the following types are (finite) sets.

» The star at x for any node x is a (finite) set
» The maps of G is a (finite) set

Lemmas

» (Finite) sets are closed under (co) products, type equivalences, ¥-types, lN-types and
prop. truncation.
» If G is a (finite) graph, then the following types are (finite) sets.

» The star at x for any node x is a (finite) set
» The maps of G is a (finite) set
» The spherical maps of G is a (finite) set

Lemmas

» (Finite) sets are closed under (co) products, type equivalences, ¥-types, lN-types and
prop. truncation.
» If G is a (finite) graph, then the following types are (finite) sets.

» The star at x for any node x is a (finite) set

» The maps of G is a (finite) set

» The spherical maps of G is a (finite) set

» The faces of any map for G is a (finite) set, and

Lemmas

» (Finite) sets are closed under (co) products, type equivalences, ¥-types, lN-types and
prop. truncation.
» If G is a (finite) graph, then the following types are (finite) sets.
» The star at x for any node x is a (finite) set
» The maps of G is a (finite) set
» The spherical maps of G is a (finite) set
» The faces of any map for G is a (finite) set, and
» The walks without inner loops in G is a (finite) set.

Lemmas

» (Finite) sets are closed under (co) products, type equivalences, ¥-types, lN-types and
prop. truncation.
» If G is a (finite) graph, then the following types are (finite) sets.

» The star at x for any node x is a (finite) set

» The maps of G is a (finite) set

» The spherical maps of G is a (finite) set

» The faces of any map for G is a (finite) set, and

» The walks without inner loops in G is a (finite) set.

» The collection of planar maps of G is a (finite) set.

Lemmas

» (Finite) sets are closed under (co) products, type equivalences, ¥-types, lN-types and
prop. truncation.
» If G is a (finite) graph, then the following types are (finite) sets.
» The star at x for any node x is a (finite) set
» The maps of G is a (finite) set
» The spherical maps of G is a (finite) set
» The faces of any map for G is a (finite) set, and
» The walks without inner loops in G is a (finite) set.
» The collection of planar maps of G is a (finite) set.

» One can construct for every graph C, a planar map, which can help us to construct
more planar graphs!

A refinement for spherical maps

How to construct terms of type Planar(G) for some given graph G?

J. Prieto-Cubides |

A refinement for spherical maps

How to construct terms of type Planar(G) for some given graph G?

J. Prieto-Cubides |

A refinement for spherical maps

How to construct terms of type Planar(G) for some given graph G?

isSpherical,(G, M) := H H isQuasi(wy) X isQuasi(wz) — ||wg ~ g wa||.
(x,y:Nodeg) (w1,w2:Wg(x,y))

» Examples of walks that are quasi-simple

.))

o, o —— o, o, o, LN o,

> Examples of walks that are not quasi-simple

O)

o DOw .X*>. oX*>o *>oz

J. Prieto-Cubides |

Quasi-simple walks

Assuming the node set is discrete, let x,y, z : Nodeg and w : W¢(x, z).

Quasi-simple walks

Assuming the node set is discrete, let x,y, z : Nodeg and w : W¢(x, z).

» The membership relation (€) on a walk w for a node y is defined as the node y
belonging to w whenever the type (y € w) is inhabited.

Quasi-simple walks

Assuming the node set is discrete, let x,y, z : Nodeg and w : W¢(x, z).

» The membership relation (€) on a walk w for a node y is defined as the node y
belonging to w whenever the type (y € w) is inhabited.

> z€<y>:EO.

Quasi-simple walks

Assuming the node set is discrete, let x,y, z : Nodeg and w : W¢(x, z).
» The membership relation (€) on a walk w for a node y is defined as the node y
belonging to w whenever the type (y € w) is inhabited.
> ze (y):=0.
> zc (e®w):=(z=head(e)) + (z € w).

Quasi-simple walks

Assuming the node set is discrete, let x,y, z : Nodeg and w : W¢(x, z).

» The membership relation (€) on a walk w for a node y is defined as the node y
belonging to w whenever the type (y € w) is inhabited.
> zc(y):=0.
> zc (e®w):=(z=head(e)) + (z € w).

> isQuasi(w) = [](;:Node) iSPTop(z € W)

Quasi-simple walks

Assuming the node set is discrete, let x,y, z : Nodeg and w : W¢(x, z).

» The membership relation (€) on a walk w for a node y is defined as the node y
belonging to w whenever the type (y € w) is inhabited.

> ze (y):=0.
> zc (e®w):=(z=head(e)) + (z € w).
> isQuasi(w) = [](;:Node) iSPTop(z € W)
» One can define a relation on walks (~~) to remove loops

Quasi-simple walks

Assuming the node set is discrete, let x,y, z : Nodeg and w : W¢(x, z).

» The membership relation (€) on a walk w for a node y is defined as the node y
belonging to w whenever the type (y € w) is inhabited.

> zc(y):=0.
> zc (e®w):=(z=head(e)) + (z € w).

> isQuasi(w) = [](;:Node) iSPTop(z € W)
» One can define a relation on walks (~~) to remove loops

» Normal(p) := isQuasi(p) X = 3= (qwe(x,y)) (P~ Q)

Quasi-simple walks

Assuming the node set is discrete, let x,y, z : Nodeg and w : W¢(x, z).

» The membership relation (€) on a walk w for a node y is defined as the node y
belonging to w whenever the type (y € w) is inhabited.

» zc <y> =0.
> zc (e®w):=(z=head(e)) + (z € w).

> isQuasi(w) = [](;:Node) iSPTop(z € W)

» One can define a relation on walks (~~) to remove loops
» Normal(p) := isQuasi(p) X = 3= (qwe(x,y)) (P~ Q)

» Thm. (€), isQuasi, Normal are all decidable propositions.

Quasi-simple walks

Assuming the node set is discrete, let x,y, z : Nodeg and w : W¢(x, z).

» The membership relation (€) on a walk w for a node y is defined as the node y
belonging to w whenever the type (y € w) is inhabited.

> zc (y):=0.
> zc (e®w):=(z=head(e)) + (z € w).
isQuasi(w) = [](,:Nodec) iISProp(z € w)
One can define a relation on walks (~~) to remove loops
Normal(p) := isQuasi(p) X = 3= (q:we(x,y)) (P~ Q).
Thm. (€), isQuasi, Normal are all decidable propositions.

vVvyYyyVvyy

Thm. The type 3= (,.\(x,z))(w ~* v) X Normal(v) is inhabited for any walk w.

Quasi-simple walks

Assuming the node set is discrete, let x,y, z : Nodeg and w : W¢(x, z).

» The membership relation (€) on a walk w for a node y is defined as the node y
belonging to w whenever the type (y € w) is inhabited.

> zc (y):=0.
> zc (e®w):=(z=head(e)) + (z € w).
isQuasi(w) = [](,:Nodec) iISProp(z € w)
One can define a relation on walks (~~) to remove loops
Normal(p) := isQuasi(p) X = 3= (q:we(x,y)) (P~ Q).
Thm. (€), isQuasi, Normal are all decidable propositions.
Thm. The type 3= (,.\(x,z))(w ~* v) X Normal(v) is inhabited for any walk w.

vVVvVvYvYyVvyVvyy

Thm. Given a spherical map M, the type
2 (vW(x,z)) (W ~" v) x Normal(v) X [[w ~aq v|| is inhabited for any walk w.

Quasi-simple walks

Assuming the node set is discrete, let x,y, z : Nodeg and w : W¢(x, z).

» The membership relation (€) on a walk w for a node y is defined as the node y
belonging to w whenever the type (y € w) is inhabited.

> zc (y):=0.
> zc (e®w):=(z=head(e)) + (z € w).
isQuasi(w) = [](,:Nodec) iISProp(z € w)
One can define a relation on walks (~~) to remove loops
Normal(p) := isQuasi(p) X = 3= (q:we(x,y)) (P~ Q).
Thm. (€), isQuasi, Normal are all decidable propositions.

Thm. The type 3= (,.\(x,z))(w ~* v) X Normal(v) is inhabited for any walk w.

vVVvVvYvYyVvyVvyy

Thm. Given a spherical map M, the type
2 (vW(x,z)) (W ~" v) x Normal(v) X [[w ~aq v|| is inhabited for any walk w.

v

The two spherical definitions are locally equivalent!

Planar extensions*: planar synthesis

(a) Addition of p to G. (b) The embedded graph U(Gepeqger).

J. Prieto-Cubides |

Planar extensions*: planar synthesis

(o) o
/f\ };11 F3 0F4

Figure: The figure is a planar synthesis of the construction of a planar map for K, from a planar
map of C3. One first divides the face F into F; and F,. Then one splits F; into F3 and F;.

» In a synthesis from a connected graph, every graph in the sequence is connected.

» In a planar synthesis, every graph in the sequence is planar.

J. Prieto-Cubides | 20 /33

Planar extensions®: construct any biconnected planar graph

> Biconnected(G) := [],.y, Connected(G — x).

» If G is a cyclic graph, then U(G) is 2-connected.

» The 2-connectedness of a graph is not preserved by simple path additions.
>

Suppose G is a 2-connected graph, then the following claims hold.
1. Every node in G has degree of minimum two.
2. There exists a cyclic graph H and an injective morphism from U(H) to G.
3. The graphs Gep, U(G e p), and U(G) e p are all 2-connected.
» In a non-simple Whitney synthesis of G of length n from a 2-connected cyclic graph
H, every graph G; in the sequence is a 2-connected planar graph.

J. Prieto-Cubides |

Realisations of graphs

Let G be a directed multigraph. We denote by G"(G) the topological realisation of G that
considers the first n layers, i.e. 0-, 1-, ---, and n-cells.

Realisations of graphs

Let G be a directed multigraph. We denote by G"(G) the topological realisation of G that
considers the first n layers, i.e. 0-, 1-, ---, and n-cells.
» One layer:

data G*(G : Graph) : U
n : Node(G) — G(G)
€ : MN(ab:Node(G)) - Edge(G, a, b) — n(a) = n(b).

Realisations of graphs
Let G be a directed multigraph. We denote by G"(G) the topological realisation of G that
considers the first n layers, i.e. 0-, 1-, ---, and n-cells.
» One layer:
data G*(G : Graph) : U
n : Node(G) — G(G)
€ : MN(ab:Node(G)) - Edge(G, a, b) — n(a) = n(b).

» Two layer: Given a combinatorial map M for G: ‘
data G*(G : Graph) : U ccw{: }cw
n : Node(G) — G2(G) b
& : M(b: Node(q)) - Edge(G, a, b) — n(a) = n(b)
M FFace(6,M)) - T(ab:Node(F) - W(cW(F, a, b)) = W(cew(F, a, b)).

The elimination principle for the two-level top. realisation

(I:Ng)
J\P/_r) _ M
€xl Fab walk,;
ol e
(G : Graph) (2 Ng) ~mmmnnnns Cay apnmmmnnnns (Y2 Nig) e walky, (z:Ng)
2-HIT n (nl:G)
_—
/”“ FFab
(g : G) % Type (lnx : G) €€qy ([ny : G) — to-eq(walk,,) = (mz : G)
G-ind A-n A-nl
A-eey,
/ A-FFab
A 9 Anz A-eeg,y An Yy to-deq(walk,,) Anz

Work in progress

Let G be a nonempty finite planar graph with n nodes. Then G?(G) ~ S

Work in progress

Let G be a nonempty finite planar graph with n nodes. Then G?(G) ~ S

> Lem. 1.
a. G%(e) ~ S2.
b. G?(T) ~ G2(e) for a tree T.
» Let G be a graph with a map M.

» Lem. 2. Face contraction preserves planarity
» Lem. 3. H is obtained by contracting a face F of M, then G?(G) ~ G2(H).

Let G be a nonempty finite planar graph with n nodes. Then G?(G) ~ S2.

Proof.
» Case n = 1. Apply Lemma la. The graph is o.

» Case n > 1. Let M be a planar map for G. Because G is a nonempty finite graph,
then let m be the number of faces of M. We proceed by induction on m.

» Case m = 0. Impossible.

» Case m = 1. Apply Lemma 1b. The graph G is a tree.

» Case m > 1. Let F be a face of M. By contracting the face F, one obtains a graph G’
and a map M’ such that (G, M) ~+¢ (G’, M’). Therefore, G’ has m — 1 faces and by
Lemma 3, one gets that G?(G) ~ G?(G’). By Lemma 2, the map M’ is planar. Now, if
n’ and k denote the number of nodes of G’ and F, respectively, then n’ = n— (k — 1)
and k > 0. By applying the induction hypothesis to G’, M’, an equivalence
G?(G') ~ S? is obtained. Finally, the conclusion follows from the chain of equivalences:

G*(G) ~ G*(G') ~ S2.

Bonus slides

J. Prieto-Cubides |

Notation

definitions =
jugdemental equalities =
identity type =
type equivalences ~
univalent universe U
“ais of type A" (a: A)
Y -types Y,.aB(x)
MN-types My.aB(x)
natural numbers N
empty type and unit type Oand 1
the type with n points [n] where n: N
propositional truncation of A 1Al

References |

» G. Bauer and T. Nipkow.
The 5 colour theorem in isabelle/isar.
In V. A. Carrefio, C. A. Mufioz, and S. Tahar, editors, Theorem Proving in Higher
Order Logics, 15th International Conference, TPHOLs 2002, Hampton, VA, USA,
August 20-23, 2002, Proceedings, pages 67—-82, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

» G. J. Bauer.
Formalizing Plane Graph Theory: Towards a Formalized Proof of the Kepler
Conjecture.
PhD thesis, Technische Universitdt Miinchen, Germany, 2005.

J. Prieto-Cubides |

References |1

» P. Giblin.
Graphs, Surfaces and Homology.
Springer, 2010.

» G. Gonthier.
Formal proof—the four-color theorem.
Notices of the AMS, 55(11):1382-1393, 2008.

» J. L. Gross and T. W. Tucker.
Topology Graph Theory.
Dover, Ny, Usa, 1987.

» T. Univalent Foundations Program.
Homotopy Type Theory: Univalent Foundations of Mathematics.
https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

J. Prieto-Cubides |

https://homotopytypetheory.org/book

References Il

» M. Yamamoto, S. Nishizaki, M. Hagiya, and Y. Toda.
Formalization of planar graphs.
In E. T. Schubert, P. J. Windley, and J. Alves-Foss, editors, Higher Order Logic
Theorem Proving and Its Applications, 8th International Workshop, Aspen Grove, UT,
USA, September 11-14, 1995, Proceedings, volume 971 of Lecture Notes in Computer
Science, pages 369-384, Ut, Usa, 1995. Springer.

J. Prieto-Cubides |

EN

A
X

UNIVERSITY OF BERC

Combinatorial methods for graph embeddings

» Graph embeddings in surfaces can be analyzed by combinatorial methods. (See §
3.1.4 in [5]) e.g., rotation systems

» The generalization of the Schoenflies theorem states that for any embedding G to S,
the graph G is contained in the 1-skeleton of a triangulation of the surface S

.

Structure on a graph

Definition (Graph class)

A class C of graphs is given by the collection of graphs that holds some given structure
P : Graph — U
C:= Z P(G)
(G:Graph)
Examples:
» isUndirected(G) := M ,:Node, Edgeg(x,y) — Edgeg(y, x)
» isFiniteGraph(G) := isFinite(Nodeg) X [I, ,.Node. iSFinite(Edgec(x, y))

Definition (Homotopy levels)
Let n: N, n > 2. A type A is called n-type when is-level(n, A).

is-level(—2,A) := 3" (c.a) [I(x.a)(c = x) and is-level(n + 1, A) := [](, ,.a) is-level(n, A).

n | -2 | -1 | o | 1
is-level(n, A) | isContr(A) | isProp(A) | isSet(A) | isGroupoid(A)

Definition (Propositional truncation)

Propositional truncation of a type A denoted by ||A| is the
universal solution to the problem of mapping A to a
proposition P. p Itrunc-elim

P
> PVQ=|P+Q|, PAQ:=|IPxQ|, and I(x:A)P(x) = ||TxaPx|.

|
A — |All

Examples of families of graphs (N — Graph)
» The family of cycle graphs:

Definition (-cycle graph)

Given n: N, an n-cycle graph denoted by C, is defined by C, := ([n], A uv.u = pred(v))
for n > 1 and (y as the one-point graph.

O = AN L] Oy

Co

o

03 04 05

J. Prieto-Cubides |

Lemmas

Given x,y,z : Ng, e: Eg(x,y) and a quasi-simple walk w : W¢(y, z),
» if x ¢ w then the walk (e ® w) is quasi-simple.
» if the walk (e ® w) is a quasi-simple walk then w is also a quasi-simple walk.
> if the lenght of w is n, then [n] ~ X .y)(y € w).
> |f the node-set of G is discrete then

» being quasi-simple for a walk is a decidable proposition.
> the type (x € w) is a finite set.

> Given x,y : Ng and n: N, the type gswalk collects all quasi-simple walks of a fixed
length n.

gswalk(n, x,y) := Z isQuasi(w) x (length(w) = n).
(w:We(x.y))
» Given a graph G, n: N, and x, z : Ng, the following equivalence holds.

gswalk(S(Z Z Z (x € w)

(y NG) (e EG(va)) (w:qswalk(my,z))

Lemmas
» Given a finite graph, x,y : Ng and n : N, the type gswalk(n, x, y) is a finite set.
> Let G be a finite graph. Then the following type is a finite set.
Z Z gswalk(m, x, y).
(x,y:Ng) (m:[n+1])

» Given a graph G with finite node-set, x,y : Ng and a quasi-simple walk w : W¢(x, y)
of length m, then it holds that m < n.
» Given a graph G with finite node-set and x, y : N¢, the following equivalence holds.

Z isQuasi(w) ~ Z gswalk(m, x, y).
(Ww:We(x.y)) (m:[n+1])
» The quasi-simple walks of a finite graph G forms a finite set.

Z Z isQuasi(w).

(X7y:NG) (W:W(va))

Loop-reduction relation on walks

data (~)
&

&

&

c M{x,y : N¢}.We(x,y) = We(x,y) = U
L N{xy}(p: Welx,2)) (@ : We(,))

— NonTrivialLoop(p) — Trivial(q)
—p~q

: M{xyz}. (e Ea(x,¥)) (p,q : Waly, 2))

— —Loop(e ® p) > x # y
= (p~q) = (e0p)~ (e®q)

: M{xy z}. (e Ea(x,y)) (p : We(y, %)) (q : Wa(x, 2))

— = Loop((e ® p) - g) — Loop(e ® p)
— NonTrivial(q)

— (w:Wg(x,2)) = w=(e®p) q Q
—wa ° kwwwélzwmw °
X X
q &3
o, —er 0, —— e, S I YV
N__~

q
.Z

The relation (~*) is the reflexive and transitive closure of the relation (~).
Given x,y : Ng and p, g : Wg(x, y), the following claims hold:

1. If x € g and p ~* g then x € p.
2. If p~> g then length(q) < length(p).

Given a walk p : Wg(x, y), Reduce(p) := X (gw¢(x,y)) (P ~ 9)-

Given a walk p, one states that p is in normal form if Normal(p). If p ~» g and g is
in normal form, we refer to g as the normal formal of p.

Normal(p) := isQuasi(p) x — Reduce(p).

Being in normal form for a walk is a proposition.

Theorem (Normalisation)

» Given a graph G with discrete node-set, there exists a reduction for each walk to one

of its normal forms.
Y (v We(x,2)) (W ~" v) x Normal(v).

» Given a graph G and a walk w of type W¢(x,y) for two x,y : Ng, the following
claims hold.
1. The type Reduce(w) is decidable.
2. The proposition Normal(w) is decidable.
3. The walk w progresses.

	Appendix

