------------------------------------------------------------------------------
-- Agda-Prop Library.
-- Classical Propositional Logic.
------------------------------------------------------------------------------

open import Data.Nat using (  )

module Data.PropFormula.Theorems.Classical ( n :  ) where

------------------------------------------------------------------------------

open import Data.PropFormula.Syntax n

------------------------------------------------------------------------------

postulate
  PEM :  {Γ} {φ}
       Γ  φ  ¬ φ

-- Theorem.
RAA
  :  {Γ} {φ}
   Γ , ¬ φ  
   Γ  φ

-- Proof.
RAA {Γ}{φ} Γ¬φ⊢⊥ =
  ⊃-elim
    (⊃-intro
      (∨-elim {Γ = Γ}
        (assume {Γ = Γ} φ)
        (⊥-elim φ Γ¬φ⊢⊥)))
    PEM
-------------------------------------------------------------------------- ∎