------------------------------------------------------------------------------
-- Agda-Prop Library.
-- Classical Propositional Logic.
------------------------------------------------------------------------------
open import Data.Nat using ( ℕ )
module Data.PropFormula.Theorems.Classical ( n : ℕ ) where
------------------------------------------------------------------------------
open import Data.PropFormula.Syntax n
------------------------------------------------------------------------------
postulate
PEM : ∀ {Γ} {φ}
→ Γ ⊢ φ ∨ ¬ φ
-- Theorem.
RAA
: ∀ {Γ} {φ}
→ Γ , ¬ φ ⊢ ⊥
→ Γ ⊢ φ
-- Proof.
RAA {Γ}{φ} Γ¬φ⊢⊥ =
⊃-elim
(⊃-intro
(∨-elim {Γ = Γ}
(assume {Γ = Γ} φ)
(⊥-elim φ Γ¬φ⊢⊥)))
PEM
-------------------------------------------------------------------------- ∎