------------------------------------------------------------------------------ -- Agda-Prop Library. -- Classical Propositional Logic. ------------------------------------------------------------------------------ open import Data.Nat using ( ℕ ) module Data.PropFormula.Theorems.Classical ( n : ℕ ) where ------------------------------------------------------------------------------ open import Data.PropFormula.Syntax n ------------------------------------------------------------------------------ postulate PEM : ∀ {Γ} {φ} → Γ ⊢ φ ∨ ¬ φ -- Theorem. RAA : ∀ {Γ} {φ} → Γ , ¬ φ ⊢ ⊥ → Γ ⊢ φ -- Proof. RAA {Γ}{φ} Γ¬φ⊢⊥ = ⊃-elim (⊃-intro (∨-elim {Γ = Γ} (assume {Γ = Γ} φ) (⊥-elim φ Γ¬φ⊢⊥))) PEM -------------------------------------------------------------------------- ∎