foundations.TransportLemmas.md.
Version of Sunday, January 22, 2023, 10:42 PM
Powered by agda version 2.6.2.2-442c76b and pandoc 2.14.0.3
{-# OPTIONS --without-K --exact-split #-}
module foundations.TransportLemmas where
open import foundations.Transport public
lift
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁} {a₁ a₂ : A} {C : A → Type ℓ₂}
→ (α : a₁ ≡ a₂)
→ (u : C a₁)
-----------------------------
→ (a₁ , u) ≡ (a₂ , tr C α u)
lift {a₁ = a₁} idp u = refl (a₁ , u)
transport-const
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁} {a₁ a₂ : A} {B : Type ℓ₂}
→ (p : a₁ ≡ a₂)
→ (b : B)
-----------------------
→ tr (λ _ → B) p b ≡ b
transport-const idp b = refl b
transport²
: ∀ {ℓ₁ ℓ₂ : Level}{A : Type ℓ₁}{P : A → Type ℓ₂}
→ {x y : A} {p q : x ≡ y}
→ (r : p ≡ q)
→ (u : P x)
--------------------------------
→ (tr P p u) ≡ (tr P q u)
transport² idp u = idp
transport-inv-l
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{P : A → Type ℓ₂} {a a' : A}
→ (p : a ≡ a')
→ (b : P a')
----------------------------
→ tr P p (tr P (! p) b) ≡ b
transport-inv-l idp b = idp
transport-inv-r
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{P : A → Type ℓ₂} {a a' : A}
→ (p : a ≡ a')
→ (b : P a)
--------------------------------------------
→ tr P (! p) (tr P p b) ≡ b
transport-inv-r idp _ = idp
More syntax:
tr-inverse = transport-inv-r
transport-concat-r
: ∀ {ℓ : Level} {A : Type ℓ} {a : A} {x y : A}
→ (p : x ≡ y)
→ (q : a ≡ x)
---------------------------------
→ tr (λ x → a ≡ x) p q ≡ q · p
transport-concat-r idp q = ·-runit q
transport-concat-l
: ∀ {ℓ : Level} {A : Type ℓ} {a : A} {x y : A}
→ (p : x ≡ y)
→ (q : x ≡ a)
----------------------------------
→ tr (λ x → x ≡ a) p q ≡ (! p) · q
transport-concat-l idp q = idp
move-transport
: ∀ {ℓ₁ ℓ₂ : Level}{A : Type ℓ₁}{B : A → Type ℓ₂}
→ {a₁ a₂ : A}
→ {α : a₁ ≡ a₂}
→ {b₁ : B a₁}{b₂ : B a₂}
→ (tr B α b₁ ≡ b₂)
----------------------
→ (b₁ ≡ tr B (! α) b₂)
move-transport {α = idp} idp = idp
transport-concat
: ∀ {ℓ : Level} {A : Type ℓ} {x y : A}
→ (p : x ≡ y)
→ (q : x ≡ x)
---------------------------------------
→ tr (λ x → x ≡ x) p q ≡ (! p · q) · p
transport-concat idp q = ·-runit q
transport-eq-fun
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂}
→ (f g : A → B) {x y : A}
→ (p : x ≡ y)
→ (q : f x ≡ g x)
--------------------------------------------------------
→ tr (λ z → f z ≡ g z) p q ≡ ! (ap f p) · q · (ap g p)
transport-eq-fun f g idp q = ·-runit q
transport-comp
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁} {a b c : A} {P : A → Type ℓ₂}
→ (p : a ≡ b)
→ (q : b ≡ c)
---------------------------------------
→ ((tr P q) ∘ (tr P p)) ≡ tr P (p · q)
transport-comp {P = P} idp q = refl (transport P q)
transport-comp-h
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁} {a b c : A} {P : A → Type ℓ₂}
→ (p : a ≡ b)
→ (q : b ≡ c)
→ (x : P a)
-------------------------------------------
→ ((tr P q) ∘ (tr P p)) x ≡ tr P (p · q) x
transport-comp-h {P = P} idp q x = refl (transport P q x)
transport-eq-fun-l
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} {b : B}
→ (f : A → B) {x y : A}
→ (p : x ≡ y) → (q : f x ≡ b)
-------------------------------------------
→ tr (λ z → f z ≡ b) p q ≡ ! (ap f p) · q
transport-eq-fun-l {b = b} f p q =
begin
tr (λ z → f z ≡ b) p q ≡⟨ transport-eq-fun f (λ _ → b) p q ⟩
! (ap f p) · q · ap (λ _ → b) p ≡⟨ ap (! (ap f p) · q ·_) (ap-const p) ⟩
! (ap f p) · q · idp ≡⟨ ! (·-runit _) ⟩
! (ap f p) · q
∎
transport-eq-fun-r
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} {b : B}
→ (g : A → B) {x y : A}
→ (p : x ≡ y)
→ (q : b ≡ g x)
-----------------------------------------
→ tr (λ z → b ≡ g z) p q ≡ q · (ap g p)
transport-eq-fun-r {b = b} g p q =
begin
tr (λ z → b ≡ g z) p q ≡⟨ transport-eq-fun (λ _ → b) g p q ⟩
! (ap (λ _ → b) p) · q · ap g p ≡⟨ ·-assoc (! (ap (λ _ → b) p)) q (ap g p) ⟩
! (ap (λ _ → b) p) · (q · ap g p) ≡⟨ ap (λ u → ! u · (q · ap g p)) (ap-const p) ⟩
(q · ap g p)
∎
transport-inv
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{P : A → Type ℓ₂} {a a' : A}
→ (p : a ≡ a')
→ {a : P a'}
--------------------------------------
→ tr (λ x → P x) p (tr P (! p) a) ≡ a
transport-inv {P = P} idp {a = a} =
begin
tr (λ v → P v) idp (tr P (! idp) a)
≡⟨ idp ⟩
tr P (! idp · idp) a
≡⟨⟩
tr P idp a
≡⟨ idp ⟩
a
∎
coe-inv-l
: ∀ {ℓ : Level} {A B : Type ℓ}
→ (p : A ≡ B)
→ (b : B)
--------------------------------------------
→ tr (λ v → v) p (tr (λ v → v) (! p) b) ≡ b
coe-inv-l idp b = idp
coe-inv-r
: ∀ {ℓ : Level} {A B : Type ℓ}
→ (p : A ≡ B)
→ (a : A)
---------------------------------------------
→ tr (λ v → v) (! p) (tr (λ v → v) p a) ≡ a
coe-inv-r idp b = idp
transport-family
: ∀ {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Type ℓ₁} {B : Type ℓ₂} {P : B → Type ℓ₃}
→ {f : A → B} → {x y : A}
→ (p : x ≡ y)
→ (u : P (f x))
-----------------------------------
→ tr (P ∘ f) p u ≡ tr P (ap f p) u
transport-family idp u = idp
transport-family-id
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{P : A → Type ℓ₂} → {x y : A}
→ (p : x ≡ y)
→ (u : P x)
----------------------------------------------
→ tr (λ a → P a) p u ≡ tr P p u
transport-family-id idp u = idp
transport-fun-coe
: ∀ {ℓ : Level} {A B : Type ℓ}
→ (α : A ≡ B)
→ (f : A → A)
→ (g : B → B)
→ f ≡ g [ (λ X → (X → X)) ↓ α ]
-------------------------------------
→ f :> coe α ≡ (coe α) :> g
transport-fun-coe idp _ _ idp = idp
transport-fun
: ∀ {ℓ₁ ℓ₂ ℓ₃ : Level} {X : Type ℓ₁} {x y : X}
→ {A : X → Type ℓ₂} {B : X → Type ℓ₃}
→ (p : x ≡ y)
→ (f : A x → B x)
------------------------------------------
→ f ≡ ((λ a → tr B p (f (tr A (! p) a))))
[ (λ x → A x → B x) / p ]
transport-fun idp f = idp
back-and-forth = transport-fun
transport-fun-h
: ∀ {ℓ₁ ℓ₂ ℓ₃ : Level} {X : Type ℓ₁}
→ {A : X → Type ℓ₂} {B : X → Type ℓ₃}
→ {x y : X}
→ (p : x ≡ y) → (f : A x → B x)
→ (b : A y)
---------------------------------
→ (tr (λ x → (A x → B x)) p f) b
≡ tr B p (f (tr A (! p) b))
transport-fun-h idp f b = idp
More syntax:
back-and-forth-h = transport-fun-h
Now, when we tr dependent functions this is what we got:
transport-fun-dependent-h
: ∀ {ℓ₁ ℓ₂ ℓ₃ : Level}{X : Type ℓ₁} {A : X → Type ℓ₂}
→ {B : (x : X) → (a : A x) → Type ℓ₃} {x y : X}
→ (p : x ≡ y)
→ (f : (a : A x) → B x a)
---------------------------------------------------------------------
→ (a' : A y)
→ (tr (λ x → (a : A x) → B x a) p f) a'
≡ tr (λ w → B (π₁ w) (π₂ w)) (! lift (! p) a' ) (f (tr A (! p) a'))
transport-fun-dependent-h idp f a' = idp
More syntax:
dependent-back-and-forth-h = transport-fun-dependent-h
transport-fun-dependent
: ∀ {ℓ₁ ℓ₂ ℓ₃ : Level}{X : Type ℓ₁} {A : X → Type ℓ₂}
→ {B : (x : X) → (a : A x) → Type ℓ₃} {x y : X}
→ (p : x ≡ y)
→ (f : (a : A x) → B x a)
---------------------------------------------------------------------
→ (tr (λ x → (a : A x) → B x a) p f)
≡ λ (a' : A y)
→ tr (λ w → B (π₁ w) (π₂ w)) (! lift (! p) a' ) (f (tr A (! p) a'))
transport-fun-dependent idp f = idp
More syntax:
dependent-back-and-forth = transport-fun-dependent
When using pathovers, we may need one of these identities:
apOver
: ∀ {ℓ₁ ℓ₂ ℓ₃ : Level}{A A' : Type ℓ₁} {C : A → Type ℓ₂} {C' : A' → Type ℓ₃}
→ {a a' : A} {b : C a} {b' : C a'}
→ (f : A → A')
→ (g : {x : A} → C x → C' (f x))
→ (p : a ≡ a')
→ b ≡ b' [ C ↓ p ]
--------------------------------
→ g b ≡ g b' [ C' ↓ ap f p ]
apOver f g idp q = ap g q
apd
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{P : A → Type ℓ₂} {a a' : A}
→ (f : ∏ A P)
→ (p : a ≡ a')
--------------------------
→ (f a) ≡ (f a') [ P / p ]
apd f idp = idp
More syntax:
fibre-app-≡ = apd
apd²
: ∀ {ℓ₁ ℓ₂ : Level}{A : Type ℓ₁}{P : A → Type ℓ₂}
→ (f : ∏ A P)
→ {x y : A} {p q : x ≡ y}
→ (r : p ≡ q)
---------------------------
→ apd f p ≡ apd f q [ (λ x≡y → (f x) ≡ (f y) [ P / x≡y ]) / r ]
apd² f idp = idp
ap2d
: ∀ {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Type ℓ₁}{B : A → Type ℓ₂} {C : Type ℓ₃}
→ (F : ∀ a → B a → C)
→ {a a' : A} {b : B a} {b' : B a'}
→ (p : a ≡ a')
→ (q : b ≡ b' [ B ↓ p ])
-------------------------
→ F a b ≡ F a' b'
ap2d F idp idp = idp
ap-idp
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂}
→ (f : A → B)
→ {a a' : A} → (p : a ≡ a')
------------------------------------------
→ ap f p ≡ idp [ (λ a → f a ≡ f a') ↓ p ]
ap-idp f idp = idp
ap-idp'
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂}
→ (f g : A → B) → (σ : ∀ a → f a ≡ g a)
→ {a a' : A} → (p : a' ≡ a)
--------------------------------------------------------------
→ (! (σ a') · ap f p) · (σ a) ≡ idp [ (\a' → g a' ≡ g a) ↓ p ]
ap-idp' f g σ {a = a} idp =
begin
σ a ⁻¹ · idp · σ a
≡⟨ ap (\p → p · σ a) (! (·-runit (σ a ⁻¹))) ⟩
σ a ⁻¹ · σ a
≡⟨ ·-linv (σ a) ⟩
idp
∎
(2022-12-28)(57c278b4) Last updated: 2021-09-16 15:00:00 by jonathan.cubides (2022-07-06)(d3a4a8cf) minors by jonathan.cubides (2022-01-26)(4aef326b) [ reports ] added some revisions by jonathan.cubides (2021-12-20)(049db6a8) Added code of cubical experiments. by jonathan.cubides (2021-12-20)(961730c9) [ html ] regular update by jonathan.cubides (2021-12-20)(e0ef9faa) Fixed compilation and format, remove hidden parts by jonathan.cubides (2021-12-20)(5120e5d1) Added cubical experiment to the master by jonathan.cubides (2021-12-17)(828fdd0a) More revisions added for CPP by jonathan.cubides (2021-12-15)(0d6a99d8) Fixed some broken links and descriptions by jonathan.cubides (2021-12-15)(662a1f2d) [ .gitignore ] add by jonathan.cubides (2021-12-15)(0630ce66) Minor fixes by jonathan.cubides (2021-12-13)(04f10eba) Fixed a lot of details by jonathan.cubides (2021-12-10)(24195c9f) [ .gitignore ] ignore .zip and arxiv related files by jonathan.cubides (2021-12-09)(538d2859) minor fixes before dinner by jonathan.cubides (2021-12-09)(36a1a69f) [ planar.pdf ] w.i.p revisions to share on arxiv first by jonathan.cubides