lib.graph-families.CycleGraph.Walk.md.
Version of Sunday, January 22, 2023, 10:42 PM
Powered by agda version 2.6.2.2-442c76b and pandoc 2.14.0.3
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module lib.graph-families.CycleGraph.Walk where open import foundations.Core open import lib.graph-definitions.Graph open Graph module _ (ℓ : Level) where open import foundations.Nat ℓ open import foundations.Fin ℓ open import lib.graph-families.CycleGraph ℓ open import lib.graph-embeddings.Map open import lib.graph-transformations.U open import lib.graph-families.CycleGraph.Map open import lib.graph-families.CycleGraph.isCyclicGraph open import lib.graph-classes.CyclicGraph.Walk open import lib.graph-walks.Walk open import lib.graph-walks.Walk.QuasiSimple module _ (n : ℕ) where -- Between two points in U(Cn), we always have two simple walks CW- and CCW-. ccw : (a b : Node (Cycle n)) ------------------------ → Walk (U (Cycle n)) a b ccw = ccw-walk (Cycle n) (Cn-is-cyclic-graph ℓ n) where open UndirectedWalks cw : (a b : Node (Cycle n)) ------------------------ → Walk (U (Cycle n)) a b cw = cw-walk (Cycle n) (Cn-is-cyclic-graph ℓ n) where open UndirectedWalks
-- open lib.graph-walks.Walk.QuasiSimple.simplewalks -- cw-is-simple -- : (n : ℕ) -- → (x y : Node (Cycle n)) -- → (cw n x y) is-quasi-simple -- cw-is-simple = {!!} -- cw-is-simple zero (x , <0) _ = ⊥-elim {ℓ} (n<0 {ℓ}{n = x} <0) -- cw-is-simple (succ n) x y = {!cw-is-simple n !} -- ccw-is-simple -- : (n : ℕ) -- → (x y : Node (Cycle n)) -- → (ccw n x y) is-quasi-simple -- {- -- f -- : (n : ℕ) -- → (x y : Node (Cycle n)) -- → ((x ≡ y) × 𝟛 ℓ) + ((x ≠ y) × 𝟚 ℓ) -- → ∑[ w ∶ Walk (U (Cycle n)) x y ] (w is-quasi-simple) -- f n x .x (inl (idp , 𝟘₃)) = (⟨ x ⟩ , one-point-walk-is-simple {G = U (Cycle n)} x) -- f n x .x (inl (idp , 𝟙₃)) = (ccw n x x , ccw-is-simple n x x) -- f n x .x (inl (idp , 𝟚₃)) = (cw n x x , cw-is-simple n x x) -- f n x y (inr (x≠y , 𝟘₂)) = (ccw n x y , ccw-is-simple n x y) -- f n x y (inr (x≠y , 𝟙₂)) = (cw n x y , cw-is-simple n x y) -- -} -- {- -- g -- : (n : ℕ) -- → (x y : Node (Cycle n)) -- → (w : Walk (U (Cycle n)) x y) -- → w is-quasi-simple -- → (x ≡ y) + ((w ≡ ccw n x y) + (w ≡ cw n x y)) -- g zero (zero , ()) y w w-is-simple -- g zero (succ π₃ , ()) y w w-is-simple -- g (succ zero) (zero , ∗) (zero , ∗) ⟨ .(0 , ∗) ⟩ w-is-simple = inl idp -- g (succ zero) (zero , ∗) (zero , ∗) (inl x ⊙ w) w-is-simple = {!!} -- -- = inr (inl {!!}) -- g (succ zero) (zero , ∗) (zero , ∗) (inr x ⊙ w) w-is-simple = inr (inr {!idp!}) -- g (succ zero) (zero , _) (succ zero , ()) w w-is-simple -- g (succ zero) (zero , _) (succ (succ _) , ()) w w-is-simple -- g (succ zero) (succ zero , ()) (zero , π₆) w w-is-simple -- g (succ zero) (succ (succ _) , ()) (zero , π₆) w w-is-simple -- g (succ zero) (succ zero , ()) (succ π₅ , π₆) w w-is-simple -- g (succ zero) (succ (succ _) , ()) (succ π₅ , π₆) w w-is-simple -- g (succ (succ n)) x y w w-is-simple = {!!} -- -} -- {- -- f-is-equiv -- : (n : ℕ)(x y : Node (Cycle n)) -- → (f n x y) is-equiv -- f-is-equiv zero (zero , ()) _ -- f-is-equiv zero (succ _ , ()) _ -- -- ≡ 1 -- f-is-equiv (succ zero) x@(zero , ∗) (zero , ∗) -- = λ { (⟨ .(0 , ∗) ⟩ , w-is-simple) -- → ( -- center of the contraction -- ((inl (idp , 𝟘₃) , pair= (idp , being-simple-is-prop {G = U (Cycle _)} (⟨ x ⟩) _ _))) -- -- proof it's indeed a center the above term. -- , λ { (inl (idp , 𝟘₃) , idp) → pair= (idp , -- {!!} -- ) -- ; (inl (idp , 𝟙₃) , π₄) → {!π₄!} -- ; (inl (idp , 𝟚₃) , π₄) → {!!} -- ; (inr (x≠x , π₅) , π₄) → ⊥-elim (x≠x idp)}) -- ; ((x ⊙ p) , q) → {!!}} -- f-is-equiv (succ zero) (zero , _) (succ zero , ()) -- f-is-equiv (succ zero) (zero , _) (succ (succ _) , ()) -- f-is-equiv (succ zero) (succ zero , ()) (zero , ∗) -- f-is-equiv (succ zero) (succ (succ _) , ()) (zero , _) -- -- ≡ 2 -- f-is-equiv (succ (succ zero)) (π₃ , π₄) (π₅ , π₆) = {!!} -- -- >= 3 -- f-is-equiv (succ (succ (succ n))) x y = {!!} -- -} -- {- -- Cn-walk-equiv -- : (n : ℕ) → (x y : Node (Cycle n)) -- → ((x ≡ y) × 𝟛 ℓ) + ((x ≠ y) × 𝟚 ℓ) -- ≃ (∑[ w ∶ Walk (U (Cycle n)) x y ] (w is-quasi-simple)) -- Cn-walk-equiv n x y = (f n x y , f-is-equiv n x y) -- -} -- -- open import lib.graph-classes.Planar -- ```
(2022-12-28)(57c278b4) Last updated: 2021-09-16 15:00:00 by jonathan.cubides (2022-07-06)(d3a4a8cf) minors by jonathan.cubides (2022-01-26)(4aef326b) [ reports ] added some revisions by jonathan.cubides (2021-12-20)(049db6a8) Added code of cubical experiments. by jonathan.cubides (2021-12-20)(961730c9) [ html ] regular update by jonathan.cubides (2021-12-20)(e0ef9faa) Fixed compilation and format, remove hidden parts by jonathan.cubides (2021-12-20)(5120e5d1) Added cubical experiment to the master by jonathan.cubides (2021-12-17)(828fdd0a) More revisions added for CPP by jonathan.cubides (2021-12-15)(0d6a99d8) Fixed some broken links and descriptions by jonathan.cubides (2021-12-15)(662a1f2d) [ .gitignore ] add by jonathan.cubides (2021-12-15)(0630ce66) Minor fixes by jonathan.cubides (2021-12-13)(04f10eba) Fixed a lot of details by jonathan.cubides (2021-12-10)(24195c9f) [ .gitignore ] ignore .zip and arxiv related files by jonathan.cubides (2021-12-09)(538d2859) minor fixes before dinner by jonathan.cubides (2021-12-09)(36a1a69f) [ planar.pdf ] w.i.p revisions to share on arxiv first by jonathan.cubides