foundations.HalfAdjointType.md.
Version of Sunday, January 22, 2023, 10:42 PM
Powered by agda version 2.6.2.2-442c76b and pandoc 2.14.0.3
{-# OPTIONS --without-K --exact-split #-}
Half-adjoints are an auxiliary notion that helps us to define a suitable notion of equivalence, meaning that it is a proposition and that it captures the usual notion of equivalence.
module foundations.HalfAdjointType where open import foundations.Transport open import foundations.TransportLemmas open import foundations.ProductIdentities open import foundations.CoproductIdentities open import foundations.EquivalenceType open import foundations.HomotopyType open import foundations.HomotopyLemmas open import foundations.FibreType
module _ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁} {B : Type ℓ₂} where
Half-adjoint equivalence:
record ishae (f : A → B) : Type (ℓ₁ ⊔ ℓ₂) where constructor hae field g : B → A η : (g ∘ f) ∼ id ε : (f ∘ g) ∼ id τ : (a : A) → ap f (η a) ≡ ε (f a)
Half adjoint equivalences give contractible fibers.
ishae-contr : (f : A → B) → ishae f ------------- → isContrMap f ishae-contr f (hae g η ε τ) y = ((g y) , (ε y)) , contra where lemma : (c c' : fib f y) → Σ (π₁ c ≡ π₁ c') (λ γ → (ap f γ) · π₂ c' ≡ π₂ c) → c ≡ c' lemma c c' (p , q) = Σ-bycomponents (p , lemma2) where lemma2 : tr (λ z → f z ≡ y) p (π₂ c) ≡ π₂ c' lemma2 = begin tr (λ z → f z ≡ y) p (π₂ c) ≡⟨ transport-eq-fun-l f p (π₂ c) ⟩ inv (ap f p) · (π₂ c) ≡⟨ ap (inv (ap f p) ·_) (inv q) ⟩ inv (ap f p) · ((ap f p) · (π₂ c')) ≡⟨ inv (·-assoc (inv (ap f p)) (ap f p) (π₂ c')) ⟩ inv (ap f p) · (ap f p) · (π₂ c') ≡⟨ ap (_· (π₂ c')) (·-linv (ap f p)) ⟩ π₂ c' ∎ contra : (x : fib f y) → (g y , ε y) ≡ x contra (x , p) = lemma (g y , ε y) (x , p) (γ , lemma3) where γ : g y ≡ x γ = inv (ap g p) · η x lemma3 : (ap f γ · p) ≡ ε y lemma3 = begin ap f γ · p ≡⟨ ap (_· p) (ap-· f (inv (ap g p)) (η x)) ⟩ ap f (inv (ap g p)) · ap f (η x) · p ≡⟨ ·-assoc (ap f (inv (ap g p))) _ p ⟩ ap f (inv (ap g p)) · (ap f (η x) · p) ≡⟨ ap (_· (ap f (η x) · p)) (ap-inv f (ap g p)) ⟩ inv (ap f (ap g p)) · (ap f (η x) · p) ≡⟨ ap (λ u → inv (ap f (ap g p)) · (u · p)) (τ x) ⟩ inv (ap f (ap g p)) · (ε (f x) · p) ≡⟨ ap (λ u → inv (ap f (ap g p)) · (ε (f x) · u)) (inv (ap-id p)) ⟩ inv (ap f (ap g p)) · (ε (f x) · ap id p) ≡⟨ ap (inv (ap f (ap g p)) ·_) (h-naturality ε p) ⟩ inv (ap f (ap g p)) · (ap (f ∘ g) p · ε y) ≡⟨ ap (λ u → inv u · (ap (f ∘ g) p · ε y)) (ap-comp g f p) ⟩ inv (ap (f ∘ g) p) · (ap (f ∘ g) p · ε y) ≡⟨ inv (·-assoc (inv (ap (f ∘ g) p)) _ (ε y)) ⟩ (inv (ap (f ∘ g) p) · ap (f ∘ g) p) · ε y ≡⟨ ap (_· ε y) (·-linv (ap (λ z → f (g z)) p)) ⟩ ε y ∎
Half-adjointness implies equivalence:
ishae-≃ : {f : A → B} → ishae f --------- → A ≃ B ishae-≃ ishaef = _ , (ishae-contr _ ishaef)
(2022-12-28)(57c278b4) Last updated: 2021-09-16 15:00:00 by jonathan.cubides (2022-07-06)(d3a4a8cf) minors by jonathan.cubides (2022-01-26)(4aef326b) [ reports ] added some revisions by jonathan.cubides (2021-12-20)(049db6a8) Added code of cubical experiments. by jonathan.cubides (2021-12-20)(961730c9) [ html ] regular update by jonathan.cubides (2021-12-20)(e0ef9faa) Fixed compilation and format, remove hidden parts by jonathan.cubides (2021-12-20)(5120e5d1) Added cubical experiment to the master by jonathan.cubides (2021-12-17)(828fdd0a) More revisions added for CPP by jonathan.cubides (2021-12-15)(0d6a99d8) Fixed some broken links and descriptions by jonathan.cubides (2021-12-15)(662a1f2d) [ .gitignore ] add by jonathan.cubides (2021-12-15)(0630ce66) Minor fixes by jonathan.cubides (2021-12-13)(04f10eba) Fixed a lot of details by jonathan.cubides (2021-12-10)(24195c9f) [ .gitignore ] ignore .zip and arxiv related files by jonathan.cubides (2021-12-09)(538d2859) minor fixes before dinner by jonathan.cubides (2021-12-09)(36a1a69f) [ planar.pdf ] w.i.p revisions to share on arxiv first by jonathan.cubides