foundations.IntegerType.md.

Version of Sunday, January 22, 2023, 10:42 PM

Powered by agda version 2.6.2.2-442c76b and pandoc 2.14.0.3


Investigations on graph-theoretical constructions in Homotopy type theory

Jonathan Prieto-Cubides j.w.w. Håkon Robbestad Gylterud

Department of Informatics

University of Bergen, Norway

{-# OPTIONS --without-K --exact-split #-}
open import foundations.TransportLemmas
open import foundations.EquivalenceType

open import foundations.HomotopyType
open import foundations.FunExtAxiom
open import foundations.QuasiinverseType
open import foundations.DecidableEquality
open import foundations.NaturalsType
open import foundations.HLevelTypes
open import foundations.HedbergLemmas
module foundations.IntegerType where

  data  : Type₀ where
    zer : 
    pos :   
    neg :   

  -- Inclusion of the natural numbers into the integers
  NtoZ :   
  NtoZ zero     = zer
  NtoZ (succ n) = pos n

  -- Successor function
  zsucc :   
  zsucc zer            = pos 0
  zsucc (pos x)        = pos (succ x)
  zsucc (neg zero)     = zer
  zsucc (neg (succ x)) = neg x

  -- Predecessor function
  zpred :   
  zpred zer            = neg 0
  zpred (pos zero)     = zer
  zpred (pos (succ x)) = pos x
  zpred (neg x)        = neg (succ x)

  -- Successor and predecessor
  zsuccpred-id : (n : )  zsucc (zpred n)  n
  zsuccpred-id zer            = refl _
  zsuccpred-id (pos zero)     = refl _
  zsuccpred-id (pos (succ n)) = refl _
  zsuccpred-id (neg n)        = refl _

  zpredsucc-id : (n : )  zpred (zsucc n)  n
  zpredsucc-id zer            = refl _
  zpredsucc-id (pos n)        = refl _
  zpredsucc-id (neg zero)     = refl _
  zpredsucc-id (neg (succ n)) = refl _

  zpredsucc-succpred : (n : )  zpred (zsucc n)  zsucc (zpred n)
  zpredsucc-succpred zer = refl zer
  zpredsucc-succpred (pos zero) = refl (pos zero)
  zpredsucc-succpred (pos (succ x)) = refl (pos (succ x))
  zpredsucc-succpred (neg zero) = refl (neg zero)
  zpredsucc-succpred (neg (succ x)) = refl (neg (succ x))

  zsuccpred-predsucc : (n : )  zsucc (zpred n)  zpred (zsucc n)
  zsuccpred-predsucc n = inv (zpredsucc-succpred n)

  -- Equivalence given by successor and predecessor
  zequiv-succ :   
  zequiv-succ = qinv-≃ zsucc (zpred , (zsuccpred-id , zpredsucc-id))

  -- Negation
  private
    - :   
    - zer     = zer
    - (pos x) = neg x
    - (neg x) = pos x

  double- : (z : )  - (- z)  z
  double- zer = refl _
  double- (pos x) = refl _
  double- (neg x) = refl _

  zequiv- :   
  zequiv- = qinv-≃ - (- , (double- , double-))

  -- Addition on integers
  infixl 60 _+ᶻ_
  _+ᶻ_ :     
  zer +ᶻ m = m
  pos zero +ᶻ m = zsucc m
  pos (succ x) +ᶻ m = zsucc (pos x +ᶻ m)
  neg zero +ᶻ m = zpred m
  neg (succ x) +ᶻ m = zpred (neg x +ᶻ m)

  -- s on addition
  +ᶻ-lunit : (n : )  n  n +ᶻ zer
  +ᶻ-lunit zer            = refl _
  +ᶻ-lunit (pos zero)     = refl _
  +ᶻ-lunit (pos (succ x)) = ap zsucc (+ᶻ-lunit (pos x))
  +ᶻ-lunit (neg zero)     = refl _
  +ᶻ-lunit (neg (succ x)) = ap zpred (+ᶻ-lunit (neg x))


  +ᶻ-unit-zsucc : (n : )  zsucc n  (n +ᶻ pos zero)
  +ᶻ-unit-zsucc zer = refl _
  +ᶻ-unit-zsucc (pos zero) = refl _
  +ᶻ-unit-zsucc (pos (succ x)) = ap zsucc (+ᶻ-unit-zsucc (pos x))
  +ᶻ-unit-zsucc (neg zero) = refl _
  +ᶻ-unit-zsucc (neg (succ x)) = inv (zpredsucc-id (neg x)) · ap zpred (+ᶻ-unit-zsucc (neg x))

  +ᶻ-unit-zpred : (n : )  zpred n  (n +ᶻ neg zero)
  +ᶻ-unit-zpred zer = refl _
  +ᶻ-unit-zpred (pos zero) = refl zer
  +ᶻ-unit-zpred (pos (succ x)) = inv (zsuccpred-id (pos x)) · ap zsucc (+ᶻ-unit-zpred (pos x))
  +ᶻ-unit-zpred (neg zero) = refl _
  +ᶻ-unit-zpred (neg (succ x)) = ap zpred (+ᶻ-unit-zpred (neg x))


  +ᶻ-pos-zsucc : (n : )  (x : )  zsucc (n +ᶻ pos x)  n +ᶻ pos (succ x)
  +ᶻ-pos-zsucc zer x = refl _
  +ᶻ-pos-zsucc (pos zero) x = refl _
  +ᶻ-pos-zsucc (pos (succ n)) x = ap zsucc (+ᶻ-pos-zsucc (pos n) x)
  +ᶻ-pos-zsucc (neg zero) x = zsuccpred-id (pos x)
  +ᶻ-pos-zsucc (neg (succ n)) x = zsuccpred-predsucc (neg n +ᶻ pos x) · ap zpred (+ᶻ-pos-zsucc (neg n) x)

  +ᶻ-neg-zpred : (n : )  (x : )  zpred (n +ᶻ neg x)  n +ᶻ neg (succ x)
  +ᶻ-neg-zpred zer x = refl _
  +ᶻ-neg-zpred (pos zero) x = zpredsucc-id (neg x)
  +ᶻ-neg-zpred (pos (succ n)) x = zpredsucc-succpred (pos n +ᶻ neg x) · ap zsucc (+ᶻ-neg-zpred (pos n) x)
  +ᶻ-neg-zpred (neg zero) x = refl _
  +ᶻ-neg-zpred (neg (succ n)) x = ap zpred (+ᶻ-neg-zpred (neg n) x)

  +ᶻ-comm : (n m : )  n +ᶻ m  m +ᶻ n
  +ᶻ-comm zer m = +ᶻ-lunit m
  +ᶻ-comm (pos zero) m = +ᶻ-unit-zsucc m
  +ᶻ-comm (pos (succ x)) m = ap zsucc (+ᶻ-comm (pos x) m) · +ᶻ-pos-zsucc m x
  +ᶻ-comm (neg zero) m = +ᶻ-unit-zpred m
  +ᶻ-comm (neg (succ x)) m = ap zpred (+ᶻ-comm (neg x) m) · +ᶻ-neg-zpred m x



  -- Decidable equality
  pos-inj : {n m : }  pos n  pos m  n  m
  pos-inj {n} {.n} idp = refl n

  neg-inj : {n m : }  neg n  neg m  n  m
  neg-inj {n} {.n} idp = refl n

  z-decEq : decEq 
  z-decEq zer zer = inl (refl zer)
  z-decEq zer (pos x) = inr  ())
  z-decEq zer (neg x) = inr  ())
  z-decEq (pos x) zer = inr  ())
  z-decEq (pos n) (pos m) with (nat-decEq n m)
  z-decEq (pos n) (pos m) | inl p = inl (ap pos p)
  z-decEq (pos n) (pos m) | inr f = inr (f  pos-inj)
  z-decEq (pos n) (neg m) = inr  ())
  z-decEq (neg n) zer = inr  ())
  z-decEq (neg n) (pos x₁) = inr  ())
  z-decEq (neg n) (neg m) with (nat-decEq n m)
  z-decEq (neg n) (neg m) | inl p = inl (ap neg p)
  z-decEq (neg n) (neg m) | inr f = inr (f  neg-inj)

  z-isSet : isSet 
  z-isSet = hedberg z-decEq


  -- Multiplication
  infixl 60 _*ᶻ_
  _*ᶻ_ :     
  zer *ᶻ m = zer
  pos zero *ᶻ m = m
  pos (succ x) *ᶻ m = (pos x *ᶻ m) +ᶻ m
  neg zero *ᶻ m = - m
  neg (succ x) *ᶻ m = (neg x *ᶻ m) +ᶻ (- m)


  -- Ordering
  _<ᶻ_ :     Type₀
  zer <ᶻ zer =  lzero
  zer <ᶻ pos x =  lzero
  zer <ᶻ neg x =  lzero
  pos x <ᶻ zer =  lzero
  pos x <ᶻ pos y = x <ₙ y
  pos x <ᶻ neg y =  lzero
  neg x <ᶻ zer =  lzero
  neg x <ᶻ pos y =  lzero
  neg x <ᶻ neg y = y <ₙ x

Latest changes

(2022-12-28)(57c278b4) Last updated: 2021-09-16 15:00:00 by jonathan.cubides
(2022-07-06)(d3a4a8cf) minors by jonathan.cubides
(2022-01-26)(4aef326b) [ reports ] added some revisions by jonathan.cubides
(2021-12-20)(049db6a8) Added code of cubical experiments. by jonathan.cubides
(2021-12-20)(961730c9) [ html ] regular update by jonathan.cubides
(2021-12-20)(e0ef9faa) Fixed compilation and format, remove hidden parts by jonathan.cubides
(2021-12-20)(5120e5d1) Added cubical experiment to the master by jonathan.cubides
(2021-12-17)(828fdd0a) More revisions added for CPP by jonathan.cubides
(2021-12-15)(0d6a99d8) Fixed some broken links and descriptions by jonathan.cubides
(2021-12-15)(662a1f2d) [ .gitignore ] add by jonathan.cubides
(2021-12-15)(0630ce66) Minor fixes by jonathan.cubides
(2021-12-13)(04f10eba) Fixed a lot of details by jonathan.cubides
(2021-12-10)(24195c9f) [ .gitignore ] ignore .zip and arxiv related files by jonathan.cubides
(2021-12-09)(538d2859) minor fixes before dinner by jonathan.cubides
(2021-12-09)(36a1a69f) [ planar.pdf ] w.i.p revisions to share on arxiv first by jonathan.cubides