lib.graph-embeddings.HIT.Homotopic-are-equal.md.
Version of Sunday, January 22, 2023, 10:42 PM
Powered by agda version 2.6.2.2-442c76b and pandoc 2.14.0.3
module _ {ℓ : Level} (G : Graph ℓ) (_≟Node_ : (x y : Node (U G)) → (x ≡ y) + (x ≠ y)) (M : Map G) (M-is-spherical : isSphericalMap G M) where
The following is a proof of Lemma 1.1. § 2.3 in Testing Homotopy for Paths in the Plane by Cabello, Sergio Liu, Yuanxin Mantler, Andrea Snoeyink, Jack. Springer.
Lemma: Two paths have the same canonical sequence if and only if they are homotopic (in the plane).
We replace cannonical by normal form in the sense of our loop-reduction relation.
open lib.graph-embeddings.HIT.construction G M [_]ₕᵢₜ = to-eq 𝕟 𝕖 variable x y : Node G lemma : (p q : Walk (U G) x y) → p ∼⟨ M ⟩∼ q ------------------------- → ∥ [ p ]ₕᵢₜ ≡ [ q ]ₕᵢₜ ∥ lemma _ _ (hwalk-refl) = ∣ idp ∣ lemma _ _ (hwalk-symm q∼p) = trunc-elim trunc-is-prop (λ q=p → ∣ ! q=p ∣ ) (lemma _ _ q∼p) lemma _ _ (hwalk-trans {w₂ = w₂} p∼w₂ w₂∼q) = trunc-elim trunc-is-prop (λ p=w₂ → trunc-elim trunc-is-prop (λ w₂=q → ∣ p=w₂ · w₂=q ∣) ∣w₂=q∣) ∣p=w₂∣ where ∣p=w₂∣ = lemma _ w₂ p∼w₂ ∣w₂=q∣ = lemma w₂ _ w₂∼q lemma _ _ (collapse 𝔽 {a}{b} w₁ w₂) = ∣ helper ∣ where helper = begin [ w₁ ·w (cw-walk _ {M} 𝔽 a b ∙w w₂) ]ₕᵢₜ ≡⟨ i ⟩ [ w₁ ]ₕᵢₜ · [ cw-walk _ {M} 𝔽 _ _ ∙w w₂ ]ₕᵢₜ ≡⟨ ii ⟩ [ w₁ ]ₕᵢₜ · ([ cw-walk _ {M} 𝔽 _ _ ]ₕᵢₜ · [ w₂ ]ₕᵢₜ) ≡⟨ iii ⟩ [ w₁ ]ₕᵢₜ · ([ ccw-walk _ {M} 𝔽 _ _ ]ₕᵢₜ · [ w₂ ]ₕᵢₜ) ≡⟨ iv ⟩ [ w₁ ]ₕᵢₜ · [ ccw-walk _ {M} 𝔽 _ _ ∙w w₂ ]ₕᵢₜ ≡⟨ v ⟩ [ w₁ ·w ccw-walk _ {M} 𝔽 a b ∙w w₂ ]ₕᵢₜ ∎ where i = to-eq-compatible-·w 𝕟 𝕖 w₁ (cw-walk _ {M} 𝔽 a b ∙w w₂) ii = ap ([ w₁ ]ₕᵢₜ ·_) (to-eq-compatible-·w 𝕟 𝕖 (cw-walk _ {M} 𝔽 a b) w₂) iii = ap ([ w₁ ]ₕᵢₜ ·_) (ap (_· [ w₂ ]ₕᵢₜ) (𝕗 𝔽 a b)) iv = ap (λ o → [ w₁ ]ₕᵢₜ · o) (! to-eq-compatible-·w 𝕟 𝕖 (ccw-walk _ {M} 𝔽 a b) w₂) v = ! to-eq-compatible-·w 𝕟 𝕖 w₁ ((ccw-walk _ {M} 𝔽 a b ∙w w₂)) -- -- Note that the following holds because we have a spherical map. corollary : ∀ {x y : Node G} → (p q : Walk (U G) x y) → ∥ [ p ]ₕᵢₜ ≡ [ q ]ₕᵢₜ ∥ corollary p q = trunc-elim trunc-is-prop (λ p∼q → lemma _ _ p∼q) ∣p∼q∣ where ∣p∼q∣ : ∥ p ∼⟨ M ⟩∼ q ∥ ∣p∼q∣ = lemap (spherical-equiv G (_≟Node_) M) M-is-spherical _ _ p q
(2022-12-28)(57c278b4) Last updated: 2021-09-16 15:00:00 by jonathan.cubides (2022-07-06)(d3a4a8cf) minors by jonathan.cubides (2022-01-26)(4aef326b) [ reports ] added some revisions by jonathan.cubides (2021-12-20)(049db6a8) Added code of cubical experiments. by jonathan.cubides (2021-12-20)(961730c9) [ html ] regular update by jonathan.cubides (2021-12-20)(e0ef9faa) Fixed compilation and format, remove hidden parts by jonathan.cubides (2021-12-20)(5120e5d1) Added cubical experiment to the master by jonathan.cubides (2021-12-17)(828fdd0a) More revisions added for CPP by jonathan.cubides (2021-12-15)(0d6a99d8) Fixed some broken links and descriptions by jonathan.cubides (2021-12-15)(662a1f2d) [ .gitignore ] add by jonathan.cubides (2021-12-15)(0630ce66) Minor fixes by jonathan.cubides (2021-12-13)(04f10eba) Fixed a lot of details by jonathan.cubides (2021-12-10)(24195c9f) [ .gitignore ] ignore .zip and arxiv related files by jonathan.cubides (2021-12-09)(538d2859) minor fixes before dinner by jonathan.cubides (2021-12-09)(36a1a69f) [ planar.pdf ] w.i.p revisions to share on arxiv first by jonathan.cubides