lib.graph-homomorphisms.Hom.md.
Version of Sunday, January 22, 2023, 10:42 PM
Powered by agda version 2.6.2.2-442c76b and pandoc 2.14.0.3
{-# OPTIONS --without-K --exact-split #-} module lib.graph-homomorphisms.Hom where open import foundations.Core open import lib.graph-definitions.Graph open Graph public
private variable ℓ₁ ℓ₂ : Level
record Hom (G : Graph ℓ₁) (H : Graph ℓ₂) : Type (ℓ₁ ⊔ ℓ₂) where eta-equality constructor hom field α : Node G → Node H β : (x y : Node G) → Edge G x y → Edge H (α x) (α y) syntax hom α β = ⟨ α , β ⟩
Hom-≃-∑ : (G : Graph ℓ₁) (H : Graph ℓ₂) → Hom G H ≃ (∑[ α ∶ (Node G → Node H) ] ((x y : Node G) → Edge G x y → Edge H (α x) (α y))) Hom-≃-∑ G H = qinv-≃ f (g , (λ {x → idp}) , λ {x → idp}) where private f : Hom G H → ∑ (Node G → Node H) (λ α → (x y : Node G) → Edge G x y → Edge H (α x) (α y)) f (hom α β) = α , β g : ∑ (Node G → Node H) (λ α → (x y : Node G) → Edge G x y → Edge H (α x) (α y)) → Hom G H g (α , β) = hom α β
abstract Hom-is-set : (G : Graph ℓ₁) (H : Graph ℓ₂) → isSet (Hom G H) open import foundations.UnivalenceAxiom Hom-is-set G H = equiv-preserves-sets (≃-sym (Hom-≃-∑ G H)) (isSet-Σ (∏-set (λ _ → Node-is-set H)) λ α → ∏-set (λ x → ∏-set (λ y → pi-is-set (λ a → Edge-is-set H _ _))))
module _ {ℓ₁ ℓ₂ ℓ₃ : Level}{G : Graph ℓ₁}{H : Graph ℓ₂}{K : Graph ℓ₃} where
_∘Hom_ : Hom G H → Hom H K → Hom G K (hom α₁ β₁) ∘Hom (hom α₂ β₂) = hom (α₁ ︔ α₂) (λ x y e → β₂ (α₁ x) (α₁ y) (β₁ x y e))
_hom≅_ : ∀ {ℓ₁ ℓ₂ : Level} → (G : Graph ℓ₁) → (H : Graph ℓ₂) → Type (ℓ₁ ⊔ ℓ₂) G hom≅ H = Hom G H × Hom H G
module _ {ℓ : Level}(G : Graph ℓ) where id-hom : Hom G G id-hom = hom identity (λ _ _ e → e)
module _ {ℓ : Level}{G : Graph ℓ} where expo-hom : ℕ → (φ : Hom G G) → Hom G G expo-hom 0 φ = id-hom G expo-hom (succ n) φ = expo-hom n φ ∘Hom φ syntax expo-hom n h = h ^-hom n
open Hom lemma-on-nodes-hom-expo : (φ : Hom G G) → (n : ℕ) → ((α φ) ^ n) ≡ α (expo-hom n φ) lemma-on-nodes-hom-expo φ 0 = idp lemma-on-nodes-hom-expo φ (succ n) = funext (λ e → ap (α φ) (happly (lemma-on-nodes-hom-expo φ n) e)) where open import foundations.FunExtAxiom
∘Hom-assoc : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} {G : Graph ℓ₁}{H : Graph ℓ₂}{K : Graph ℓ₃}{L : Graph ℓ₄} → (f : Hom G H) (g : Hom H K) (h : Hom K L) ----------------------------------------------------------------- → ((f ∘Hom g) ∘Hom h) ≡ (f ∘Hom (g ∘Hom h)) ∘Hom-assoc f g h = idp
_has-hom-property_ : ∀ {ℓ₁ ℓ₂ : Level} {G : Graph ℓ₁} {H : Graph ℓ₂} → (h : Hom G H) → (P : ∀ {ℓ₁}{ℓ₂}{X}{Y} → Hom {ℓ₁}{ℓ₂} X Y → hProp (ℓ₁ ⊔ ℓ₂)) → Type (ℓ₁ ⊔ ℓ₂) h has-hom-property P = π₁ (P h) _has-endo-hom-property_ : ∀ {ℓ : Level} {H : Graph ℓ}(h : Hom H H) → (P : ∀ {X} → Hom X X → hProp ℓ) → Type ℓ h has-endo-hom-property P = π₁ (P h)
(2022-12-28)(57c278b4) Last updated: 2021-09-16 15:00:00 by jonathan.cubides (2022-07-06)(d3a4a8cf) minors by jonathan.cubides (2022-01-26)(4aef326b) [ reports ] added some revisions by jonathan.cubides (2021-12-20)(049db6a8) Added code of cubical experiments. by jonathan.cubides (2021-12-20)(961730c9) [ html ] regular update by jonathan.cubides (2021-12-20)(e0ef9faa) Fixed compilation and format, remove hidden parts by jonathan.cubides (2021-12-20)(5120e5d1) Added cubical experiment to the master by jonathan.cubides (2021-12-17)(828fdd0a) More revisions added for CPP by jonathan.cubides (2021-12-15)(0d6a99d8) Fixed some broken links and descriptions by jonathan.cubides (2021-12-15)(662a1f2d) [ .gitignore ] add by jonathan.cubides (2021-12-15)(0630ce66) Minor fixes by jonathan.cubides (2021-12-13)(04f10eba) Fixed a lot of details by jonathan.cubides (2021-12-10)(24195c9f) [ .gitignore ] ignore .zip and arxiv related files by jonathan.cubides (2021-12-09)(538d2859) minor fixes before dinner by jonathan.cubides (2021-12-09)(36a1a69f) [ planar.pdf ] w.i.p revisions to share on arxiv first by jonathan.cubides