foundations.SigmaPreserves.md.
Version of Sunday, January 22, 2023, 10:42 PM
Powered by agda version 2.6.2.2-442c76b and pandoc 2.14.0.3
{-# OPTIONS --without-K --exact-split #-}
module foundations.SigmaPreserves where open import foundations.TransportLemmas open import foundations.ProductIdentities open import foundations.CoproductIdentities open import foundations.EquivalenceType open import foundations.HomotopyType open import foundations.HomotopyLemmas open import foundations.HalfAdjointType open import foundations.QuasiinverseType open import foundations.QuasiinverseLemmas
module _ {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Type ℓ₁}{C : A → Type ℓ₂}{D : A → Type ℓ₃} (e : (a : A) → C a ≃ D a) where private f : (a : A) → C a → D a f a = lemap (e a) f⁻¹ : (a : A) → D a → C a f⁻¹ a = remap (e a) α : (a : A) → (f a) ∘ (f⁻¹ a) ∼ id α a x = lrmap-inverse (e a) β : (a : A) → (f⁻¹ a) ∘ (f a) ∼ id β a x = rlmap-inverse (e a) ΣAC-to-ΣAD : Σ A C → Σ A D ΣAC-to-ΣAD (a , c) = (a , (f a) c) ΣAD-to-ΣAC : Σ A D → Σ A C ΣAD-to-ΣAC (a , d) = (a , (f⁻¹ a) d) H₁ : ΣAC-to-ΣAD ∘ ΣAD-to-ΣAC ∼ id H₁ (a , d) = pair= (idp , α a d) H₂ : ΣAD-to-ΣAC ∘ ΣAC-to-ΣAD ∼ id H₂ (a , c) = pair= (idp , β a c)
sigma-preserves : Σ A C ≃ Σ A D sigma-preserves = qinv-≃ ΣAC-to-ΣAD (ΣAD-to-ΣAC , H₁ , H₂)
module _ {ℓ₁ ℓ₂ ℓ₃} {A : Type ℓ₁} {B : Type ℓ₂} (e : B ≃ A) {C : A → Type ℓ₃} where private f : B → A f = lemap e ishaef : ishae f ishaef = ≃-ishae e f⁻¹ : A → B f⁻¹ = ishae.g ishaef α : f ∘ f⁻¹ ∼ id α = ishae.ε ishaef β : f⁻¹ ∘ f ∼ id β = ishae.η ishaef τ : (b : B) → ap f (β b) ≡ α (f b) τ = ishae.τ ishaef ΣAC-to-ΣBCf : Σ A C → Σ B (λ b → C (f b)) ΣAC-to-ΣBCf (a , c) = f⁻¹ a , c' where c' : C (f (f⁻¹ a)) c' = tr C ((α a) ⁻¹) c ΣBCf-to-ΣAC : Σ B (λ b → C (f b)) → Σ A C ΣBCf-to-ΣAC (b , c') = f b , c' private H₁ : ΣAC-to-ΣBCf ∘ ΣBCf-to-ΣAC ∼ id H₁ (b , c') = pair= (β b , patho) where c'' : C (f (f⁻¹ (f b))) c'' = tr C ((α (f b)) ⁻¹) c' -- patho : c'' ≡ c' [ (C ∘ f) ↓ (β b)] patho : tr (λ x → C (f x)) (β b) c'' ≡ c' patho = begin tr (λ x → C (f x)) (β b) c'' ≡⟨ transport-family (β b) c'' ⟩ tr C (ap f (β b)) c'' ≡⟨ ap (λ γ → tr C γ c'') (τ b) ⟩ tr C (α (f b)) c'' ≡⟨ transport-comp-h ((α (f b)) ⁻¹) (α (f b)) c' ⟩ tr C ( ((α (f b)) ⁻¹) · α (f b)) c' ≡⟨ ap (λ γ → tr C γ c') (·-linv (α (f b))) ⟩ tr C idp c' ≡⟨⟩ c' ∎ private H₂ : ΣBCf-to-ΣAC ∘ ΣAC-to-ΣBCf ∼ id H₂ (a , c) = pair= (α a , patho) where patho : tr C (α a) (transport C ((α a) ⁻¹) c) ≡ c patho = begin tr C (α a) (transport C ((α a) ⁻¹) c) ≡⟨ transport-comp-h (((α a) ⁻¹)) (α a) c ⟩ tr C ( ((α a) ⁻¹) · (α a) ) c ≡⟨ ap (λ γ → tr C γ c) (·-linv (α a)) ⟩ tr C idp c ≡⟨⟩ c ∎
sigma-preserves-≃ : Σ A C ≃ Σ B (λ b → C (f b)) sigma-preserves-≃ = qinv-≃ ΣAC-to-ΣBCf (ΣBCf-to-ΣAC , H₁ , H₂)
sigma-maps-≃ : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄} {A : Type ℓ₁} {A' : Type ℓ₄} {B : A → Type ℓ₂}{B' : A' → Type ℓ₃} → (α : A ≃ A') → ((a : A) → (B a ≃ B' ((α ∙) a))) ---------------------------------- → Σ A B ≃ Σ A' B' sigma-maps-≃ {A = A}{A'}{B}{B'} α β = ≃-trans (sigma-preserves β) (≃-sym (sigma-preserves-≃ α))
(2022-12-28)(57c278b4) Last updated: 2021-09-16 15:00:00 by jonathan.cubides (2022-07-06)(d3a4a8cf) minors by jonathan.cubides (2022-01-26)(4aef326b) [ reports ] added some revisions by jonathan.cubides (2021-12-20)(049db6a8) Added code of cubical experiments. by jonathan.cubides (2021-12-20)(961730c9) [ html ] regular update by jonathan.cubides (2021-12-20)(e0ef9faa) Fixed compilation and format, remove hidden parts by jonathan.cubides (2021-12-20)(5120e5d1) Added cubical experiment to the master by jonathan.cubides (2021-12-17)(828fdd0a) More revisions added for CPP by jonathan.cubides (2021-12-15)(0d6a99d8) Fixed some broken links and descriptions by jonathan.cubides (2021-12-15)(662a1f2d) [ .gitignore ] add by jonathan.cubides (2021-12-15)(0630ce66) Minor fixes by jonathan.cubides (2021-12-13)(04f10eba) Fixed a lot of details by jonathan.cubides (2021-12-10)(24195c9f) [ .gitignore ] ignore .zip and arxiv related files by jonathan.cubides (2021-12-09)(538d2859) minor fixes before dinner by jonathan.cubides (2021-12-09)(36a1a69f) [ planar.pdf ] w.i.p revisions to share on arxiv first by jonathan.cubides