foundations.TypesofMorphisms.md.
Version of Sunday, January 22, 2023, 10:42 PM
Powered by agda version 2.6.2.2-442c76b and pandoc 2.14.0.3
{-# OPTIONS --without-K --exact-split #-}
module foundations.TypesofMorphisms where open import foundations.TransportLemmas open import foundations.EquivalenceType open import foundations.HomotopyType open import foundations.FunExtAxiom open import foundations.QuasiinverseType open import foundations.DecidableEquality open import foundations.NaturalsType open import foundations.HLevelTypes open import foundations.HLevelLemmas open import foundations.HedbergLemmas open import foundations.TruncationType open import foundations.FibreType open import foundations.CoproductIdentities
isSurjection : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (f : A → B) → Type (ℓ₁ ⊔ ℓ₂) isSurjection {B = B} f = (b : B) → ∥ fib f b ∥ isSurjective = isSurjection isOnto = isSurjection _is-surjection = isSurjection
Do not confuse with the traditional logic notation for surjective functions which says (f) is surjective if (∀ (b : B) ∃ (a : A) . f a ≡ b). This is stronger than merely know exists an ((a : A)) as it was stated above with .
Therefore, we define the concept of :
isSplitSurjection : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (f : A → B) → Type (ℓ₁ ⊔ ℓ₂) isSplitSurjection {B = B} f = (b : B) → fib f b _is-split-surjection = isSplitSurjection
Which is equivalent to say (f) is a :
isRetraction : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (f : A → B) → Type (ℓ₁ ⊔ ℓ₂) isRetraction {A = A}{B} f = ∑ (B → A) (λ g → (b : B) → f (g b) ≡ b) _is-retraction = isRetraction
As a trivial example, we know the identity function is indeed a surjective function. Let us check this.
identity-is-surjective : ∀ {ℓ : Level}{A : Type ℓ} → isSurjection {A = A} id identity-is-surjective {A = A} b = ∥∥-intro (b , idp)
isEmbedding : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (f : A → B) --------------- → Type (ℓ₁ ⊔ ℓ₂) isEmbedding {A = A} f = ∀ {x y : A} → isEquiv (ap f {x}{y}) _is-embedding = isEmbedding is-embedding-has-prop-fibers : ∀ {ℓ₁ ℓ₂ : Level}{A : Type ℓ₁}{B : Type ℓ₂} → (f : A → B) → f is-embedding → B is-set → ∏[ x ∶ B ] isProp (fib f x) is-embedding-has-prop-fibers f f-is-emb B-is-set = λ b → λ {(a , p₁) (b , p₂) → pair= (((ap f , f-is-emb) ∙←) (p₁ · ! p₂) , B-is-set _ _ _ _)}
: should I demand for injective functions to have their domains and codomains as sets?
isInjective : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (f : A → B) → Type (ℓ₁ ⊔ ℓ₂) isInjective {A = A} f = ∀ {x y} → f x ≡ f y → x ≡ y _is-injective = isInjective
As a trivial example, let us prove identity is an injective function:
identity-is-injective : ∀ {ℓ : Level} {A : Type ℓ} → isInjective {A = A} id identity-is-injective p = p
isInjectiveIsProp : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (iA : isSet A) → (f : A → B) ------------------------ → isProp (isInjective f) isInjectiveIsProp {A = A}{B} iA f i1 i2 = aux i1 i2 where private aux : isProp (∀ {x y} → (f x ≡ f y → x ≡ y)) aux = pi-is-prop-implicit (λ x → pi-is-prop-implicit (λ y → pi-is-prop (λ p → iA x y) )) injective-is-prop = isInjectiveIsProp
isSurjectionIsProp : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (f : A → B) → isProp (isSurjection f) isSurjectionIsProp f = pi-is-prop (λ b → truncated-is-prop {A = fib f b}) surjective-is-prop = isSurjectionIsProp
If the function (f : A → B) is a surjection, we are able to get a function (g : B → A) by the recursion principle of truncation.
fromSurjection : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (f : A → B) → isSet B → isSurjection f → isInjective f -------------------------------- → (b : B) → ∑ A (λ a → f a ≡ b) fromSurjection {A = A}{B} f iB f-is-onto f-is-injective b = trunc-rec (aux b) id (f-is-onto b) where private aux : (b : B) → isProp (fib f b) aux .(f x) (x , idp) (x' , p2) = ∑-≡ (λ y → f y ≡ f x) (f-is-injective (! p2)) (iB (f x') (f x) (tr (λ z₁ → f z₁ ≡ f x) (f-is-injective (! p2)) idp) p2)
preimage-function = fromSurjection
Bijection is a concept from Set Theory, which meeans that if we want to define it in homotopy type Theory, we must talk about only functions between (homotopy) sets. Thus, we will find these assumptions in the type for bijections, even though, we do not really need them ¬¬.
isBijection : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (f : A → B) → isSet A → isSet B ------------------- → Type (ℓ₁ ⊔ ℓ₂) isBijection f iA iB = isInjective f × isSurjection f _is-bijection = isBijection
Before to proceed to prove that and are two logical equivalent concept when we talk about (homotopy) sets, let us give an example of a natural bijection, the idenitity function.
identity-is-bijection : ∀ {ℓ : Level} {A : Type ℓ} → (A-is-set : isSet A) → isBijection id A-is-set A-is-set identity-is-bijection {A} ia = identity-is-injective , identity-is-surjective
: we again see that the assumption of being a set for the domain is required in the way to check the funciton is injective or surjective. This must suggest, we must include this assumption in the Injective definition.
Bijection : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (iA : isSet A) → (iB : isSet B) → (f : A → B) → isBijection f iA iB ---------------------- → A ≃ B Bijection {A = A}{B} iA iB f (f-is-injective , f-is-onto) = qinv-≃ f (g , (H₁ , H₂)) where aux : (b : B) → ∑ A (λ a → f a ≡ b) aux = fromSurjection f iB f-is-onto f-is-injective g : B → A g = π₁ ∘ aux H₁ : (b : B) → f (g b) ≡ b H₁ b = π₂ (aux b) H₂ : (a : A) → g (f a) ≡ a H₂ a = f-is-injective (H₁ (f a))
is-bijection-to-≃ = Bijection
≃-to-bijection : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (iA : isSet A) → (iB : isSet B) ----------------------------------------- → (e : A ≃ B) → (isBijection (e ∙→) iA iB) ≃-to-bijection iA iB e = (λ {x y} p → ! (∙←∘∙→ e) · (ap (e ∙←) p) · (∙←∘∙→ e) ) -- is injective , λ b → ∣ (e ∙←) b , ∙→∘∙← e ∣ -- is surjective where open import foundations.EquivalenceType
Bijection and being equivalent are equivalent notions:
isBijection-≃-isEquiv : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (iA : isSet A) (iB : isSet B) → (f : A → B) ---------------------------------- → isBijection f iA iB ≃ isEquiv f isBijection-≃-isEquiv {A = A}{B} iA iB f = qinv-≃ (λ bij → π₂ (Bijection iA iB f bij)) ((λ isEquivf → ≃-to-bijection iA iB (f , isEquivf)) , h1 , h2) where h1 : (λ x → π₂ (Bijection iA iB f (≃-to-bijection iA iB (f , x)))) ∼ id h1 e = isContrMapIsProp f _ e h2 : (λ x → ≃-to-bijection iA iB (f , π₂ (Bijection iA iB f x))) ∼ id h2 bij = ×-is-prop (isInjectiveIsProp iA f) (isSurjectionIsProp f) _ bij open import foundations.QuasiinverseLemmas
bijIsProp : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (iA : isSet A)(iB : isSet B) → (f : A → B) ------------------------------ → isProp (isBijection f iA iB) bijIsProp iA iB f = isProp-≃ (≃-sym (isBijection-≃-isEquiv iA iB f)) (isEquivIsProp f) bijection-is-prop = bijIsProp
For some reasons, we might need to have the inverse, the actual function, of a bijection. One way I see now is to recover such a function from the equivalence, using . Let’s see this:
inverse-of-bijection : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (iA : isSet A) → (iB : isSet B) → (f : A → B) → isBijection f iA iB ------------------------------ → B → A inverse-of-bijection iA iB f isBij = remap (Bijection iA iB f isBij) inv-of-bij = inverse-of-bijection
∘-bijective-and-its-inverse-l : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (A-is-set : isSet A) → (B-is-set : isSet B) → (f : A → B) → (f-is-bij : isBijection f A-is-set B-is-set) -------------------------------------------------------- → f ∘ inverse-of-bijection A-is-set B-is-set f f-is-bij ∼ id ∘-bijective-and-its-inverse-l A-is-set B-is-set f f-is-bij = lrmap-inverse-h (is-bijection-to-≃ A-is-set B-is-set f f-is-bij)
∘-bijective-and-its-inverse-r : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂} → (A-is-set : isSet A)(B-is-set : isSet B) → (f : A → B) → (f-is-bij : isBijection f A-is-set B-is-set) ------------------------------------------------------------ → (inverse-of-bijection A-is-set B-is-set f f-is-bij) ∘ f ∼ id ∘-bijective-and-its-inverse-r A-is-set B-is-set f f-is-bij = rlmap-inverse-h (is-bijection-to-≃ A-is-set B-is-set f f-is-bij)
The inverse of a bijection is clearly a bijection as well.
inverse-of-bijection-is-bijection : ∀ {ℓ₁ ℓ₂ : Level}{A : Type ℓ₁}{B : Type ℓ₂} → (A-is-set : isSet A) → (B-is-set : isSet B) → (f : A → B) → (f-is-bij : isBijection f A-is-set B-is-set) ------------------------------------------------------------ → isBijection (inverse-of-bijection A-is-set B-is-set f f-is-bij) B-is-set A-is-set inverse-of-bijection-is-bijection A-is-set B-is-set f f-is-bij = inv-f-is-inj , inv-f-is-sur where inv-f-is-inj : isInjective (inverse-of-bijection A-is-set B-is-set f f-is-bij) inv-f-is-inj {x = x}{y} p = ! ∘-bijective-and-its-inverse-l A-is-set B-is-set f f-is-bij x · ap f p · ∘-bijective-and-its-inverse-l A-is-set B-is-set f f-is-bij y inv-f-is-sur : isSurjection (inverse-of-bijection A-is-set B-is-set f f-is-bij) inv-f-is-sur a = ∣ f a , ∘-bijective-and-its-inverse-r A-is-set B-is-set f f-is-bij a ∣
∘-injectives-is-injective : ∀ {ℓ₁ ℓ₂ ℓ₃ : Level } → {A : Type ℓ₁} {B : Type ℓ₂} {C : Type ℓ₃} → (f : A → B) → isInjective f → (g : B → C) → isInjective g ----------------------------- → isInjective (g ∘ f) ∘-injectives-is-injective f f-is-injective g g-is-injective p = f-is-injective (g-is-injective p)
As we expect, composition of surjections is also surjections. However, this fact is not trivial and it is a good exercise to understand better propositional truncation.
∘-surjection-is-surjection : ∀ {ℓ₁ ℓ₂ ℓ₃ : Level } → {A : Type ℓ₁} {B : Type ℓ₂} {C : Type ℓ₃} → (f : A → B) → isSurjection f → (g : B → C) → isSurjection g ----------------------------- → isSurjection (g ∘ f) ∘-surjection-is-surjection {A = A}{B}{C} f f-is-surjection g g-is-surjection c = step₁ (g-is-surjection c) where step₁ : ∥ ∑ B (λ b → g b ≡ c) ∥ → ∥ ∑ A (λ a → (f :> g) a ≡ c) ∥ step₁ = trunc-rec ∥∥-is-prop step₂ where step₂ : ∑ B (λ b → g b ≡ c) → ∥ ∑ A (λ a → (f :> g) a ≡ c) ∥ step₂ (b , p₁) = step₃ b p₁ (f-is-surjection b) where step₃ : (b : B) → g b ≡ c → ∥ ∑ A (λ a → f a ≡ b) ∥ → ∥ ∑ A (λ a → (f :> g) a ≡ c) ∥ step₃ b p₁ = trunc-rec ∥∥-is-prop step₄ where step₄ : ∑ A (λ a → f a ≡ b) → ∥ ∑ A (λ a → (f :> (λ {a = a₁} → g)) a ≡ c) ∥ step₄ (a , p) = ∣ a , ((ap g p) · p₁) ∣
Lastly, bijections is also closed by compositions but its proof is just application of the lemmas proved above. Notice the extra requirement which is the domain and codomains need to be sets. This was not stated above for the related lemmas, but it the condition to talk about the concept of bijection.
∘-bijections-is-bijection : ∀ {ℓ₁ ℓ₂ ℓ₃ : Level} → {A : Type ℓ₁}{B : Type ℓ₂}{C : Type ℓ₃} → (A-is-set : isSet A) (B-is-set : isSet B)(C-is-set : isSet C) → (f : A → B) → isBijection f A-is-set B-is-set → (g : B → C) → isBijection g B-is-set C-is-set ----------------------------------------------- → isBijection (g ∘ f) A-is-set C-is-set ∘-bijections-is-bijection {A = A}{B}{C} A-is-set B-is-set iC f (f-is-injective , f-is-surjection) g (g-is-injective , g-is-surjection) = ∘-injectives-is-injective f f-is-injective g g-is-injective , ∘-surjection-is-surjection f f-is-surjection g g-is-surjection
Other theorems about +-map
inj-from-⊕-injective : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} → {A : Type ℓ₁}{B : Type ℓ₂}{C : Type ℓ₃} {D : Type ℓ₄} → {f : A + B → C + D} → (isInjective f) --------------------------- → (g : B → D) → ((b : B) → inr (g b) ≡ f (inr b)) → isInjective g inj-from-⊕-injective {C = C} f⊕g-is-inj g g-is-f {x} {y} p = inr-is-injective (f⊕g-is-inj {x = inr x} (! g-is-f x · ap inr p · g-is-f y))
right-is-injective-of-⊕-injective : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} → {A : Type ℓ₁}{B : Type ℓ₂}{C : Type ℓ₃} {D : Type ℓ₄} → {f : A → C} {g : B → D} → (isInjective 〈 f ⊕ g 〉) --------------------------- → isInjective g right-is-injective-of-⊕-injective {C = C} f⊕g-is-inj {x} {y} p = inr-is-injective (f⊕g-is-inj {x = inr x} $ ap (λ w → inr {A = C} w) p)
left-is-injective-of-⊕-injective : ∀ {ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} → {A : Type ℓ₁}{B : Type ℓ₂}{C : Type ℓ₃} {D : Type ℓ₄} → {f : A → C} {g : B → D} → (isInjective 〈 f ⊕ g 〉) --------------------------- → isInjective f left-is-injective-of-⊕-injective {C = C} f⊕g-is-inj {x} {y} p = inl-is-injective (f⊕g-is-inj {x = inl x} $ ap (λ w → inl {A = C} w) p)
:>-is-injective-is-inj : ∀ {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Type ℓ₁}{B : Type ℓ₂}{C : Type ℓ₃} → {f : A → B} {g : B → C } → isInjective (f :> g) ---------------------- → isInjective f :>-is-injective-is-inj {f = f} {g} :>-is-inj p = :>-is-inj (ap g p)
(2022-12-28)(57c278b4) Last updated: 2021-09-16 15:00:00 by jonathan.cubides (2022-07-06)(d3a4a8cf) minors by jonathan.cubides (2022-01-26)(4aef326b) [ reports ] added some revisions by jonathan.cubides (2021-12-20)(049db6a8) Added code of cubical experiments. by jonathan.cubides (2021-12-20)(961730c9) [ html ] regular update by jonathan.cubides (2021-12-20)(e0ef9faa) Fixed compilation and format, remove hidden parts by jonathan.cubides (2021-12-20)(5120e5d1) Added cubical experiment to the master by jonathan.cubides (2021-12-17)(828fdd0a) More revisions added for CPP by jonathan.cubides (2021-12-15)(0d6a99d8) Fixed some broken links and descriptions by jonathan.cubides (2021-12-15)(662a1f2d) [ .gitignore ] add by jonathan.cubides (2021-12-15)(0630ce66) Minor fixes by jonathan.cubides (2021-12-13)(04f10eba) Fixed a lot of details by jonathan.cubides (2021-12-10)(24195c9f) [ .gitignore ] ignore .zip and arxiv related files by jonathan.cubides (2021-12-09)(538d2859) minor fixes before dinner by jonathan.cubides (2021-12-09)(36a1a69f) [ planar.pdf ] w.i.p revisions to share on arxiv first by jonathan.cubides