lib.graph-embeddings.Map.Face.isSet.md.
Version of Sunday, January 22, 2023, 10:42 PM
Powered by agda version 2.6.2.2-442c76b and pandoc 2.14.0.3
{-# OPTIONS --without-K --exact-split #-}
module lib.graph-embeddings.Map.Face.isSet
where
open import foundations.Core
open import foundations.HLevelLemmas
open import foundations.NaturalsType
open import foundations.Nat
open import lib.graph-embeddings.Map
open import lib.graph-embeddings.Map.Face
open import lib.graph-definitions.Graph
open Graph
open import lib.graph-walks.Walk
open import lib.graph-transformations.U
open import lib.graph-homomorphisms.Hom
open Hom
open import lib.graph-classes.CyclicGraph
open CyclicGraph
open import lib.graph-classes.CyclicGraph.Stuff
open import lib.graph-homomorphisms.classes.EdgeInjective
module _
{β : Level} (G : Graph β) (π : Map G)
where
abstract
Face'-is-set : isSet (Face' G π)
Face'-is-set f1@(d1@(A , AβΊ@(cyclic-graph ΟA zero pA) , f) , (pβ , pβ) , pβ)
f2@(d2@(B , BβΊ@(cyclic-graph ΟB zero pB) , g) , (qβ , qβ) , qβ)
= trunc-elim prop-is-prop (Ξ» {idp β trunc-elim prop-is-prop
(Ξ» {idp β isProp-β (β-sym (β-trans (Face'-Path-space G π f1 f2) equiv))
(β-prop (β-prop (equiv-preserves-prop
(β-sym (β-trans equiv-principle only-one-iso)) π-is-prop)
(Ξ» {_ β Hom-is-set _ _ _ _}))
(Ξ» _ β Hom-is-set A B _ _))
}) pB}) pA
where
open import lib.graph-classes.UnitGraph
open import lib.graph-definitions.Graph.EquivalencePrinciple
open EquivPrinciple (π-graph β) (π-graph β)
equiv : (d1 β‘ d2) β (β[ p βΆ β[ Ξ± βΆ A β‘ B ] (tr _ Ξ± f β‘ g) ] ((tr _ (Οβ p) ΟA) β‘ ΟB))
equiv = beginβ
_
ββ¨ qinv-β (Ξ» {idp β idp}) ((Ξ» {idp β idp}) , (Ξ» {idp β idp}) , (Ξ» {idp β idp})) β©
Path {A = β[ _ ] β[ _ ] β[ _ ] _ }
(A , f , ΟA , pA)
(B , g , ΟB , pB)
ββ¨ qinv-β (Ξ» {idp β idp}) ( (Ξ» {idp β idp}) , (Ξ» {idp β idp}) , (Ξ» {idp β idp})) β©
Path {A = β[ (X , h , Οh) βΆ ((β[ X ] (β[ _ ] Hom X _))) ] _ }
((A , f , ΟA) , pA)
((B , g , ΟB) , pB)
ββ¨ simplify-pair (Ξ» {(_ , _ , _) β trunc-is-prop}) β©
Path {A = β[ _ ] β[ _ ] _ }
(A , f , ΟA)
(B , g , ΟB)
ββ¨ qinv-β (Ξ» {idp β (idp , idp) , idp}) (( Ξ» { ((idp , idp) , idp) β idp})
, (Ξ» {((idp , idp) , idp) β idp}) , Ξ» {idp β idp}) β©
_ ββ
Face'-is-set ((A , AβΊ@(cyclic-graph ΟA zero pA) , f) , (pβ , pβ) , pβ)
((B , BβΊ@(cyclic-graph ΟB (succ nB) pB) , g) , (qβ , qβ) , qβ)
= trunc-elim prop-is-prop (Ξ» {idp β trunc-elim prop-is-prop
(Ξ» {idp β Ξ» {()}})
pB}) pA
Face'-is-set ((A , AβΊ@(cyclic-graph ΟA (succ nA) pA) , f) , (pβ , pβ) , pβ)
((B , BβΊ@(cyclic-graph ΟB zero pB) , g) , (qβ , qβ) , qβ)
= trunc-elim prop-is-prop (Ξ» {idp β trunc-elim prop-is-prop
(Ξ» {idp β Ξ» {()}})
pB}) pA
Face'-is-set f1@(d1@(A , AβΊ@(cyclic-graph ΟA (succ nA) pA) , f) , (pβ , pβ) , pβ)
f2@(d2@(B , BβΊ@(cyclic-graph ΟB (succ nB) pB) , g) , (qβ , qβ) , qβ)
= trunc-elim prop-is-prop (Ξ» {idp β trunc-elim prop-is-prop
(Ξ» {idp β isProp-β (β-sym (β-trans (Face'-Path-space G π f1 f2) equiv))
(β-prop (β-is-set _ _) (Ξ» {idp β β-prop
(β-Cn-isos-is-prop β (succ nA) (succ-n>0 β {nA}) (U G) f pβ g qβ)
(Ξ» _ β Hom-is-set A B _ _)}))})
pB}) pA
where
open import lib.graph-homomorphisms.classes.EdgeInjective.Lemmas
open import lib.graph-homomorphisms.Lemmas
open Hom-Lemma-1 A B
open Hom-Lemma-2 A B (U G) f g
equiv : (d1 β‘ d2) β (β[ Ξ± βΆ nA β‘ nB ]
β[ p βΆ β[ Ξ± βΆ A β‘ B ] (f β‘ gβ Ξ±) ]
((tr _ (Οβ p) ΟA) β‘ ΟB))
equiv =
beginβ
_
ββ¨ qinv-β (Ξ» {idp β idp}) ((Ξ» {idp β idp}) , (Ξ» {idp β idp}) , (Ξ» {idp β idp})) β©
Path {A = β[ _ ] β[ _ ] β[ _ ] β[ _ ] _ }
(nA , A , f , ΟA , pA)
(nB , B , g , ΟB , pB)
ββ¨ qinv-β (Ξ» {idp β idp}) ( (Ξ» {idp β idp}) , (Ξ» {idp β idp}) , (Ξ» {idp β idp})) β©
Path {A = β[ (nX , X , h , Οh) βΆ (β[ _ ] (β[ X ] (β[ _ ] Hom X _))) ] _ }
((nA , A , f , ΟA) , pA)
((nB , B , g , ΟB) , pB)
ββ¨ simplify-pair (Ξ» {(_ , _ , _ , _) β trunc-is-prop}) β©
Path {A = β[ _ ] β[ _ ] β[ _ ] _ }
(nA , A , f , ΟA)
(nB , B , g , ΟB)
ββ¨ qinv-β (Ξ» {idp β idp , idp}) ((Ξ» {(idp , idp) β idp}) ,
(Ξ» {(idp , idp) β idp}) , Ξ» {idp β idp}) β©
((nA β‘ nB) Γ Path ((A , f , ΟA)) ((B , g , ΟB)))
ββ¨ qinv-β (Ξ» {(idp , idp) β idp , (idp , idp)}) ((Ξ» {(idp , (idp , idp)) β (idp , idp)}) ,
(Ξ» {(idp , (idp , idp)) β idp}) , Ξ» {(idp , idp) β idp}) β©
((nA β‘ nB) Γ (β[ Ξ± βΆ A β‘ B ] (Path (f , tr _ Ξ± ΟA) (gβ Ξ± , ΟB))))
ββ¨ qinv-β (Ξ» {(idp , (idp , idp)) β idp , (idp , idp) , idp})
((Ξ» {(idp , ((idp , idp) , idp)) β idp , (idp , idp )}) ,
(Ξ» {(idp , ((idp , idp) , idp)) β idp})
, Ξ» {(idp , (idp , idp)) β idp}) β©
((nA β‘ nB) Γ (β[ p βΆ β[ Ξ± βΆ A β‘ B ] (f β‘ gβ Ξ±) ] ((tr _ (Οβ p) ΟA) β‘ ΟB)))
ββ
Face-is-set : isSet (Face G π)
Face-is-set = equiv-preserves-sets (Face'βFace G π) Face'-is-set
(2022-12-28)(57c278b4) Last updated: 2021-09-16 15:00:00 by jonathan.cubides (2022-07-06)(d3a4a8cf) minors by jonathan.cubides (2022-01-26)(4aef326b) [ reports ] added some revisions by jonathan.cubides (2021-12-20)(049db6a8) Added code of cubical experiments. by jonathan.cubides (2021-12-20)(961730c9) [ html ] regular update by jonathan.cubides (2021-12-20)(e0ef9faa) Fixed compilation and format, remove hidden parts by jonathan.cubides (2021-12-20)(5120e5d1) Added cubical experiment to the master by jonathan.cubides (2021-12-17)(828fdd0a) More revisions added for CPP by jonathan.cubides (2021-12-15)(0d6a99d8) Fixed some broken links and descriptions by jonathan.cubides (2021-12-15)(662a1f2d) [ .gitignore ] add by jonathan.cubides (2021-12-15)(0630ce66) Minor fixes by jonathan.cubides (2021-12-13)(04f10eba) Fixed a lot of details by jonathan.cubides (2021-12-10)(24195c9f) [ .gitignore ] ignore .zip and arxiv related files by jonathan.cubides (2021-12-09)(538d2859) minor fixes before dinner by jonathan.cubides (2021-12-09)(36a1a69f) [ planar.pdf ] w.i.p revisions to share on arxiv first by jonathan.cubides