lib.graph-embeddings.Map.Face.isSet.md.
Version of Sunday, January 22, 2023, 10:42 PM
Powered by agda version 2.6.2.2-442c76b and pandoc 2.14.0.3
{-# OPTIONS --without-K --exact-split #-} module lib.graph-embeddings.Map.Face.isSet where open import foundations.Core open import foundations.HLevelLemmas open import foundations.NaturalsType open import foundations.Nat open import lib.graph-embeddings.Map open import lib.graph-embeddings.Map.Face open import lib.graph-definitions.Graph open Graph open import lib.graph-walks.Walk open import lib.graph-transformations.U open import lib.graph-homomorphisms.Hom open Hom open import lib.graph-classes.CyclicGraph open CyclicGraph open import lib.graph-classes.CyclicGraph.Stuff open import lib.graph-homomorphisms.classes.EdgeInjective module _ {β : Level} (G : Graph β) (π : Map G) where abstract Face'-is-set : isSet (Face' G π) Face'-is-set f1@(d1@(A , AβΊ@(cyclic-graph ΟA zero pA) , f) , (pβ , pβ) , pβ) f2@(d2@(B , BβΊ@(cyclic-graph ΟB zero pB) , g) , (qβ , qβ) , qβ) = trunc-elim prop-is-prop (Ξ» {idp β trunc-elim prop-is-prop (Ξ» {idp β isProp-β (β-sym (β-trans (Face'-Path-space G π f1 f2) equiv)) (β-prop (β-prop (equiv-preserves-prop (β-sym (β-trans equiv-principle only-one-iso)) π-is-prop) (Ξ» {_ β Hom-is-set _ _ _ _})) (Ξ» _ β Hom-is-set A B _ _)) }) pB}) pA where open import lib.graph-classes.UnitGraph open import lib.graph-definitions.Graph.EquivalencePrinciple open EquivPrinciple (π-graph β) (π-graph β) equiv : (d1 β‘ d2) β (β[ p βΆ β[ Ξ± βΆ A β‘ B ] (tr _ Ξ± f β‘ g) ] ((tr _ (Οβ p) ΟA) β‘ ΟB)) equiv = beginβ _ ββ¨ qinv-β (Ξ» {idp β idp}) ((Ξ» {idp β idp}) , (Ξ» {idp β idp}) , (Ξ» {idp β idp})) β© Path {A = β[ _ ] β[ _ ] β[ _ ] _ } (A , f , ΟA , pA) (B , g , ΟB , pB) ββ¨ qinv-β (Ξ» {idp β idp}) ( (Ξ» {idp β idp}) , (Ξ» {idp β idp}) , (Ξ» {idp β idp})) β© Path {A = β[ (X , h , Οh) βΆ ((β[ X ] (β[ _ ] Hom X _))) ] _ } ((A , f , ΟA) , pA) ((B , g , ΟB) , pB) ββ¨ simplify-pair (Ξ» {(_ , _ , _) β trunc-is-prop}) β© Path {A = β[ _ ] β[ _ ] _ } (A , f , ΟA) (B , g , ΟB) ββ¨ qinv-β (Ξ» {idp β (idp , idp) , idp}) (( Ξ» { ((idp , idp) , idp) β idp}) , (Ξ» {((idp , idp) , idp) β idp}) , Ξ» {idp β idp}) β© _ ββ Face'-is-set ((A , AβΊ@(cyclic-graph ΟA zero pA) , f) , (pβ , pβ) , pβ) ((B , BβΊ@(cyclic-graph ΟB (succ nB) pB) , g) , (qβ , qβ) , qβ) = trunc-elim prop-is-prop (Ξ» {idp β trunc-elim prop-is-prop (Ξ» {idp β Ξ» {()}}) pB}) pA Face'-is-set ((A , AβΊ@(cyclic-graph ΟA (succ nA) pA) , f) , (pβ , pβ) , pβ) ((B , BβΊ@(cyclic-graph ΟB zero pB) , g) , (qβ , qβ) , qβ) = trunc-elim prop-is-prop (Ξ» {idp β trunc-elim prop-is-prop (Ξ» {idp β Ξ» {()}}) pB}) pA Face'-is-set f1@(d1@(A , AβΊ@(cyclic-graph ΟA (succ nA) pA) , f) , (pβ , pβ) , pβ) f2@(d2@(B , BβΊ@(cyclic-graph ΟB (succ nB) pB) , g) , (qβ , qβ) , qβ) = trunc-elim prop-is-prop (Ξ» {idp β trunc-elim prop-is-prop (Ξ» {idp β isProp-β (β-sym (β-trans (Face'-Path-space G π f1 f2) equiv)) (β-prop (β-is-set _ _) (Ξ» {idp β β-prop (β-Cn-isos-is-prop β (succ nA) (succ-n>0 β {nA}) (U G) f pβ g qβ) (Ξ» _ β Hom-is-set A B _ _)}))}) pB}) pA where open import lib.graph-homomorphisms.classes.EdgeInjective.Lemmas open import lib.graph-homomorphisms.Lemmas open Hom-Lemma-1 A B open Hom-Lemma-2 A B (U G) f g equiv : (d1 β‘ d2) β (β[ Ξ± βΆ nA β‘ nB ] β[ p βΆ β[ Ξ± βΆ A β‘ B ] (f β‘ gβ Ξ±) ] ((tr _ (Οβ p) ΟA) β‘ ΟB)) equiv = beginβ _ ββ¨ qinv-β (Ξ» {idp β idp}) ((Ξ» {idp β idp}) , (Ξ» {idp β idp}) , (Ξ» {idp β idp})) β© Path {A = β[ _ ] β[ _ ] β[ _ ] β[ _ ] _ } (nA , A , f , ΟA , pA) (nB , B , g , ΟB , pB) ββ¨ qinv-β (Ξ» {idp β idp}) ( (Ξ» {idp β idp}) , (Ξ» {idp β idp}) , (Ξ» {idp β idp})) β© Path {A = β[ (nX , X , h , Οh) βΆ (β[ _ ] (β[ X ] (β[ _ ] Hom X _))) ] _ } ((nA , A , f , ΟA) , pA) ((nB , B , g , ΟB) , pB) ββ¨ simplify-pair (Ξ» {(_ , _ , _ , _) β trunc-is-prop}) β© Path {A = β[ _ ] β[ _ ] β[ _ ] _ } (nA , A , f , ΟA) (nB , B , g , ΟB) ββ¨ qinv-β (Ξ» {idp β idp , idp}) ((Ξ» {(idp , idp) β idp}) , (Ξ» {(idp , idp) β idp}) , Ξ» {idp β idp}) β© ((nA β‘ nB) Γ Path ((A , f , ΟA)) ((B , g , ΟB))) ββ¨ qinv-β (Ξ» {(idp , idp) β idp , (idp , idp)}) ((Ξ» {(idp , (idp , idp)) β (idp , idp)}) , (Ξ» {(idp , (idp , idp)) β idp}) , Ξ» {(idp , idp) β idp}) β© ((nA β‘ nB) Γ (β[ Ξ± βΆ A β‘ B ] (Path (f , tr _ Ξ± ΟA) (gβ Ξ± , ΟB)))) ββ¨ qinv-β (Ξ» {(idp , (idp , idp)) β idp , (idp , idp) , idp}) ((Ξ» {(idp , ((idp , idp) , idp)) β idp , (idp , idp )}) , (Ξ» {(idp , ((idp , idp) , idp)) β idp}) , Ξ» {(idp , (idp , idp)) β idp}) β© ((nA β‘ nB) Γ (β[ p βΆ β[ Ξ± βΆ A β‘ B ] (f β‘ gβ Ξ±) ] ((tr _ (Οβ p) ΟA) β‘ ΟB))) ββ Face-is-set : isSet (Face G π) Face-is-set = equiv-preserves-sets (Face'βFace G π) Face'-is-set
(2022-12-28)(57c278b4) Last updated: 2021-09-16 15:00:00 by jonathan.cubides (2022-07-06)(d3a4a8cf) minors by jonathan.cubides (2022-01-26)(4aef326b) [ reports ] added some revisions by jonathan.cubides (2021-12-20)(049db6a8) Added code of cubical experiments. by jonathan.cubides (2021-12-20)(961730c9) [ html ] regular update by jonathan.cubides (2021-12-20)(e0ef9faa) Fixed compilation and format, remove hidden parts by jonathan.cubides (2021-12-20)(5120e5d1) Added cubical experiment to the master by jonathan.cubides (2021-12-17)(828fdd0a) More revisions added for CPP by jonathan.cubides (2021-12-15)(0d6a99d8) Fixed some broken links and descriptions by jonathan.cubides (2021-12-15)(662a1f2d) [ .gitignore ] add by jonathan.cubides (2021-12-15)(0630ce66) Minor fixes by jonathan.cubides (2021-12-13)(04f10eba) Fixed a lot of details by jonathan.cubides (2021-12-10)(24195c9f) [ .gitignore ] ignore .zip and arxiv related files by jonathan.cubides (2021-12-09)(538d2859) minor fixes before dinner by jonathan.cubides (2021-12-09)(36a1a69f) [ planar.pdf ] w.i.p revisions to share on arxiv first by jonathan.cubides