Equivalences between large precategories
module category-theory.equivalences-large-precategories where
Imports
open import category-theory.functors-large-precategories open import category-theory.large-precategories open import category-theory.natural-isomorphisms-large-precategories open import foundation.universe-levels
Idea
The large precategories C
and D
are equivalent if there are functors
F : C → D
and G : D → C
such that
G ∘ F
is naturally isomorphic to the identity functor onC
,F ∘ G
is naturally isomorphic to the identity functor onD
.
Definition
module _ {αC αD : Level → Level} {βC βD : Level → Level → Level} (C : Large-Precategory αC βC) (D : Large-Precategory αD βD) where record equivalence-Large-Precategory (γ-there γ-back : Level → Level) : UUω where constructor make-equivalence-Large-Precategory field functor-equivalence-Large-Precategory : functor-Large-Precategory C D γ-there functor-inv-equivalence-Large-Precategory : functor-Large-Precategory D C γ-back issec-functor-inv-equivalence-Large-Precategory : natural-isomorphism-Large-Precategory ( comp-functor-Large-Precategory functor-equivalence-Large-Precategory functor-inv-equivalence-Large-Precategory) ( id-functor-Large-Precategory) isretr-functor-inv-equivalence-Large-Precategory : natural-isomorphism-Large-Precategory ( comp-functor-Large-Precategory functor-inv-equivalence-Large-Precategory functor-equivalence-Large-Precategory) ( id-functor-Large-Precategory)