Double negation

module foundation.double-negation where
Imports
open import foundation.negation
open import foundation.propositional-truncations

open import foundation-core.cartesian-product-types
open import foundation-core.coproduct-types
open import foundation-core.dependent-pair-types
open import foundation-core.empty-types
open import foundation-core.functions
open import foundation-core.propositions
open import foundation-core.universe-levels

Definition

We define double negation and triple negation

¬¬ : {l : Level}  UU l  UU l
¬¬ P = ¬ (¬ P)

¬¬¬ : {l : Level}  UU l  UU l
¬¬¬ P = ¬ (¬ (¬ P))

We also define the introduction rule for double negation, and the action on maps of double negation.

intro-double-negation : {l : Level} {P : UU l}  P  ¬¬ P
intro-double-negation p f = f p

map-double-negation :
  {l1 l2 : Level} {P : UU l1} {Q : UU l2}  (P  Q)  (¬¬ P  ¬¬ Q)
map-double-negation f = map-neg (map-neg f)

Properties

The double negation of a type is a proposition

double-negation-Prop' :
  {l : Level} (A : UU l)  Prop l
double-negation-Prop' A = neg-Prop' (¬ A)

double-negation-Prop :
  {l : Level} (P : Prop l)  Prop l
double-negation-Prop P = double-negation-Prop' (type-Prop P)

Double negations of classical laws

double-negation-double-negation-elim : {l : Level} {P : UU l}  ¬¬ (¬¬ P  P)
double-negation-double-negation-elim {P = P} f =
  ( λ (np : ¬ P)  f  (nnp : ¬¬ P)  ex-falso (nnp np)))
    ( λ (p : P)  f  (nnp : ¬¬ P)  p))

double-negation-Peirces-law :
  {l1 l2 : Level} {P : UU l1} {Q : UU l2} 
  ¬¬ (((P  Q)  P)  P)
double-negation-Peirces-law {P = P} {Q} f =
  ( λ (np : ¬ P)  f  h  h  p  ex-falso (np p))))
  ( λ (p : P)  f  h  p))

double-negation-linearity-implication :
  {l1 l2 : Level} {P : UU l1} {Q : UU l2} 
  ¬¬ ((P  Q) + (Q  P))
double-negation-linearity-implication {P = P} {Q = Q} f =
  ( λ (np : ¬ P) 
    map-neg (inl {A = P  Q} {B = Q  P}) f  p  ex-falso (np p)))
    ( λ (p : P) 
      map-neg (inr {A = P  Q} {B = Q  P}) f  q  p))

Cases of double negation elimination

double-negation-elim-neg : {l : Level} (P : UU l)  ¬¬¬ P  ¬ P
double-negation-elim-neg P f p = f  g  g p)

double-negation-elim-prod :
  {l1 l2 : Level} {P : UU l1} {Q : UU l2} 
  ¬¬ ((¬¬ P) × (¬¬ Q))  (¬¬ P) × (¬¬ Q)
pr1 (double-negation-elim-prod {P = P} {Q = Q} f) =
  double-negation-elim-neg (¬ P) (map-double-negation pr1 f)
pr2 (double-negation-elim-prod {P = P} {Q = Q} f) =
  double-negation-elim-neg (¬ Q) (map-double-negation pr2 f)

double-negation-elim-exp :
  {l1 l2 : Level} {P : UU l1} {Q : UU l2} 
  ¬¬ (P  ¬¬ Q)  (P  ¬¬ Q)
double-negation-elim-exp {P = P} {Q = Q} f p =
  double-negation-elim-neg
    ( ¬ Q)
    ( map-double-negation  (g : P  ¬¬ Q)  g p) f)

double-negation-elim-forall :
  {l1 l2 : Level} {P : UU l1} {Q : P  UU l2} 
  ¬¬ ((p : P)  ¬¬ (Q p))  (p : P)  ¬¬ (Q p)
double-negation-elim-forall {P = P} {Q = Q} f p =
  double-negation-elim-neg
    ( ¬ (Q p))
    ( map-double-negation  (g : (u : P)  ¬¬ (Q u))  g p) f)

Maps into double negations extend along intro-double-negation

double-negation-extend :
  {l1 l2 : Level} {P : UU l1} {Q : UU l2} 
  (P  ¬¬ Q)  (¬¬ P  ¬¬ Q)
double-negation-extend {P = P} {Q = Q} f =
  double-negation-elim-neg (¬ Q)  (map-double-negation f)

A double negation of a type is logially equivalent to the double negation of its propositional truncation

abstract
  double-negation-double-negation-type-trunc-Prop :
    {l : Level} (A : UU l)  ¬¬ (type-trunc-Prop A)  ¬¬ A
  double-negation-double-negation-type-trunc-Prop A =
    double-negation-extend
      ( map-universal-property-trunc-Prop
        ( double-negation-Prop' A)
        ( intro-double-negation))

abstract
  double-negation-type-trunc-Prop-double-negation :
    {l : Level} {A : UU l}  ¬¬ A  ¬¬ (type-trunc-Prop A)
  double-negation-type-trunc-Prop-double-negation =
    map-double-negation unit-trunc-Prop