Sequences of the online encyclopedia of integer sequences
module online-encyclopedia-of-integer-sequences.oeis where
Imports
open import elementary-number-theory.ackermann-function open import elementary-number-theory.cofibonacci open import elementary-number-theory.collatz-bijection open import elementary-number-theory.eulers-totient-function open import elementary-number-theory.exponentiation-natural-numbers open import elementary-number-theory.factorials open import elementary-number-theory.fibonacci-sequence open import elementary-number-theory.infinitude-of-primes open import elementary-number-theory.kolakoski-sequence open import elementary-number-theory.natural-numbers open import elementary-number-theory.pisano-periods open import finite-group-theory.finite-groups open import foundation.functions
Sequences
A000001 The number of groups of order n
A000001 : ℕ → ℕ A000001 = number-of-groups-of-order
A000002 The Kolakoski sequence
A000002 : ℕ → ℕ A000002 = kolakoski
A000010 Euler's totient function
A000010 : ℕ → ℕ A000010 = eulers-totient-function
A000040 The prime numbers
A000040 : ℕ → ℕ A000040 = prime-ℕ
A000045 The Fibonacci sequence
A000045 : ℕ → ℕ A000045 = Fibonacci-ℕ
A000079 Powers of 2
A000079 : ℕ → ℕ A000079 = exp-ℕ 2
A000142 Factorials
A000142 : ℕ → ℕ A000142 = factorial-ℕ
A000244 Powers of 3
A000244 : ℕ → ℕ A000244 = exp-ℕ 3
A000720 The prime counting function
A000720 : ℕ → ℕ A000720 = prime-counting-ℕ
A001175 Pisano periods
A001175 : ℕ → ℕ A001175 = pisano-period
A001177 The cofibonacci sequence
A001177 : ℕ → ℕ A001177 = cofibonacci
A001477 The natural numbers
A001477 : ℕ → ℕ A001477 = id
A006369 Collatz' bijection
A006369 : ℕ → ℕ A006369 = map-collatz-bijection
A046859 The main diagonal of the Ackermann–Péter function
A046859 : ℕ → ℕ A046859 n = ackermann n n