Decidable relations on types
module foundation.decidable-relations where
Imports
open import foundation.binary-relations open import foundation.decidable-types open import foundation-core.decidable-propositions open import foundation-core.dependent-pair-types open import foundation-core.equivalences open import foundation-core.homotopies open import foundation-core.propositions open import foundation-core.universe-levels
Idea
A decidable (binary) relation on X
is a binary relation R
on X
such
that each R x y
is a decidable proposition.
Definitions
Decidable relations
is-decidable-Rel-Prop : {l1 l2 : Level} {A : UU l1} → Rel-Prop l2 A → UU (l1 ⊔ l2) is-decidable-Rel-Prop {A = A} R = (x y : A) → is-decidable ( type-Rel-Prop R x y) Decidable-Relation : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ lsuc l2) Decidable-Relation l2 X = X → X → Decidable-Prop l2 module _ {l1 l2 : Level} {X : UU l1} (R : Decidable-Relation l2 X) where relation-Decidable-Relation : X → X → Prop l2 relation-Decidable-Relation x y = prop-Decidable-Prop (R x y) rel-Decidable-Relation : X → X → UU l2 rel-Decidable-Relation x y = type-Decidable-Prop (R x y) is-prop-rel-Decidable-Relation : (x y : X) → is-prop (rel-Decidable-Relation x y) is-prop-rel-Decidable-Relation x y = is-prop-type-Decidable-Prop (R x y) is-decidable-Decidable-Relation : (x y : X) → is-decidable (rel-Decidable-Relation x y) is-decidable-Decidable-Relation x y = is-decidable-Decidable-Prop (R x y) map-inv-equiv-relation-is-decidable-Decidable-Relation : {l1 l2 : Level} {X : UU l1} → Σ ( Rel-Prop l2 X) (λ R → is-decidable-Rel-Prop R) → Decidable-Relation l2 X map-inv-equiv-relation-is-decidable-Decidable-Relation (R , d) x y = ( ( type-Rel-Prop R x y) , ( is-prop-type-Rel-Prop R x y) , ( d x y)) equiv-relation-is-decidable-Decidable-Relation : {l1 l2 : Level} {X : UU l1} → Decidable-Relation l2 X ≃ Σ ( Rel-Prop l2 X) (λ R → is-decidable-Rel-Prop R) pr1 equiv-relation-is-decidable-Decidable-Relation dec-R = ( relation-Decidable-Relation dec-R , is-decidable-Decidable-Relation dec-R) pr2 equiv-relation-is-decidable-Decidable-Relation = is-equiv-has-inverse ( map-inv-equiv-relation-is-decidable-Decidable-Relation) ( refl-htpy) ( refl-htpy)