The structure identity principle
module foundation.structure-identity-principle where
Imports
open import foundation-core.contractible-types open import foundation-core.dependent-pair-types open import foundation-core.equivalences open import foundation-core.fundamental-theorem-of-identity-types open import foundation-core.identity-types open import foundation-core.type-arithmetic-dependent-pair-types open import foundation-core.universe-levels
Idea
Structure is presented in type theory by dependent pair types. The structure identity principle is a way to characterize the identity type of a structure, using characterizations of the identity types of its components.
Lemma
module _ { l1 l2 l3 l4 : Level} { A : UU l1} {B : A → UU l2} {C : A → UU l3} ( D : (x : A) → B x → C x → UU l4) where abstract is-contr-total-Eq-structure : (is-contr-AC : is-contr (Σ A C)) (t : Σ A C) → is-contr (Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t))) → is-contr (Σ (Σ A B) (λ t → Σ (C (pr1 t)) (D (pr1 t) (pr2 t)))) is-contr-total-Eq-structure is-contr-AC t is-contr-BD = is-contr-equiv ( Σ (Σ A C) (λ t → Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t)))) ( interchange-Σ-Σ D) ( is-contr-Σ is-contr-AC t is-contr-BD)
Theorem
The structure identity principle
module _ {l1 l2 l3 l4 : Level} { A : UU l1} {B : A → UU l2} {Eq-A : A → UU l3} (Eq-B : {x : A} → B x → Eq-A x → UU l4) {a : A} {b : B a} (refl-A : Eq-A a) (refl-B : Eq-B b refl-A) where abstract structure-identity-principle : {f : (x : A) → a = x → Eq-A x} {g : (y : B a) → b = y → Eq-B y refl-A} → (h : (z : Σ A B) → (pair a b) = z → Σ (Eq-A (pr1 z)) (Eq-B (pr2 z))) → ((x : A) → is-equiv (f x)) → ((y : B a) → is-equiv (g y)) → (z : Σ A B) → is-equiv (h z) structure-identity-principle {f} {g} h H K = fundamental-theorem-id ( is-contr-total-Eq-structure ( λ x → Eq-B) ( fundamental-theorem-id' f H) ( pair a refl-A) ( fundamental-theorem-id' g K)) ( h) map-extensionality-Σ : (f : (x : A) → (a = x) ≃ Eq-A x) (g : (y : B a) → (b = y) ≃ Eq-B y refl-A) → (z : Σ A B) → pair a b = z → Σ (Eq-A (pr1 z)) (Eq-B (pr2 z)) pr1 (map-extensionality-Σ f g .(pair a b) refl) = refl-A pr2 (map-extensionality-Σ f g .(pair a b) refl) = refl-B extensionality-Σ : (f : (x : A) → (a = x) ≃ Eq-A x) (g : (y : B a) → (b = y) ≃ Eq-B y refl-A) → (z : Σ A B) → (pair a b = z) ≃ Σ (Eq-A (pr1 z)) (Eq-B (pr2 z)) pr1 (extensionality-Σ f g z) = map-extensionality-Σ f g z pr2 (extensionality-Σ f g z) = structure-identity-principle ( map-extensionality-Σ f g) ( λ x → is-equiv-map-equiv (f x)) ( λ y → is-equiv-map-equiv (g y)) ( z)