Sums in commutative rings
module commutative-algebra.sums-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.coproduct-types open import foundation.functions open import foundation.homotopies open import foundation.identity-types open import foundation.unit-type open import foundation.universe-levels open import linear-algebra.vectors open import linear-algebra.vectors-on-commutative-rings open import ring-theory.sums-rings open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.standard-finite-types
Idea
The sum operation extends the binary addition operation on a commutative
ring A
to any family of elements of A
indexed by a standard finite type.
Definition
sum-Commutative-Ring : {l : Level} (A : Commutative-Ring l) (n : ℕ) → (functional-vec-Commutative-Ring A n) → type-Commutative-Ring A sum-Commutative-Ring A = sum-Ring (ring-Commutative-Ring A)
Properties
Sums of one and two elements
module _ {l : Level} (A : Commutative-Ring l) where sum-one-element-Commutative-Ring : (f : functional-vec-Commutative-Ring A 1) → sum-Commutative-Ring A 1 f = head-functional-vec 0 f sum-one-element-Commutative-Ring = sum-one-element-Ring (ring-Commutative-Ring A) sum-two-elements-Commutative-Ring : (f : functional-vec-Commutative-Ring A 2) → sum-Commutative-Ring A 2 f = add-Commutative-Ring A (f (zero-Fin 1)) (f (one-Fin 1)) sum-two-elements-Commutative-Ring = sum-two-elements-Ring (ring-Commutative-Ring A)
Sums are homotopy invariant
module _ {l : Level} (A : Commutative-Ring l) where htpy-sum-Commutative-Ring : (n : ℕ) {f g : functional-vec-Commutative-Ring A n} → (f ~ g) → sum-Commutative-Ring A n f = sum-Commutative-Ring A n g htpy-sum-Commutative-Ring = htpy-sum-Ring (ring-Commutative-Ring A)
Sums are equal to the zero-th term plus the rest
module _ {l : Level} (A : Commutative-Ring l) where cons-sum-Commutative-Ring : (n : ℕ) (f : functional-vec-Commutative-Ring A (succ-ℕ n)) → {x : type-Commutative-Ring A} → head-functional-vec n f = x → sum-Commutative-Ring A (succ-ℕ n) f = add-Commutative-Ring A ( sum-Commutative-Ring A n (tail-functional-vec n f)) x cons-sum-Commutative-Ring = cons-sum-Ring (ring-Commutative-Ring A) snoc-sum-Commutative-Ring : (n : ℕ) (f : functional-vec-Commutative-Ring A (succ-ℕ n)) → {x : type-Commutative-Ring A} → f (zero-Fin n) = x → sum-Commutative-Ring A (succ-ℕ n) f = add-Commutative-Ring A ( x) ( sum-Commutative-Ring A n (f ∘ inr-Fin n)) snoc-sum-Commutative-Ring = snoc-sum-Ring (ring-Commutative-Ring A)
Multiplication distributes over sums
module _ {l : Level} (A : Commutative-Ring l) where left-distributive-mul-sum-Commutative-Ring : (n : ℕ) (x : type-Commutative-Ring A) (f : functional-vec-Commutative-Ring A n) → mul-Commutative-Ring A x (sum-Commutative-Ring A n f) = sum-Commutative-Ring A n (λ i → mul-Commutative-Ring A x (f i)) left-distributive-mul-sum-Commutative-Ring = left-distributive-mul-sum-Ring (ring-Commutative-Ring A) right-distributive-mul-sum-Commutative-Ring : (n : ℕ) (f : functional-vec-Commutative-Ring A n) (x : type-Commutative-Ring A) → mul-Commutative-Ring A (sum-Commutative-Ring A n f) x = sum-Commutative-Ring A n (λ i → mul-Commutative-Ring A (f i) x) right-distributive-mul-sum-Commutative-Ring = right-distributive-mul-sum-Ring (ring-Commutative-Ring A)
Interchange law of sums and addition in a commutative ring
module _ {l : Level} (A : Commutative-Ring l) where interchange-add-sum-Commutative-Ring : (n : ℕ) (f g : functional-vec-Commutative-Ring A n) → add-Commutative-Ring A ( sum-Commutative-Ring A n f) ( sum-Commutative-Ring A n g) = sum-Commutative-Ring A n ( add-functional-vec-Commutative-Ring A n f g) interchange-add-sum-Commutative-Ring = interchange-add-sum-Ring (ring-Commutative-Ring A)
Extending a sum of elements in a commutative ring
module _ {l : Level} (A : Commutative-Ring l) where extend-sum-Commutative-Ring : (n : ℕ) (f : functional-vec-Commutative-Ring A n) → sum-Commutative-Ring A ( succ-ℕ n) ( cons-functional-vec-Commutative-Ring A n (zero-Commutative-Ring A) f) = sum-Commutative-Ring A n f extend-sum-Commutative-Ring = extend-sum-Ring (ring-Commutative-Ring A)
Shifting a sum of elements in a commutative ring
module _ {l : Level} (A : Commutative-Ring l) where shift-sum-Commutative-Ring : (n : ℕ) (f : functional-vec-Commutative-Ring A n) → sum-Commutative-Ring A ( succ-ℕ n) ( snoc-functional-vec-Commutative-Ring A n f ( zero-Commutative-Ring A)) = sum-Commutative-Ring A n f shift-sum-Commutative-Ring = shift-sum-Ring (ring-Commutative-Ring A)
Splitting sums
split-sum-Commutative-Ring : {l : Level} (A : Commutative-Ring l) (n m : ℕ) (f : functional-vec-Commutative-Ring A (n +ℕ m)) → sum-Commutative-Ring A (n +ℕ m) f = add-Commutative-Ring A ( sum-Commutative-Ring A n (f ∘ inl-coprod-Fin n m)) ( sum-Commutative-Ring A m (f ∘ inr-coprod-Fin n m)) split-sum-Commutative-Ring A n zero-ℕ f = inv (right-unit-law-add-Commutative-Ring A (sum-Commutative-Ring A n f)) split-sum-Commutative-Ring A n (succ-ℕ m) f = ( ap ( add-Commutative-Ring' A (f(inr star))) ( split-sum-Commutative-Ring A n m (f ∘ inl))) ∙ ( associative-add-Commutative-Ring A _ _ _)
A sum of zeroes is zero
module _ {l : Level} (A : Commutative-Ring l) where sum-zero-Commutative-Ring : (n : ℕ) → sum-Commutative-Ring A n ( zero-functional-vec-Commutative-Ring A n) = zero-Commutative-Ring A sum-zero-Commutative-Ring = sum-zero-Ring (ring-Commutative-Ring A)