Representations of monoids
module group-theory.representations-monoids where
Imports
open import category-theory.categories open import category-theory.endomorphisms-of-objects-categories open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.homomorphisms-monoids open import group-theory.monoids
Idea
Representations of a monoid M
in a category C
consist of an object V
in
C
equipped with a monoid homomorphism from M
to the monoid of endomorphisms
on V
.
Definition
categorical-representation-Monoid : {l1 l2 l3 : Level} (C : Category l1 l2) (M : Monoid l3) → UU (l1 ⊔ l2 ⊔ l3) categorical-representation-Monoid C M = Σ (obj-Category C) (λ V → type-hom-Monoid M (monoid-endo-Category C V)) module _ {l1 l2 l3 : Level} (C : Category l1 l2) (M : Monoid l3) (ρ : categorical-representation-Monoid C M) where obj-categorical-representation-Monoid : obj-Category C obj-categorical-representation-Monoid = pr1 ρ hom-action-categorical-representation-Monoid : type-hom-Monoid M ( monoid-endo-Category C obj-categorical-representation-Monoid) hom-action-categorical-representation-Monoid = pr2 ρ action-categorical-representation-Monoid : type-Monoid M → endo-Category C obj-categorical-representation-Monoid action-categorical-representation-Monoid = map-hom-Monoid M ( monoid-endo-Category C obj-categorical-representation-Monoid) ( hom-action-categorical-representation-Monoid) preserves-mul-action-categorical-representation-Monoid : ( x y : type-Monoid M) → ( action-categorical-representation-Monoid (mul-Monoid M x y)) = ( comp-endo-Category C ( obj-categorical-representation-Monoid) ( action-categorical-representation-Monoid x) ( action-categorical-representation-Monoid y)) preserves-mul-action-categorical-representation-Monoid = preserves-mul-hom-Monoid M ( monoid-endo-Category C obj-categorical-representation-Monoid) ( hom-action-categorical-representation-Monoid) preserves-unit-action-categorical-representation-Monoid : action-categorical-representation-Monoid (unit-Monoid M) = id-endo-Category C obj-categorical-representation-Monoid preserves-unit-action-categorical-representation-Monoid = preserves-unit-hom-Monoid M ( monoid-endo-Category C obj-categorical-representation-Monoid) ( hom-action-categorical-representation-Monoid)