Type arithmetic for dependent pair types
module foundation-core.type-arithmetic-dependent-pair-types where
Imports
open import foundation-core.cartesian-product-types open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.dependent-pair-types open import foundation-core.equality-dependent-pair-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.functions open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.singleton-induction open import foundation-core.universe-levels
Idea
We prove laws for the manipulation of dependent pair types with respect to themselves and arithmetical laws with respect to contractible types.
Properties
The left unit law for Σ using a contractible base type
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (C : is-contr A) (a : A) where map-inv-left-unit-law-Σ-is-contr : B a → Σ A B map-inv-left-unit-law-Σ-is-contr b = pair a b map-left-unit-law-Σ-is-contr : Σ A B → B a map-left-unit-law-Σ-is-contr = ind-Σ ( ind-singleton-is-contr a C ( λ x → B x → B a) ( id)) issec-map-inv-left-unit-law-Σ-is-contr : ( map-left-unit-law-Σ-is-contr ∘ map-inv-left-unit-law-Σ-is-contr) ~ id issec-map-inv-left-unit-law-Σ-is-contr b = ap ( λ (f : B a → B a) → f b) ( compute-ind-singleton-is-contr a C (λ x → B x → B a) id) isretr-map-inv-left-unit-law-Σ-is-contr : ( map-inv-left-unit-law-Σ-is-contr ∘ map-left-unit-law-Σ-is-contr) ~ id isretr-map-inv-left-unit-law-Σ-is-contr = ind-Σ ( ind-singleton-is-contr a C ( λ x → ( y : B x) → Id ( ( map-inv-left-unit-law-Σ-is-contr ∘ map-left-unit-law-Σ-is-contr) ( pair x y)) ( pair x y)) ( λ y → ap ( map-inv-left-unit-law-Σ-is-contr) ( ap ( λ f → f y) ( compute-ind-singleton-is-contr a C (λ x → B x → B a) id)))) is-equiv-map-left-unit-law-Σ-is-contr : is-equiv map-left-unit-law-Σ-is-contr is-equiv-map-left-unit-law-Σ-is-contr = is-equiv-has-inverse map-inv-left-unit-law-Σ-is-contr issec-map-inv-left-unit-law-Σ-is-contr isretr-map-inv-left-unit-law-Σ-is-contr left-unit-law-Σ-is-contr : Σ A B ≃ B a pr1 left-unit-law-Σ-is-contr = map-left-unit-law-Σ-is-contr pr2 left-unit-law-Σ-is-contr = is-equiv-map-left-unit-law-Σ-is-contr abstract is-equiv-map-inv-left-unit-law-Σ-is-contr : is-equiv map-inv-left-unit-law-Σ-is-contr is-equiv-map-inv-left-unit-law-Σ-is-contr = is-equiv-has-inverse map-left-unit-law-Σ-is-contr isretr-map-inv-left-unit-law-Σ-is-contr issec-map-inv-left-unit-law-Σ-is-contr inv-left-unit-law-Σ-is-contr : B a ≃ Σ A B pr1 inv-left-unit-law-Σ-is-contr = map-inv-left-unit-law-Σ-is-contr pr2 inv-left-unit-law-Σ-is-contr = is-equiv-map-inv-left-unit-law-Σ-is-contr
Right unit law for dependent pair types
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where abstract is-equiv-pr1-is-contr : ((a : A) → is-contr (B a)) → is-equiv (pr1 {B = B}) is-equiv-pr1-is-contr is-contr-B = is-equiv-is-contr-map ( λ x → is-contr-equiv ( B x) ( equiv-fib-pr1 B x) ( is-contr-B x)) equiv-pr1 : ((a : A) → is-contr (B a)) → (Σ A B) ≃ A pr1 (equiv-pr1 is-contr-B) = pr1 pr2 (equiv-pr1 is-contr-B) = is-equiv-pr1-is-contr is-contr-B right-unit-law-Σ-is-contr : ((a : A) → is-contr (B a)) → (Σ A B) ≃ A right-unit-law-Σ-is-contr = equiv-pr1 abstract is-contr-is-equiv-pr1 : is-equiv (pr1 {B = B}) → ((a : A) → is-contr (B a)) is-contr-is-equiv-pr1 is-equiv-pr1-B a = is-contr-equiv' ( fib pr1 a) ( equiv-fib-pr1 B a) ( is-contr-map-is-equiv is-equiv-pr1-B a) map-inv-right-unit-law-Σ-is-contr : ((a : A) → is-contr (B a)) → A → Σ A B map-inv-right-unit-law-Σ-is-contr H a = (a , center (H a)) issec-map-inv-right-unit-law-Σ-is-contr : (H : (a : A) → is-contr (B a)) → ( pr1 ∘ map-inv-right-unit-law-Σ-is-contr H) ~ id issec-map-inv-right-unit-law-Σ-is-contr H = refl-htpy isretr-map-inv-right-unit-law-Σ-is-contr : (H : (a : A) → is-contr (B a)) → ( map-inv-right-unit-law-Σ-is-contr H ∘ pr1) ~ id isretr-map-inv-right-unit-law-Σ-is-contr H (a , b) = eq-pair-Σ refl (eq-is-contr (H a)) is-equiv-map-inv-right-unit-law-Σ-is-contr : (H : (a : A) → is-contr (B a)) → is-equiv (map-inv-right-unit-law-Σ-is-contr H) is-equiv-map-inv-right-unit-law-Σ-is-contr H = is-equiv-has-inverse ( pr1) ( isretr-map-inv-right-unit-law-Σ-is-contr H) ( issec-map-inv-right-unit-law-Σ-is-contr H) inv-right-unit-law-Σ-is-contr : (H : (a : A) → is-contr (B a)) → A ≃ Σ A B pr1 (inv-right-unit-law-Σ-is-contr H) = map-inv-right-unit-law-Σ-is-contr H pr2 (inv-right-unit-law-Σ-is-contr H) = is-equiv-map-inv-right-unit-law-Σ-is-contr H
Associativity of dependent pair types
There are two ways to express associativity for dependent pair types. We formalize both ways.
module _ {l1 l2 l3 : Level} (A : UU l1) (B : A → UU l2) (C : Σ A B → UU l3) where map-associative-Σ : Σ (Σ A B) C → Σ A (λ x → Σ (B x) (λ y → C (pair x y))) pr1 (map-associative-Σ ((x , y) , z)) = x pr1 (pr2 (map-associative-Σ ((x , y) , z))) = y pr2 (pr2 (map-associative-Σ ((x , y) , z))) = z map-inv-associative-Σ : Σ A (λ x → Σ (B x) (λ y → C (pair x y))) → Σ (Σ A B) C pr1 (pr1 (map-inv-associative-Σ (x , y , z))) = x pr2 (pr1 (map-inv-associative-Σ (x , y , z))) = y pr2 (map-inv-associative-Σ (x , y , z)) = z isretr-map-inv-associative-Σ : (map-inv-associative-Σ ∘ map-associative-Σ) ~ id isretr-map-inv-associative-Σ (pair (pair x y) z) = refl issec-map-inv-associative-Σ : (map-associative-Σ ∘ map-inv-associative-Σ) ~ id issec-map-inv-associative-Σ (pair x (pair y z)) = refl abstract is-equiv-map-associative-Σ : is-equiv map-associative-Σ is-equiv-map-associative-Σ = is-equiv-has-inverse map-inv-associative-Σ issec-map-inv-associative-Σ isretr-map-inv-associative-Σ associative-Σ : Σ (Σ A B) C ≃ Σ A (λ x → Σ (B x) (λ y → C (pair x y))) pr1 associative-Σ = map-associative-Σ pr2 associative-Σ = is-equiv-map-associative-Σ inv-associative-Σ : Σ A (λ x → Σ (B x) (λ y → C (pair x y))) ≃ Σ (Σ A B) C pr1 inv-associative-Σ = map-inv-associative-Σ pr2 inv-associative-Σ = is-equiv-has-inverse map-associative-Σ isretr-map-inv-associative-Σ issec-map-inv-associative-Σ
Associativity, second formulation
module _ {l1 l2 l3 : Level} (A : UU l1) (B : A → UU l2) (C : (x : A) → B x → UU l3) where map-associative-Σ' : Σ (Σ A B) (λ w → C (pr1 w) (pr2 w)) → Σ A (λ x → Σ (B x) (C x)) pr1 (map-associative-Σ' ((x , y) , z)) = x pr1 (pr2 (map-associative-Σ' ((x , y) , z))) = y pr2 (pr2 (map-associative-Σ' ((x , y) , z))) = z map-inv-associative-Σ' : Σ A (λ x → Σ (B x) (C x)) → Σ (Σ A B) (λ w → C (pr1 w) (pr2 w)) pr1 (pr1 (map-inv-associative-Σ' (x , y , z))) = x pr2 (pr1 (map-inv-associative-Σ' (x , y , z))) = y pr2 (map-inv-associative-Σ' (x , y , z)) = z issec-map-inv-associative-Σ' : (map-associative-Σ' ∘ map-inv-associative-Σ') ~ id issec-map-inv-associative-Σ' (pair x (pair y z)) = refl isretr-map-inv-associative-Σ' : ( map-inv-associative-Σ' ∘ map-associative-Σ') ~ id isretr-map-inv-associative-Σ' (pair (pair x y) z) = refl is-equiv-map-associative-Σ' : is-equiv map-associative-Σ' is-equiv-map-associative-Σ' = is-equiv-has-inverse map-inv-associative-Σ' issec-map-inv-associative-Σ' isretr-map-inv-associative-Σ' associative-Σ' : Σ (Σ A B) (λ w → C (pr1 w) (pr2 w)) ≃ Σ A (λ x → Σ (B x) (C x)) pr1 associative-Σ' = map-associative-Σ' pr2 associative-Σ' = is-equiv-map-associative-Σ' inv-associative-Σ' : Σ A (λ x → Σ (B x) (C x)) ≃ Σ (Σ A B) (λ w → C (pr1 w) (pr2 w)) pr1 inv-associative-Σ' = map-inv-associative-Σ' pr2 inv-associative-Σ' = is-equiv-has-inverse map-associative-Σ' isretr-map-inv-associative-Σ' issec-map-inv-associative-Σ'
The interchange law
module _ { l1 l2 l3 l4 : Level} { A : UU l1} {B : A → UU l2} {C : A → UU l3} ( D : (x : A) → B x → C x → UU l4) where map-interchange-Σ-Σ : Σ (Σ A B) (λ t → Σ (C (pr1 t)) (D (pr1 t) (pr2 t))) → Σ (Σ A C) (λ t → Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t))) pr1 (pr1 (map-interchange-Σ-Σ t)) = pr1 (pr1 t) pr2 (pr1 (map-interchange-Σ-Σ t)) = pr1 (pr2 t) pr1 (pr2 (map-interchange-Σ-Σ t)) = pr2 (pr1 t) pr2 (pr2 (map-interchange-Σ-Σ t)) = pr2 (pr2 t) map-inv-interchange-Σ-Σ : Σ (Σ A C) (λ t → Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t))) → Σ (Σ A B) (λ t → Σ (C (pr1 t)) (D (pr1 t) (pr2 t))) pr1 (pr1 (map-inv-interchange-Σ-Σ t)) = pr1 (pr1 t) pr2 (pr1 (map-inv-interchange-Σ-Σ t)) = pr1 (pr2 t) pr1 (pr2 (map-inv-interchange-Σ-Σ t)) = pr2 (pr1 t) pr2 (pr2 (map-inv-interchange-Σ-Σ t)) = pr2 (pr2 t) issec-map-inv-interchange-Σ-Σ : ( map-interchange-Σ-Σ ∘ map-inv-interchange-Σ-Σ) ~ id issec-map-inv-interchange-Σ-Σ (pair (pair a c) (pair b d)) = refl isretr-map-inv-interchange-Σ-Σ : ( map-inv-interchange-Σ-Σ ∘ map-interchange-Σ-Σ) ~ id isretr-map-inv-interchange-Σ-Σ (pair (pair a b) (pair c d)) = refl abstract is-equiv-map-interchange-Σ-Σ : is-equiv map-interchange-Σ-Σ is-equiv-map-interchange-Σ-Σ = is-equiv-has-inverse map-inv-interchange-Σ-Σ issec-map-inv-interchange-Σ-Σ isretr-map-inv-interchange-Σ-Σ interchange-Σ-Σ : Σ (Σ A B) (λ t → Σ (C (pr1 t)) (D (pr1 t) (pr2 t))) ≃ Σ (Σ A C) (λ t → Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t))) pr1 interchange-Σ-Σ = map-interchange-Σ-Σ pr2 interchange-Σ-Σ = is-equiv-map-interchange-Σ-Σ eq-interchange-Σ-Σ-is-contr : {a : A} {b : B a} → is-contr (Σ (C a) (D a b)) → {x y : Σ (C a) (D a b)} → map-equiv interchange-Σ-Σ ((a , b) , x) = map-equiv interchange-Σ-Σ ((a , b) , y) eq-interchange-Σ-Σ-is-contr H = ap (map-equiv interchange-Σ-Σ) (ap (pair _) (eq-is-contr H))
Swapping the order of quantification in a Σ-type, on the left
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : A → B → UU l3} where map-left-swap-Σ : Σ A (λ x → Σ B (C x)) → Σ B (λ y → Σ A (λ x → C x y)) pr1 (map-left-swap-Σ (a , b , c)) = b pr1 (pr2 (map-left-swap-Σ (a , b , c))) = a pr2 (pr2 (map-left-swap-Σ (a , b , c))) = c map-inv-left-swap-Σ : Σ B (λ y → Σ A (λ x → C x y)) → Σ A (λ x → Σ B (C x)) pr1 (map-inv-left-swap-Σ (b , a , c)) = a pr1 (pr2 (map-inv-left-swap-Σ (b , a , c))) = b pr2 (pr2 (map-inv-left-swap-Σ (b , a , c))) = c isretr-map-inv-left-swap-Σ : (map-inv-left-swap-Σ ∘ map-left-swap-Σ) ~ id isretr-map-inv-left-swap-Σ (pair a (pair b c)) = refl issec-map-inv-left-swap-Σ : (map-left-swap-Σ ∘ map-inv-left-swap-Σ) ~ id issec-map-inv-left-swap-Σ (pair b (pair a c)) = refl abstract is-equiv-map-left-swap-Σ : is-equiv map-left-swap-Σ is-equiv-map-left-swap-Σ = is-equiv-has-inverse map-inv-left-swap-Σ issec-map-inv-left-swap-Σ isretr-map-inv-left-swap-Σ equiv-left-swap-Σ : Σ A (λ a → Σ B (C a)) ≃ Σ B (λ b → Σ A (λ a → C a b)) pr1 equiv-left-swap-Σ = map-left-swap-Σ pr2 equiv-left-swap-Σ = is-equiv-map-left-swap-Σ
Swapping the order of quantification in a Σ-type, on the right
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} where map-right-swap-Σ : Σ (Σ A B) (C ∘ pr1) → Σ (Σ A C) (B ∘ pr1) pr1 (pr1 (map-right-swap-Σ ((a , b) , c))) = a pr2 (pr1 (map-right-swap-Σ ((a , b) , c))) = c pr2 (map-right-swap-Σ ((a , b) , c)) = b map-inv-right-swap-Σ : Σ (Σ A C) (B ∘ pr1) → Σ (Σ A B) (C ∘ pr1) pr1 (pr1 (map-inv-right-swap-Σ ((a , c) , b))) = a pr2 (pr1 (map-inv-right-swap-Σ ((a , c) , b))) = b pr2 (map-inv-right-swap-Σ ((a , c) , b)) = c issec-map-inv-right-swap-Σ : (map-right-swap-Σ ∘ map-inv-right-swap-Σ) ~ id issec-map-inv-right-swap-Σ (pair (pair x y) z) = refl isretr-map-inv-right-swap-Σ : (map-inv-right-swap-Σ ∘ map-right-swap-Σ) ~ id isretr-map-inv-right-swap-Σ (pair (pair x z) y) = refl is-equiv-map-right-swap-Σ : is-equiv map-right-swap-Σ is-equiv-map-right-swap-Σ = is-equiv-has-inverse map-inv-right-swap-Σ issec-map-inv-right-swap-Σ isretr-map-inv-right-swap-Σ equiv-right-swap-Σ : Σ (Σ A B) (C ∘ pr1) ≃ Σ (Σ A C) (B ∘ pr1) pr1 equiv-right-swap-Σ = map-right-swap-Σ pr2 equiv-right-swap-Σ = is-equiv-map-right-swap-Σ
Distributive laws of cartesian products over Σ
left-distributive-prod-Σ : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : B → UU l3} → (A × (Σ B C)) ≃ Σ B (λ b → A × (C b)) left-distributive-prod-Σ = equiv-left-swap-Σ right-distributive-prod-Σ : {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : UU l3} → ((Σ A B) × C) ≃ Σ A (λ a → B a × C) right-distributive-prod-Σ {A} = associative-Σ _ _ _
See also
-
Functorial properties of dependent pair types are recorded in
foundation.functoriality-dependent-pair-types
. -
Equality proofs in dependent pair types are characterized in
foundation.equality-dependent-pair-types
. -
The universal property of dependent pair types is treated in
foundation.universal-property-dependent-pair-types
. -
Arithmetical laws involving cartesian product types are recorded in
foundation.type-arithmetic-cartesian-product-types
. -
Arithmetical laws involving dependent product types are recorded in
foundation.type-arithmetic-dependent-function-types
. -
Arithmetical laws involving coproduct types are recorded in
foundation.type-arithmetic-coproduct-types
. -
Arithmetical laws involving the unit type are recorded in
foundation.type-arithmetic-unit-type
. -
Arithmetical laws involving the empty type are recorded in
foundation.type-arithmetic-empty-type
.