Commuting 3-simplices of homotopies
{-# OPTIONS --safe #-} module foundation-core.commuting-3-simplices-of-homotopies where
Imports
open import foundation-core.commuting-triangles-of-homotopies open import foundation-core.homotopies open import foundation-core.universe-levels
Idea
A commuting 3-simplex of homotopies is a commuting diagram of the form
f ----------> g
| \ ^ |
| \ / |
| / |
| / \ |
V / v V
h ----------> i.
where f, g, h, and i are functions.
Definition
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h i : (x : A) → B x} (top : f ~ g) (left : f ~ h) (right : g ~ i) (bottom : h ~ i) (diagonal-up : h ~ g) (diagonal-down : f ~ i) (upper-left : coherence-triangle-homotopies top diagonal-up left) (lower-right : coherence-triangle-homotopies bottom right diagonal-up) (upper-right : coherence-triangle-homotopies diagonal-down right top) (lower-left : coherence-triangle-homotopies diagonal-down bottom left) where coherence-3-simplex-homotopies : UU (l1 ⊔ l2) coherence-3-simplex-homotopies = ( upper-right ∙h left-whisk-htpy-coherence-triangle-homotopies ( diagonal-up) ( right) ( upper-left)) ~ ( ( lower-left ∙h right-whisk-htpy-coherence-triangle-homotopies ( right) ( lower-right) ( left)) ∙h assoc-htpy left diagonal-up right) coherence-3-simplex-homotopies' : UU (l1 ⊔ l2) coherence-3-simplex-homotopies' = ( ( lower-left ∙h right-whisk-htpy-coherence-triangle-homotopies ( right) ( lower-right) ( left)) ∙h assoc-htpy left diagonal-up right) ~ ( upper-right ∙h left-whisk-htpy-coherence-triangle-homotopies ( diagonal-up) ( right) ( upper-left))