Products of tuples of elements in commutative monoids
module group-theory.products-of-tuples-of-elements-commutative-monoids where
Imports
open import elementary-number-theory.natural-numbers open import foundation.coproduct-types open import foundation.functions open import foundation.unit-type open import foundation.universe-levels open import group-theory.commutative-monoids open import univalent-combinatorics.counting open import univalent-combinatorics.standard-finite-types
Idea
Given an unordered n-tuple of elements in a commutative monoid, we can define their product
Definition
Products of ordered n-tuples of elements in commutative monoids
module _ {l : Level} (M : Commutative-Monoid l) where mul-fin-Commutative-Monoid : (n : ℕ) → (Fin n → type-Commutative-Monoid M) → type-Commutative-Monoid M mul-fin-Commutative-Monoid zero-ℕ x = unit-Commutative-Monoid M mul-fin-Commutative-Monoid (succ-ℕ n) x = mul-Commutative-Monoid M ( mul-fin-Commutative-Monoid n (x ∘ inl)) ( x (inr star)) mul-count-Commutative-Monoid : {l2 : Level} {A : UU l2} → count A → (A → type-Commutative-Monoid M) → type-Commutative-Monoid M mul-count-Commutative-Monoid e x = mul-fin-Commutative-Monoid ( number-of-elements-count e) ( x ∘ map-equiv-count e) {- compute-permutation-mul-fin-Commutative-Monoid : (n : ℕ) (e : Fin n ≃ Fin n) (x : Fin n → type-Commutative-Monoid M) → Id ( mul-fin-Commutative-Monoid n (x ∘ map-equiv e)) ( mul-fin-Commutative-Monoid n x) compute-permutation-mul-fin-Commutative-Monoid zero-ℕ e x = refl compute-permutation-mul-fin-Commutative-Monoid (succ-ℕ n) e x = {!!} compute-mul-double-counting-Commutative-Monoid : {l2 : Level} {A : UU l2} (e1 : count A) (e2 : count A) → (x : A → type-Commutative-Monoid M) → Id (mul-count-Commutative-Monoid e1 x) (mul-count-Commutative-Monoid e2 x) compute-mul-double-counting-Commutative-Monoid e1 e2 x = {!!} -}
Products of unordered n-tuples of elements in commutative monoids
module _ {l : Level} (M : Commutative-Monoid l) where {- mul-tuple-Commutative-Monoid : {n : ℕ} → unordered-tuple-Commutative-Monoid n M → type-Commutative-Monoid M mul-tuple-Commutative-Monoid {n} (pair I x) = {!!} -}