Embeddings of groups
module group-theory.embeddings-groups where
Imports
open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.universe-levels open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.subgroups
Idea
Embeddings of groups are group homomorphisms of which the underlying map is an embedding
Definitions
Embeddings of groups
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) where is-emb-hom-Group : (type-hom-Group G H) → UU (l1 ⊔ l2) is-emb-hom-Group h = is-emb (map-hom-Group G H h) emb-Group : UU (l1 ⊔ l2) emb-Group = Σ (type-hom-Group G H) is-emb-hom-Group hom-emb-Group : emb-Group → type-hom-Group G H hom-emb-Group = pr1 map-emb-hom-Group : emb-Group → type-Group G → type-Group H map-emb-hom-Group f = map-hom-Group G H (hom-emb-Group f) is-emb-map-emb-hom-Group : (f : emb-Group) → is-emb (map-emb-hom-Group f) is-emb-map-emb-hom-Group = pr2
The type of all embeddings into a group
emb-Group-Slice : (l : Level) {l1 : Level} (G : Group l1) → UU ((lsuc l) ⊔ l1) emb-Group-Slice l G = Σ ( Group l) (λ H → emb-Group H G) emb-group-slice-Subgroup : { l1 l2 : Level} (G : Group l1) → Subgroup l2 G → emb-Group-Slice (l1 ⊔ l2) G pr1 (emb-group-slice-Subgroup G P) = group-Subgroup G P pr1 (pr2 (emb-group-slice-Subgroup G P)) = hom-inclusion-Subgroup G P pr2 (pr2 (emb-group-slice-Subgroup G P)) = is-emb-inclusion-Subgroup G P