Sums of elements in rings
module ring-theory.sums-rings where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.functions open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import linear-algebra.vectors open import linear-algebra.vectors-on-rings open import ring-theory.rings open import ring-theory.sums-semirings open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.standard-finite-types
Idea
The sum operation extends the binary addition operation on a ring R
to any
family of elements of R
indexed by a standard finite type.
Definition
sum-Ring : {l : Level} (R : Ring l) (n : ℕ) → functional-vec-Ring R n → type-Ring R sum-Ring R = sum-Semiring (semiring-Ring R)
Properties
Sums of one and two elements
module _ {l : Level} (R : Ring l) where sum-one-element-Ring : (f : functional-vec-Ring R 1) → sum-Ring R 1 f = head-functional-vec 0 f sum-one-element-Ring = sum-one-element-Semiring (semiring-Ring R) sum-two-elements-Ring : (f : functional-vec-Ring R 2) → sum-Ring R 2 f = add-Ring R (f (zero-Fin 1)) (f (one-Fin 1)) sum-two-elements-Ring = sum-two-elements-Semiring (semiring-Ring R)
Sums are homotopy invariant
module _ {l : Level} (R : Ring l) where htpy-sum-Ring : (n : ℕ) {f g : functional-vec-Ring R n} → (f ~ g) → sum-Ring R n f = sum-Ring R n g htpy-sum-Ring = htpy-sum-Semiring (semiring-Ring R)
Sums are equal to the zero-th term plus the rest
module _ {l : Level} (R : Ring l) where cons-sum-Ring : (n : ℕ) (f : functional-vec-Ring R (succ-ℕ n)) → {x : type-Ring R} → head-functional-vec n f = x → sum-Ring R (succ-ℕ n) f = add-Ring R (sum-Ring R n (tail-functional-vec n f)) x cons-sum-Ring = cons-sum-Semiring (semiring-Ring R) snoc-sum-Ring : (n : ℕ) (f : functional-vec-Ring R (succ-ℕ n)) → {x : type-Ring R} → f (zero-Fin n) = x → sum-Ring R (succ-ℕ n) f = add-Ring R ( x) ( sum-Ring R n (f ∘ inr-Fin n)) snoc-sum-Ring = snoc-sum-Semiring (semiring-Ring R)
Multiplication distributes over sums
module _ {l : Level} (R : Ring l) where left-distributive-mul-sum-Ring : (n : ℕ) (x : type-Ring R) (f : functional-vec-Ring R n) → mul-Ring R x (sum-Ring R n f) = sum-Ring R n (λ i → mul-Ring R x (f i)) left-distributive-mul-sum-Ring = left-distributive-mul-sum-Semiring (semiring-Ring R) right-distributive-mul-sum-Ring : (n : ℕ) (f : functional-vec-Ring R n) (x : type-Ring R) → mul-Ring R (sum-Ring R n f) x = sum-Ring R n (λ i → mul-Ring R (f i) x) right-distributive-mul-sum-Ring = right-distributive-mul-sum-Semiring (semiring-Ring R)
Interchange law of sums and addition in a semiring
module _ {l : Level} (R : Ring l) where interchange-add-sum-Ring : (n : ℕ) (f g : functional-vec-Ring R n) → add-Ring R ( sum-Ring R n f) ( sum-Ring R n g) = sum-Ring R n ( add-functional-vec-Ring R n f g) interchange-add-sum-Ring = interchange-add-sum-Semiring (semiring-Ring R)
Extending a sum of elements in a semiring
module _ {l : Level} (R : Ring l) where extend-sum-Ring : (n : ℕ) (f : functional-vec-Ring R n) → sum-Ring R ( succ-ℕ n) ( cons-functional-vec-Ring R n (zero-Ring R) f) = sum-Ring R n f extend-sum-Ring = extend-sum-Semiring (semiring-Ring R)
Shifting a sum of elements in a semiring
module _ {l : Level} (R : Ring l) where shift-sum-Ring : (n : ℕ) (f : functional-vec-Ring R n) → sum-Ring R ( succ-ℕ n) ( snoc-functional-vec-Ring R n f ( zero-Ring R)) = sum-Ring R n f shift-sum-Ring = shift-sum-Semiring (semiring-Ring R)
A sum of zeroes is zero
module _ {l : Level} (R : Ring l) where sum-zero-Ring : (n : ℕ) → sum-Ring R n (zero-functional-vec-Ring R n) = zero-Ring R sum-zero-Ring = sum-zero-Semiring (semiring-Ring R)
Splitting sums
split-sum-Ring : {l : Level} (R : Ring l) (n m : ℕ) (f : functional-vec-Ring R (n +ℕ m)) → sum-Ring R (n +ℕ m) f = add-Ring R ( sum-Ring R n (f ∘ inl-coprod-Fin n m)) ( sum-Ring R m (f ∘ inr-coprod-Fin n m)) split-sum-Ring R = split-sum-Semiring (semiring-Ring R)