Acyclic maps
module synthetic-homotopy-theory.acyclic-maps where
Imports
open import foundation.fibers-of-maps open import foundation.propositions open import foundation.universe-levels open import synthetic-homotopy-theory.acyclic-types
Idea
A map f : A → B
is said to be acyclic if its fibers are acyclic types.
Definition
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-acyclic-map-Prop : (A → B) → Prop (l1 ⊔ l2) is-acyclic-map-Prop f = Π-Prop B (λ b → is-acyclic-Prop (fib f b)) is-acyclic-map : (A → B) → UU (l1 ⊔ l2) is-acyclic-map f = type-Prop (is-acyclic-map-Prop f) is-prop-is-acyclic-map : (f : A → B) → is-prop (is-acyclic-map f) is-prop-is-acyclic-map f = is-prop-type-Prop (is-acyclic-map-Prop f)