Decidable subpreorders
module order-theory.decidable-subpreorders where
Imports
open import foundation.decidable-subtypes open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import order-theory.preorders open import order-theory.subpreorders
Idea
A decidable subpreorder of P
is a decidable subtype of P
equipped with
the restricted ordering of P
.
Definition
Decidable-Subpreorder : {l1 l2 : Level} (l3 : Level) → Preorder l1 l2 → UU (l1 ⊔ lsuc l3) Decidable-Subpreorder l3 P = decidable-subtype l3 (type-Preorder P) module _ {l1 l2 l3 : Level} (P : Preorder l1 l2) (S : Decidable-Subpreorder l3 P) where type-Decidable-Subpreorder : UU (l1 ⊔ l3) type-Decidable-Subpreorder = type-Subpreorder P (subtype-decidable-subtype S) eq-type-Decidable-Subpreorder : (x y : type-Decidable-Subpreorder) → Id (pr1 x) (pr1 y) → Id x y eq-type-Decidable-Subpreorder = eq-type-Subpreorder P (subtype-decidable-subtype S) leq-Decidable-Subpreorder-Prop : (x y : type-Decidable-Subpreorder) → Prop l2 leq-Decidable-Subpreorder-Prop = leq-Subpreorder-Prop P (subtype-decidable-subtype S) leq-Decidable-Subpreorder : (x y : type-Decidable-Subpreorder) → UU l2 leq-Decidable-Subpreorder = leq-Subpreorder P (subtype-decidable-subtype S) is-prop-leq-Decidable-Subpreorder : (x y : type-Decidable-Subpreorder) → is-prop (leq-Decidable-Subpreorder x y) is-prop-leq-Decidable-Subpreorder = is-prop-leq-Subpreorder P (subtype-decidable-subtype S) refl-leq-Decidable-Subpreorder : (x : type-Decidable-Subpreorder) → leq-Decidable-Subpreorder x x refl-leq-Decidable-Subpreorder = refl-leq-Subpreorder P (subtype-decidable-subtype S) transitive-leq-Decidable-Subpreorder : (x y z : type-Decidable-Subpreorder) → leq-Decidable-Subpreorder y z → leq-Decidable-Subpreorder x y → leq-Decidable-Subpreorder x z transitive-leq-Decidable-Subpreorder = transitive-leq-Subpreorder P (subtype-decidable-subtype S) preorder-Decidable-Subpreorder : Preorder (l1 ⊔ l3) l2 preorder-Decidable-Subpreorder = preorder-Subpreorder P (subtype-decidable-subtype S)