Univalent type families
module foundation.univalent-type-families where
Imports
open import foundation.identity-types open import foundation-core.equivalences open import foundation-core.universe-levels
Idea
A type family B
over A
is said to be univalent if the map
equiv-tr : (Id x y) → (B x ≃ B y)
is an equivalence for every x y : A
.
Definition
is-univalent : {l1 l2 : Level} {A : UU l1} → (A → UU l2) → UU (l1 ⊔ l2) is-univalent {A = A} B = (x y : A) → is-equiv (λ (p : x = y) → equiv-tr B p)