Unlabeled structures of finite species
module species.unlabeled-structures-species where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import species.species-of-types open import univalent-combinatorics.finite-types
Idea
The type of unlabeled F
-structures of order n
of a species F
is the type
of sets X
of size n
equipped with an F
-structure. Two unlabeled
F
-structures of order n
are considered to be the same if the underlying sets
are isomorphic and the F
-structure of the first transports along this
isomorphism to the F
-structure of the second. It will automatically follow
from the univalence axiom that the identity type of the type of unlabeled
F
-structures of order n
captures this idea.
Definitions
Unlabeled structures of a species
unlabeled-structure-species-types : {l1 l2 : Level} (F : species-types l1 l2) → ℕ → UU (lsuc l1 ⊔ l2) unlabeled-structure-species-types {l1} {l2} F n = Σ (UU-Fin l1 n) (λ X → F (type-UU-Fin n X)) module _ {l1 l2 : Level} (F : species-types l1 l2) {k : ℕ} (X : unlabeled-structure-species-types F k) where type-of-cardinality-unlabeled-structure-species-types : UU-Fin l1 k type-of-cardinality-unlabeled-structure-species-types = pr1 X type-unlabeled-structure-species-types : UU l1 type-unlabeled-structure-species-types = type-UU-Fin k type-of-cardinality-unlabeled-structure-species-types has-cardinality-type-unlabeled-structure-species-types : has-cardinality k type-unlabeled-structure-species-types has-cardinality-type-unlabeled-structure-species-types = has-cardinality-type-UU-Fin k type-of-cardinality-unlabeled-structure-species-types finite-type-unlabeled-structure-species-types : 𝔽 l1 finite-type-unlabeled-structure-species-types = finite-type-UU-Fin k type-of-cardinality-unlabeled-structure-species-types structure-unlabeled-structure-species-types : F type-unlabeled-structure-species-types structure-unlabeled-structure-species-types = pr2 X