Unlabeled structures of finite species

module species.unlabeled-structures-species where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.universe-levels

open import species.species-of-types

open import univalent-combinatorics.finite-types

Idea

The type of unlabeled F-structures of order n of a species F is the type of sets X of size n equipped with an F-structure. Two unlabeled F-structures of order n are considered to be the same if the underlying sets are isomorphic and the F-structure of the first transports along this isomorphism to the F-structure of the second. It will automatically follow from the univalence axiom that the identity type of the type of unlabeled F-structures of order n captures this idea.

Definitions

Unlabeled structures of a species

unlabeled-structure-species-types :
  {l1 l2 : Level} (F : species-types l1 l2)    UU (lsuc l1  l2)
unlabeled-structure-species-types {l1} {l2} F n =
  Σ (UU-Fin l1 n)  X  F (type-UU-Fin n X))

module _
  {l1 l2 : Level} (F : species-types l1 l2) {k : }
  (X : unlabeled-structure-species-types F k)
  where

  type-of-cardinality-unlabeled-structure-species-types : UU-Fin l1 k
  type-of-cardinality-unlabeled-structure-species-types = pr1 X

  type-unlabeled-structure-species-types : UU l1
  type-unlabeled-structure-species-types =
    type-UU-Fin k type-of-cardinality-unlabeled-structure-species-types

  has-cardinality-type-unlabeled-structure-species-types :
    has-cardinality k type-unlabeled-structure-species-types
  has-cardinality-type-unlabeled-structure-species-types =
    has-cardinality-type-UU-Fin
      k
      type-of-cardinality-unlabeled-structure-species-types

  finite-type-unlabeled-structure-species-types : 𝔽 l1
  finite-type-unlabeled-structure-species-types =
    finite-type-UU-Fin k type-of-cardinality-unlabeled-structure-species-types

  structure-unlabeled-structure-species-types :
    F type-unlabeled-structure-species-types
  structure-unlabeled-structure-species-types = pr2 X

Equivalences of unlabeled structures of a speces