Symmetric H-spaces
module structured-types.symmetric-h-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.symmetric-operations open import foundation.universe-levels open import structured-types.involutive-type-of-h-space-structures open import structured-types.pointed-types open import structured-types.symmetric-elements-involutive-types
Idea
Symmetric H-spaces are defined to be poinded types A equipped with a symmetric element of the involutive type of H-space structures on A.
Definitions
Symmetric H-space structures on a pointed type
symmetric-H-Space : {l1 : Level} (A : Pointed-Type l1) → UU (lsuc lzero ⊔ l1) symmetric-H-Space A = symmetric-element-Involutive-Type (h-space-Involutive-Type A)
The symmetric binary operation on a symmetric H-space
symmetric-mul-symmetric-H-Space : {l1 : Level} (A : Pointed-Type l1) (μ : symmetric-H-Space A) → symmetric-operation (type-Pointed-Type A) (type-Pointed-Type A) symmetric-mul-symmetric-H-Space A μ (X , f) = pr1 (μ X) f