Fibers of maps
module foundation.fibers-of-maps where
Imports
open import foundation-core.fibers-of-maps public open import foundation.type-arithmetic-unit-type open import foundation.unit-type open import foundation-core.cones-over-cospans open import foundation-core.constant-maps open import foundation-core.dependent-pair-types open import foundation-core.functions open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.pullbacks open import foundation-core.universal-property-pullbacks open import foundation-core.universe-levels
Properties
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) where square-fiber : ( f ∘ (pr1 {B = λ x → Id (f x) b})) ~ ( (const unit B b) ∘ (const (fib f b) unit star)) square-fiber = pr2 cone-fiber : cone f (const unit B b) (fib f b) pr1 cone-fiber = pr1 pr1 (pr2 cone-fiber) = const (fib f b) unit star pr2 (pr2 cone-fiber) = square-fiber abstract is-pullback-cone-fiber : is-pullback f (const unit B b) cone-fiber is-pullback-cone-fiber = is-equiv-tot-is-fiberwise-equiv (λ a → is-equiv-map-inv-left-unit-law-prod) abstract universal-property-pullback-cone-fiber : {l : Level} → universal-property-pullback l f (const unit B b) cone-fiber universal-property-pullback-cone-fiber = universal-property-pullback-is-pullback f ( const unit B b) ( cone-fiber) ( is-pullback-cone-fiber)