The nilradical of a commutative semiring
module commutative-algebra.nilradicals-commutative-semirings where
Imports
open import commutative-algebra.commutative-semirings open import commutative-algebra.subsets-commutative-semirings open import foundation.existential-quantification open import foundation.identity-types open import foundation.universe-levels open import ring-theory.nilpotent-elements-semirings
Idea
The nilradical of a commutative semiring is the ideal consisting of all nilpotent elements.
Definitions
subset-nilradical-Commutative-Semiring : {l : Level} (A : Commutative-Semiring l) → subset-Commutative-Semiring l A subset-nilradical-Commutative-Semiring A = is-nilpotent-element-semiring-Prop (semiring-Commutative-Semiring A)
Properties
The nilradical contains zero
contains-zero-nilradical-Commutative-Semiring : {l : Level} (A : Commutative-Semiring l) → contains-zero-subset-Commutative-Semiring A ( subset-nilradical-Commutative-Semiring A) contains-zero-nilradical-Commutative-Semiring A = intro-∃ 1 refl
The nilradical is closed under addition
is-closed-under-add-nilradical-Commutative-Semiring : {l : Level} (A : Commutative-Semiring l) → is-closed-under-addition-subset-Commutative-Semiring A ( subset-nilradical-Commutative-Semiring A) is-closed-under-add-nilradical-Commutative-Semiring A x y = is-nilpotent-add-Semiring ( semiring-Commutative-Semiring A) ( x) ( y) ( commutative-mul-Commutative-Semiring A x y)
The nilradical is closed under multiplication with ring elements
module _ {l : Level} (A : Commutative-Semiring l) where is-closed-under-mul-right-nilradical-Commutative-Semiring : is-closed-under-right-multiplication-subset-Commutative-Semiring A ( subset-nilradical-Commutative-Semiring A) is-closed-under-mul-right-nilradical-Commutative-Semiring x y = is-nilpotent-element-mul-Semiring ( semiring-Commutative-Semiring A) ( x) ( y) ( commutative-mul-Commutative-Semiring A x y) is-closed-under-mul-left-nilradical-Commutative-Semiring : is-closed-under-left-multiplication-subset-Commutative-Semiring A ( subset-nilradical-Commutative-Semiring A) is-closed-under-mul-left-nilradical-Commutative-Semiring x y = is-nilpotent-element-mul-Semiring' ( semiring-Commutative-Semiring A) ( y) ( x) ( commutative-mul-Commutative-Semiring A y x)