Relatively prime integers
module elementary-number-theory.relatively-prime-integers where
Imports
open import elementary-number-theory.absolute-value-integers open import elementary-number-theory.greatest-common-divisor-integers open import elementary-number-theory.integers open import elementary-number-theory.relatively-prime-natural-numbers open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels
Idea
Two integers are said to be relatively prime if their greatest common divisor is 1.
Definition
is-relative-prime-ℤ : ℤ → ℤ → UU lzero is-relative-prime-ℤ x y = is-one-ℤ (gcd-ℤ x y)
Properties
Being relatively prime is a proposition
is-prop-is-relative-prime-ℤ : (x y : ℤ) → is-prop (is-relative-prime-ℤ x y) is-prop-is-relative-prime-ℤ x y = is-set-ℤ (gcd-ℤ x y) one-ℤ
Two integers are relatively prime if and only if their absolute values are relatively prime natural numbers
is-relatively-prime-abs-is-relatively-prime-ℤ : {a b : ℤ} → is-relative-prime-ℤ a b → is-relatively-prime-ℕ (abs-ℤ a) (abs-ℤ b) is-relatively-prime-abs-is-relatively-prime-ℤ {a} {b} H = is-injective-int-ℕ H is-relatively-prime-is-relatively-prime-abs-ℤ : {a b : ℤ} → is-relatively-prime-ℕ (abs-ℤ a) (abs-ℤ b) → is-relative-prime-ℤ a b is-relatively-prime-is-relatively-prime-abs-ℤ {a} {b} H = ap int-ℕ H
For any two integers a
and b
that are not both 0
, the integers a/gcd(a,b)
and b/gcd(a,b)
are relatively prime
{- relatively-prime-quotient-div-ℤ : {a b : ℤ} → (is-nonzero-ℤ a + is-nonzero-ℤ b) → is-relative-prime-ℤ ( quotient-div-ℤ (gcd-ℤ a b) a (div-left-gcd-ℤ a b)) ( quotient-div-ℤ (gcd-ℤ a b) b (div-right-gcd-ℤ a b)) relatively-prime-quotient-div-ℤ H = is-relatively-prime-is-relatively-prime-abs-ℤ {!!} -}