Morphisms of species of types
module species.morphisms-species-of-types where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equality-dependent-function-types open import foundation.equivalences open import foundation.functions open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import species.species-of-types
Idea
A homomorphism between two species is a pointwise family of maps between their values.
Definitions
Morphisms of species
hom-species-types : {l1 l2 l3 : Level} → species-types l1 l2 → species-types l1 l3 → UU (lsuc l1 ⊔ l2 ⊔ l3) hom-species-types {l1} F G = (X : UU l1) → F X → G X id-hom-species-types : {l1 l2 : Level} → (F : species-types l1 l2) → hom-species-types F F id-hom-species-types F = λ X x → x comp-hom-species-types : {l1 l2 l3 l4 : Level} {F : species-types l1 l2} {G : species-types l1 l3} {H : species-types l1 l4} → hom-species-types G H → hom-species-types F G → hom-species-types F H comp-hom-species-types f g X = (f X) ∘ (g X)
Homotopies between morphisms of species
htpy-hom-species-types : {l1 l2 l3 : Level} {F : species-types l1 l2} {G : species-types l1 l3} → hom-species-types F G → hom-species-types F G → UU (lsuc l1 ⊔ l2 ⊔ l3) htpy-hom-species-types {l1} f g = (X : UU l1) → (f X) ~ (g X) refl-htpy-hom-species-types : {l1 l2 l3 : Level} {F : species-types l1 l2} {G : species-types l1 l3} (f : hom-species-types F G) → htpy-hom-species-types f f refl-htpy-hom-species-types f X = refl-htpy
Properties
Homotopies characterize the identity type of morphisms of species
htpy-eq-hom-species-types : {l1 l2 l3 : Level} {F : species-types l1 l2} {G : species-types l1 l3} {f g : hom-species-types F G} → Id f g → htpy-hom-species-types f g htpy-eq-hom-species-types refl X y = refl is-contr-htpy-hom-species-types : {l1 l2 l3 : Level} {F : species-types l1 l2} {G : species-types l1 l3} (f : hom-species-types F G) → is-contr (Σ (hom-species-types F G) (htpy-hom-species-types f)) is-contr-htpy-hom-species-types f = is-contr-total-Eq-Π (λ X h → f X ~ h) (λ X → is-contr-total-htpy (f X)) is-equiv-htpy-eq-hom-species-types : {l1 l2 l3 : Level} {F : species-types l1 l2} {G : species-types l1 l3} (f g : hom-species-types F G) → is-equiv (htpy-eq-hom-species-types {f = f} {g = g}) is-equiv-htpy-eq-hom-species-types f = fundamental-theorem-id ( is-contr-htpy-hom-species-types f) ( λ g → htpy-eq-hom-species-types {f = f} {g = g}) eq-htpy-hom-species-types : {l1 l2 l3 : Level} {F : species-types l1 l2} {G : species-types l1 l3} {f g : hom-species-types F G} → htpy-hom-species-types f g → Id f g eq-htpy-hom-species-types {f = f} {g = g} = map-inv-is-equiv (is-equiv-htpy-eq-hom-species-types f g)
Associativity of composition
associative-comp-hom-species-types : {l1 l2 l3 l4 l5 : Level} {F : species-types l1 l2} {G : species-types l1 l3} {H : species-types l1 l4} {K : species-types l1 l5} (h : hom-species-types H K) (g : hom-species-types G H) (f : hom-species-types F G) → Id ( comp-hom-species-types (comp-hom-species-types h g) f) ( comp-hom-species-types h (comp-hom-species-types g f)) associative-comp-hom-species-types h g f = refl
Unit laws of composition
left-unit-law-comp-hom-species-types : {l1 l2 l3 : Level} {F : species-types l1 l2} {G : species-types l1 l3} (f : hom-species-types F G) → Id (comp-hom-species-types (id-hom-species-types G) f) f left-unit-law-comp-hom-species-types f = refl right-unit-law-comp-hom-species-types : {l1 l2 l3 : Level} {F : species-types l1 l2} {G : species-types l1 l3} (f : hom-species-types F G) → Id (comp-hom-species-types f (id-hom-species-types F)) f right-unit-law-comp-hom-species-types f = refl