Vectors on commutative rings
module linear-algebra.vectors-on-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.monoids open import group-theory.semigroups open import linear-algebra.constant-vectors open import linear-algebra.vectors-on-rings
Idea
Vectors on a commutative ring R
are vectors on the underlying type of R
. The
commutative ring structur on R
induces further structure on the type of
vectors on R
.
Definitions
Listed vectors on commutative rings
module _ {l : Level} (R : Commutative-Ring l) where vec-Commutative-Ring : ℕ → UU l vec-Commutative-Ring = vec-Ring (ring-Commutative-Ring R) head-vec-Commutative-Ring : {n : ℕ} → vec-Commutative-Ring (succ-ℕ n) → type-Commutative-Ring R head-vec-Commutative-Ring = head-vec-Ring (ring-Commutative-Ring R) tail-vec-Commutative-Ring : {n : ℕ} → vec-Commutative-Ring (succ-ℕ n) → vec-Commutative-Ring n tail-vec-Commutative-Ring = tail-vec-Ring (ring-Commutative-Ring R) snoc-vec-Commutative-Ring : {n : ℕ} → vec-Commutative-Ring n → type-Commutative-Ring R → vec-Commutative-Ring (succ-ℕ n) snoc-vec-Commutative-Ring = snoc-vec-Ring (ring-Commutative-Ring R)
Functional vectors on commutative rings
module _ {l : Level} (R : Commutative-Ring l) where functional-vec-Commutative-Ring : ℕ → UU l functional-vec-Commutative-Ring = functional-vec-Ring (ring-Commutative-Ring R) head-functional-vec-Commutative-Ring : (n : ℕ) → functional-vec-Commutative-Ring (succ-ℕ n) → type-Commutative-Ring R head-functional-vec-Commutative-Ring = head-functional-vec-Ring (ring-Commutative-Ring R) tail-functional-vec-Commutative-Ring : (n : ℕ) → functional-vec-Commutative-Ring (succ-ℕ n) → functional-vec-Commutative-Ring n tail-functional-vec-Commutative-Ring = tail-functional-vec-Ring (ring-Commutative-Ring R) cons-functional-vec-Commutative-Ring : (n : ℕ) → type-Commutative-Ring R → functional-vec-Commutative-Ring n → functional-vec-Commutative-Ring (succ-ℕ n) cons-functional-vec-Commutative-Ring = cons-functional-vec-Ring (ring-Commutative-Ring R) snoc-functional-vec-Commutative-Ring : (n : ℕ) → functional-vec-Commutative-Ring n → type-Commutative-Ring R → functional-vec-Commutative-Ring (succ-ℕ n) snoc-functional-vec-Commutative-Ring = snoc-functional-vec-Ring (ring-Commutative-Ring R)
Zero vector on a commutative ring
The zero listed vector
module _ {l : Level} (R : Commutative-Ring l) where zero-vec-Commutative-Ring : {n : ℕ} → vec-Commutative-Ring R n zero-vec-Commutative-Ring = constant-vec (zero-Commutative-Ring R)
The zero functional vector
module _ {l : Level} (R : Commutative-Ring l) where zero-functional-vec-Commutative-Ring : (n : ℕ) → functional-vec-Commutative-Ring R n zero-functional-vec-Commutative-Ring n i = zero-Commutative-Ring R
Pointwise addition of vectors on a commutative ring
Pointwise addition of listed vectors on a commutative ring
module _ {l : Level} (R : Commutative-Ring l) where add-vec-Commutative-Ring : {n : ℕ} → vec-Commutative-Ring R n → vec-Commutative-Ring R n → vec-Commutative-Ring R n add-vec-Commutative-Ring = add-vec-Ring (ring-Commutative-Ring R) associative-add-vec-Commutative-Ring : {n : ℕ} (v1 v2 v3 : vec-Commutative-Ring R n) → add-vec-Commutative-Ring (add-vec-Commutative-Ring v1 v2) v3 = add-vec-Commutative-Ring v1 (add-vec-Commutative-Ring v2 v3) associative-add-vec-Commutative-Ring = associative-add-vec-Ring (ring-Commutative-Ring R) vec-Commutative-Ring-Semigroup : ℕ → Semigroup l vec-Commutative-Ring-Semigroup = vec-Ring-Semigroup (ring-Commutative-Ring R) left-unit-law-add-vec-Commutative-Ring : {n : ℕ} (v : vec-Commutative-Ring R n) → add-vec-Commutative-Ring (zero-vec-Commutative-Ring R) v = v left-unit-law-add-vec-Commutative-Ring = left-unit-law-add-vec-Ring (ring-Commutative-Ring R) right-unit-law-add-vec-Commutative-Ring : {n : ℕ} (v : vec-Commutative-Ring R n) → add-vec-Commutative-Ring v (zero-vec-Commutative-Ring R) = v right-unit-law-add-vec-Commutative-Ring = right-unit-law-add-vec-Ring (ring-Commutative-Ring R) vec-Commutative-Ring-Monoid : ℕ → Monoid l vec-Commutative-Ring-Monoid = vec-Ring-Monoid (ring-Commutative-Ring R) commutative-add-vec-Commutative-Ring : {n : ℕ} (v w : vec-Commutative-Ring R n) → add-vec-Commutative-Ring v w = add-vec-Commutative-Ring w v commutative-add-vec-Commutative-Ring = commutative-add-vec-Ring (ring-Commutative-Ring R) vec-Commutative-Ring-Commutative-Monoid : ℕ → Commutative-Monoid l vec-Commutative-Ring-Commutative-Monoid = vec-Ring-Commutative-Monoid (ring-Commutative-Ring R)
Pointwise addition of functional vectors on a commutative ring
module _ {l : Level} (R : Commutative-Ring l) where add-functional-vec-Commutative-Ring : (n : ℕ) (v w : functional-vec-Commutative-Ring R n) → functional-vec-Commutative-Ring R n add-functional-vec-Commutative-Ring = add-functional-vec-Ring (ring-Commutative-Ring R) associative-add-functional-vec-Commutative-Ring : (n : ℕ) (v1 v2 v3 : functional-vec-Commutative-Ring R n) → ( add-functional-vec-Commutative-Ring n ( add-functional-vec-Commutative-Ring n v1 v2) v3) = ( add-functional-vec-Commutative-Ring n v1 ( add-functional-vec-Commutative-Ring n v2 v3)) associative-add-functional-vec-Commutative-Ring = associative-add-functional-vec-Ring (ring-Commutative-Ring R) functional-vec-Commutative-Ring-Semigroup : ℕ → Semigroup l functional-vec-Commutative-Ring-Semigroup = functional-vec-Ring-Semigroup (ring-Commutative-Ring R) left-unit-law-add-functional-vec-Commutative-Ring : (n : ℕ) (v : functional-vec-Commutative-Ring R n) → add-functional-vec-Commutative-Ring n ( zero-functional-vec-Commutative-Ring R n) v = v left-unit-law-add-functional-vec-Commutative-Ring = left-unit-law-add-functional-vec-Ring (ring-Commutative-Ring R) right-unit-law-add-functional-vec-Commutative-Ring : (n : ℕ) (v : functional-vec-Commutative-Ring R n) → add-functional-vec-Commutative-Ring n v ( zero-functional-vec-Commutative-Ring R n) = v right-unit-law-add-functional-vec-Commutative-Ring = right-unit-law-add-functional-vec-Ring (ring-Commutative-Ring R) functional-vec-Commutative-Ring-Monoid : ℕ → Monoid l functional-vec-Commutative-Ring-Monoid = functional-vec-Ring-Monoid (ring-Commutative-Ring R) commutative-add-functional-vec-Commutative-Ring : (n : ℕ) (v w : functional-vec-Commutative-Ring R n) → add-functional-vec-Commutative-Ring n v w = add-functional-vec-Commutative-Ring n w v commutative-add-functional-vec-Commutative-Ring = commutative-add-functional-vec-Ring (ring-Commutative-Ring R) functional-vec-Commutative-Ring-Commutative-Monoid : ℕ → Commutative-Monoid l functional-vec-Commutative-Ring-Commutative-Monoid = functional-vec-Ring-Commutative-Monoid (ring-Commutative-Ring R)