Morphisms of algebras of polynomial endofunctors
module trees.morphisms-algebras-polynomial-endofunctors where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functions open import foundation.functoriality-dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.identity-types open import foundation.structure-identity-principle open import foundation.universe-levels open import trees.algebras-polynomial-endofunctors open import trees.polynomial-endofunctors
Idea
A morphism of algebras of a polynomial endofunctor P A B
consists of a map
`f : X → Y$ between the underlying types, equipped with a homotopy witnessing
that the square
P A B f
P A B X ---------> P A B Y
| |
| |
V V
X -------------> Y
f
commutes.
Definitions
Morphisms of algebras for polynomial endofunctors
hom-algebra-polynomial-endofunctor : {l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (X : algebra-polynomial-endofunctor l3 A B) → (Y : algebra-polynomial-endofunctor l4 A B) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) hom-algebra-polynomial-endofunctor {A = A} {B} X Y = Σ ( type-algebra-polynomial-endofunctor X → type-algebra-polynomial-endofunctor Y) ( λ f → ( f ∘ (structure-algebra-polynomial-endofunctor X)) ~ ( ( structure-algebra-polynomial-endofunctor Y) ∘ ( map-polynomial-endofunctor A B f))) map-hom-algebra-polynomial-endofunctor : {l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (X : algebra-polynomial-endofunctor l3 A B) → (Y : algebra-polynomial-endofunctor l4 A B) → hom-algebra-polynomial-endofunctor X Y → type-algebra-polynomial-endofunctor X → type-algebra-polynomial-endofunctor Y map-hom-algebra-polynomial-endofunctor X Y f = pr1 f structure-hom-algebra-polynomial-endofunctor : {l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (X : algebra-polynomial-endofunctor l3 A B) → (Y : algebra-polynomial-endofunctor l4 A B) → (f : hom-algebra-polynomial-endofunctor X Y) → ( ( map-hom-algebra-polynomial-endofunctor X Y f) ∘ ( structure-algebra-polynomial-endofunctor X)) ~ ( ( structure-algebra-polynomial-endofunctor Y) ∘ ( map-polynomial-endofunctor A B ( map-hom-algebra-polynomial-endofunctor X Y f))) structure-hom-algebra-polynomial-endofunctor X Y f = pr2 f
Properties
The identity type of morphisms of algebras of polynomial endofunctors
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} (X : algebra-polynomial-endofunctor l3 A B) (Y : algebra-polynomial-endofunctor l4 A B) (f : hom-algebra-polynomial-endofunctor X Y) where htpy-hom-algebra-polynomial-endofunctor : (g : hom-algebra-polynomial-endofunctor X Y) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) htpy-hom-algebra-polynomial-endofunctor g = Σ ( map-hom-algebra-polynomial-endofunctor X Y f ~ map-hom-algebra-polynomial-endofunctor X Y g) ( λ H → ( ( structure-hom-algebra-polynomial-endofunctor X Y f) ∙h ( ( structure-algebra-polynomial-endofunctor Y) ·l ( htpy-polynomial-endofunctor A B H))) ~ ( ( H ·r structure-algebra-polynomial-endofunctor X) ∙h ( structure-hom-algebra-polynomial-endofunctor X Y g))) refl-htpy-hom-algebra-polynomial-endofunctor : htpy-hom-algebra-polynomial-endofunctor f pr1 refl-htpy-hom-algebra-polynomial-endofunctor = refl-htpy pr2 refl-htpy-hom-algebra-polynomial-endofunctor z = ( ap ( λ t → concat ( structure-hom-algebra-polynomial-endofunctor X Y f z) ( structure-algebra-polynomial-endofunctor Y ( map-polynomial-endofunctor A B ( map-hom-algebra-polynomial-endofunctor X Y f) z)) ( ap (structure-algebra-polynomial-endofunctor Y) t)) ( coh-refl-htpy-polynomial-endofunctor A B ( map-hom-algebra-polynomial-endofunctor X Y f) z)) ∙ ( right-unit) htpy-eq-hom-algebra-polynomial-endofunctor : (g : hom-algebra-polynomial-endofunctor X Y) → f = g → htpy-hom-algebra-polynomial-endofunctor g htpy-eq-hom-algebra-polynomial-endofunctor .f refl = refl-htpy-hom-algebra-polynomial-endofunctor is-contr-total-htpy-hom-algebra-polynomial-endofunctor : is-contr ( Σ ( hom-algebra-polynomial-endofunctor X Y) ( htpy-hom-algebra-polynomial-endofunctor)) is-contr-total-htpy-hom-algebra-polynomial-endofunctor = is-contr-total-Eq-structure ( λ ( g : pr1 X → pr1 Y) ( G : (g ∘ pr2 X) ~ ((pr2 Y) ∘ (map-polynomial-endofunctor A B g))) ( H : map-hom-algebra-polynomial-endofunctor X Y f ~ g) → ( ( structure-hom-algebra-polynomial-endofunctor X Y f) ∙h ( ( structure-algebra-polynomial-endofunctor Y) ·l ( htpy-polynomial-endofunctor A B H))) ~ ( ( H ·r structure-algebra-polynomial-endofunctor X) ∙h G)) ( is-contr-total-htpy (map-hom-algebra-polynomial-endofunctor X Y f)) ( pair (map-hom-algebra-polynomial-endofunctor X Y f) refl-htpy) ( is-contr-equiv' ( Σ ( ( (pr1 f) ∘ pr2 X) ~ ( pr2 Y ∘ map-polynomial-endofunctor A B (pr1 f))) ( λ H → (pr2 f) ~ H)) ( equiv-tot ( λ H → ( equiv-concat-htpy ( λ x → ap ( concat ( pr2 f x) ( structure-algebra-polynomial-endofunctor Y ( map-polynomial-endofunctor A B (pr1 f) x))) ( ap ( ap (pr2 Y)) ( coh-refl-htpy-polynomial-endofunctor A B (pr1 f) x))) ( H)) ∘e ( equiv-concat-htpy right-unit-htpy H))) ( is-contr-total-htpy (pr2 f))) is-equiv-htpy-eq-hom-algebra-polynomial-endofunctor : (g : hom-algebra-polynomial-endofunctor X Y) → is-equiv (htpy-eq-hom-algebra-polynomial-endofunctor g) is-equiv-htpy-eq-hom-algebra-polynomial-endofunctor = fundamental-theorem-id ( is-contr-total-htpy-hom-algebra-polynomial-endofunctor) ( htpy-eq-hom-algebra-polynomial-endofunctor) extensionality-hom-algebra-polynomial-endofunctor : (g : hom-algebra-polynomial-endofunctor X Y) → (f = g) ≃ htpy-hom-algebra-polynomial-endofunctor g pr1 (extensionality-hom-algebra-polynomial-endofunctor g) = htpy-eq-hom-algebra-polynomial-endofunctor g pr2 (extensionality-hom-algebra-polynomial-endofunctor g) = is-equiv-htpy-eq-hom-algebra-polynomial-endofunctor g eq-htpy-hom-algebra-polynomial-endofunctor : (g : hom-algebra-polynomial-endofunctor X Y) → htpy-hom-algebra-polynomial-endofunctor g → f = g eq-htpy-hom-algebra-polynomial-endofunctor g = map-inv-is-equiv (is-equiv-htpy-eq-hom-algebra-polynomial-endofunctor g)