The Well-Ordering Principle of the natural numbers

module elementary-number-theory.well-ordering-principle-natural-numbers where
Imports
open import elementary-number-theory.inequality-natural-numbers
open import elementary-number-theory.lower-bounds-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.cartesian-product-types
open import foundation.coproduct-types
open import foundation.decidable-types
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.functoriality-dependent-pair-types
open import foundation.hilberts-epsilon-operators
open import foundation.identity-types
open import foundation.negation
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

Idea

The well-ordering principle of the natural numbers asserts that for every family of decidable types over ℕ equipped with a natural number n and an element p : P n, we can find a least natural number n₀ with an element p₀ : P n₀.

Theorem

minimal-element-ℕ :
  {l : Level} (P :   UU l)  UU l
minimal-element-ℕ P = Σ   n  (P n) × (is-lower-bound-ℕ P n))

module _
  {l1 : Level} (P :   Prop l1)
  where

  all-elements-equal-minimal-element-ℕ :
    all-elements-equal (minimal-element-ℕ  n  type-Prop (P n)))
  all-elements-equal-minimal-element-ℕ
    (pair x (pair p l)) (pair y (pair q k)) =
    eq-type-subtype
      ( λ n 
        prod-Prop
          ( pair _ (is-prop-type-Prop (P n)))
          ( is-lower-bound-ℕ-Prop n))
      ( antisymmetric-leq-ℕ x y (l y q) (k x p))

  is-prop-minimal-element-ℕ :
    is-prop (minimal-element-ℕ  n  type-Prop (P n)))
  is-prop-minimal-element-ℕ =
    is-prop-all-elements-equal all-elements-equal-minimal-element-ℕ

  minimal-element-ℕ-Prop : Prop l1
  pr1 minimal-element-ℕ-Prop = minimal-element-ℕ  n  type-Prop (P n))
  pr2 minimal-element-ℕ-Prop = is-prop-minimal-element-ℕ

is-minimal-element-succ-ℕ :
  {l : Level} (P :   UU l) (d : is-decidable-fam P)
  (m : ) (pm : P (succ-ℕ m))
  (is-lower-bound-m : is-lower-bound-ℕ  x  P (succ-ℕ x)) m) 
  ¬ (P zero-ℕ)  is-lower-bound-ℕ P (succ-ℕ m)
is-minimal-element-succ-ℕ P d m pm is-lower-bound-m neg-p0 zero-ℕ p0 =
  ex-falso (neg-p0 p0)
is-minimal-element-succ-ℕ
  P d zero-ℕ pm is-lower-bound-m neg-p0 (succ-ℕ n) psuccn =
  leq-zero-ℕ n
is-minimal-element-succ-ℕ
  P d (succ-ℕ m) pm is-lower-bound-m neg-p0 (succ-ℕ n) psuccn =
  is-lower-bound-m n psuccn

well-ordering-principle-succ-ℕ :
  {l : Level} (P :   UU l) (d : is-decidable-fam P)
  (n : ) (p : P (succ-ℕ n)) 
  is-decidable (P zero-ℕ) 
  minimal-element-ℕ  m  P (succ-ℕ m))  minimal-element-ℕ P
well-ordering-principle-succ-ℕ P d n p (inl p0) u =
  ( 0 , p0 , λ m q  leq-zero-ℕ m)
well-ordering-principle-succ-ℕ P d n p (inr neg-p0) (m , pm , is-min-m) =
  ( succ-ℕ m , pm , is-minimal-element-succ-ℕ P d m pm is-min-m neg-p0)

well-ordering-principle-ℕ :
  {l : Level} (P :   UU l) (d : is-decidable-fam P) 
  Σ  P  minimal-element-ℕ P
pr1 (well-ordering-principle-ℕ P d (pair zero-ℕ p)) = zero-ℕ
pr1 (pr2 (well-ordering-principle-ℕ P d (pair zero-ℕ p))) = p
pr2 (pr2 (well-ordering-principle-ℕ P d (pair zero-ℕ p))) m q = leq-zero-ℕ m
well-ordering-principle-ℕ P d (pair (succ-ℕ n) p) =
  well-ordering-principle-succ-ℕ P d n p (d zero-ℕ)
    ( well-ordering-principle-ℕ
      ( λ m  P (succ-ℕ m))
      ( λ m  d (succ-ℕ m))
      ( pair n p))

number-well-ordering-principle-ℕ :
  {l : Level} (P :   UU l) (d : is-decidable-fam P) (nP : Σ  P)  
number-well-ordering-principle-ℕ P d nP =
  pr1 (well-ordering-principle-ℕ P d nP)

The well-ordering principle returns 0 if P 0 holds

This is independently of the input (pair n p) : Σ ℕ P.

is-zero-well-ordering-principle-succ-ℕ :
  {l : Level} (P :   UU l) (d : is-decidable-fam P)
  (n : ) (p : P (succ-ℕ n)) (d0 : is-decidable (P zero-ℕ)) 
  (x : minimal-element-ℕ  m  P (succ-ℕ m))) (p0 : P zero-ℕ) 
  pr1 (well-ordering-principle-succ-ℕ P d n p d0 x)  zero-ℕ
is-zero-well-ordering-principle-succ-ℕ P d n p (inl p0) x q0 =
  refl
is-zero-well-ordering-principle-succ-ℕ P d n p (inr np0) x q0 =
  ex-falso (np0 q0)

is-zero-well-ordering-principle-ℕ :
  {l : Level} (P :   UU l) (d : is-decidable-fam P) 
  (x : Σ  P)  P zero-ℕ  is-zero-ℕ (number-well-ordering-principle-ℕ P d x)
is-zero-well-ordering-principle-ℕ P d (pair zero-ℕ p) p0 = refl
is-zero-well-ordering-principle-ℕ P d (pair (succ-ℕ m) p) =
  is-zero-well-ordering-principle-succ-ℕ P d m p (d zero-ℕ)
    ( well-ordering-principle-ℕ
      ( λ z  P (succ-ℕ z))
      ( λ x  d (succ-ℕ x))
      ( pair m p))

The ε-operator for decidable subtypes of ℕ

ε-operator-decidable-subtype-ℕ :
  {l1 : Level} (P :   Prop l1)
  (d : (x : )  is-decidable (type-Prop (P x))) 
  ε-operator-Hilbert (type-subtype P)
ε-operator-decidable-subtype-ℕ {l1} P d t =
  tot ( λ x  pr1)
      ( apply-universal-property-trunc-Prop t
        ( minimal-element-ℕ-Prop P)
        ( well-ordering-principle-ℕ  x  type-Prop (P x)) d))