Cauchy exponentials of species of types

module species.cauchy-exponentials-species-of-types where
Imports
open import foundation.arithmetic-law-coproduct-and-sigma-decompositions
open import foundation.cartesian-product-types
open import foundation.coproduct-decompositions
open import foundation.dependent-binomial-theorem
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.functoriality-cartesian-product-types
open import foundation.functoriality-dependent-function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.relaxed-sigma-decompositions
open import foundation.type-arithmetic-cartesian-product-types
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.unit-type
open import foundation.univalence
open import foundation.universe-levels

open import species.cauchy-composition-species-of-types
open import species.cauchy-products-species-of-types
open import species.coproducts-species-of-types
open import species.equivalences-species-of-types
open import species.species-of-types

Idea

The Cauchy exponential of a species of types S can be thought of as the Cauchy composite exp ∘ S. Since the exponent species is defined as X ↦ 𝟙, the coefficients of the Cauchy exponential of S are defined as follows: species of types :

  X ↦ Σ ((U , V , e) : Relaxed-Σ-Decomposition X),  Π (u : U) → S (V u).

Definition

cauchy-exponential-species-types :
  {l1 l2 : Level}  species-types l1 l2  species-types l1 (lsuc l1  l2)
cauchy-exponential-species-types {l1} {l2} S X =
  Σ ( Relaxed-Σ-Decomposition l1 l1 X)
    ( λ D 
      ( b : indexing-type-Relaxed-Σ-Decomposition D) 
      ( S (cotype-Relaxed-Σ-Decomposition D b)))

Propositions

The Cauchy exponential in term of composition

module _
  {l1 l2 : Level}
  (S : species-types l1 l2)
  (X : UU l1)
  where

  equiv-cauchy-exponential-composition-unit-species-types :
    cauchy-composition-species-types  _  unit) S X 
    cauchy-exponential-species-types S X
  equiv-cauchy-exponential-composition-unit-species-types =
    equiv-tot λ _  left-unit-law-prod-is-contr is-contr-unit

The Cauchy exponential of the sum of a species is equivalent to the Cauchy product of the exponential of the two species

module _
  {l1 l2 l3 : Level}
  (S : species-types l1 l2)
  (T : species-types l1 l3)
  where

  private
    reassociate :
      ( X : UU l1) 
      Σ ( Σ ( binary-coproduct-Decomposition l1 l1 X)
            ( λ d 
              ( Relaxed-Σ-Decomposition l1 l1
                ( left-summand-binary-coproduct-Decomposition d)) ×
              ( Relaxed-Σ-Decomposition l1 l1
                ( right-summand-binary-coproduct-Decomposition d))))
        ( λ D 
          ( ( b : indexing-type-Relaxed-Σ-Decomposition (pr1 (pr2 D))) 
            S ( cotype-Relaxed-Σ-Decomposition (pr1 (pr2 D)) b)) ×
          ( ( b : indexing-type-Relaxed-Σ-Decomposition (pr2 (pr2 D))) 
            T ( cotype-Relaxed-Σ-Decomposition (pr2 (pr2 D)) b))) 
      cauchy-product-species-types
        ( cauchy-exponential-species-types S)
        ( cauchy-exponential-species-types T)
        ( X)
    pr1 (reassociate X) ((d , dl , dr) , s , t) =
      ( d , (dl , s) , dr , t)
    pr2 (reassociate X) =
      is-equiv-has-inverse
        ( λ ( d , (dl , s) , dr , t)  ((d , dl , dr) , s , t))
        ( refl-htpy)
        ( refl-htpy)

  equiv-cauchy-exponential-sum-species-types :
    equiv-species-types
      ( cauchy-exponential-species-types (coproduct-species-types S T))
      ( cauchy-product-species-types
        ( cauchy-exponential-species-types S)
        ( cauchy-exponential-species-types T))
  equiv-cauchy-exponential-sum-species-types X =
    ( reassociate X) ∘e
    ( ( equiv-Σ
        ( λ D 
          ( ( b : indexing-type-Relaxed-Σ-Decomposition (pr1 (pr2 D))) 
            S (cotype-Relaxed-Σ-Decomposition (pr1 (pr2 D)) b)) ×
          ( ( b : indexing-type-Relaxed-Σ-Decomposition (pr2 (pr2 D))) 
            T (cotype-Relaxed-Σ-Decomposition (pr2 (pr2 D)) b)))
        ( equiv-binary-coproduct-Decomposition-Σ-Decomposition)
        ( λ D 
          equiv-prod
            ( equiv-map-Π
              ( λ a' 
                equiv-eq
                  ( ap S
                    ( inv
                      ( compute-left-equiv-binary-coproduct-Decomposition-Σ-Decomposition
                        ( D)
                        ( a'))))))
            ( equiv-map-Π
              ( λ b' 
                equiv-eq
                  ( ap T
                    ( inv
                      ( compute-right-equiv-binary-coproduct-Decomposition-Σ-Decomposition
                        ( D)
                        ( b')))))))) ∘e
      ( ( inv-associative-Σ
          ( Relaxed-Σ-Decomposition l1 l1 X)
          ( λ d 
            binary-coproduct-Decomposition l1 l1
              ( indexing-type-Relaxed-Σ-Decomposition d))
              ( _)) ∘e
        ( equiv-tot
          ( λ d  distributive-Π-coprod-binary-coproduct-Decomposition))))