Cauchy exponentials of species of types
module species.cauchy-exponentials-species-of-types where
Imports
open import foundation.arithmetic-law-coproduct-and-sigma-decompositions open import foundation.cartesian-product-types open import foundation.coproduct-decompositions open import foundation.dependent-binomial-theorem open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functoriality-cartesian-product-types open import foundation.functoriality-dependent-function-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.relaxed-sigma-decompositions open import foundation.type-arithmetic-cartesian-product-types open import foundation.type-arithmetic-dependent-pair-types open import foundation.unit-type open import foundation.univalence open import foundation.universe-levels open import species.cauchy-composition-species-of-types open import species.cauchy-products-species-of-types open import species.coproducts-species-of-types open import species.equivalences-species-of-types open import species.species-of-types
Idea
The Cauchy exponential of a species of types S
can be thought of as the
Cauchy composite exp ∘ S
. Since the exponent species is defined as X ↦ 𝟙
,
the coefficients of the Cauchy exponential of S
are defined as follows:
species of types :
X ↦ Σ ((U , V , e) : Relaxed-Σ-Decomposition X), Π (u : U) → S (V u).
Definition
cauchy-exponential-species-types : {l1 l2 : Level} → species-types l1 l2 → species-types l1 (lsuc l1 ⊔ l2) cauchy-exponential-species-types {l1} {l2} S X = Σ ( Relaxed-Σ-Decomposition l1 l1 X) ( λ D → ( b : indexing-type-Relaxed-Σ-Decomposition D) → ( S (cotype-Relaxed-Σ-Decomposition D b)))
Propositions
The Cauchy exponential in term of composition
module _ {l1 l2 : Level} (S : species-types l1 l2) (X : UU l1) where equiv-cauchy-exponential-composition-unit-species-types : cauchy-composition-species-types (λ _ → unit) S X ≃ cauchy-exponential-species-types S X equiv-cauchy-exponential-composition-unit-species-types = equiv-tot λ _ → left-unit-law-prod-is-contr is-contr-unit
The Cauchy exponential of the sum of a species is equivalent to the Cauchy product of the exponential of the two species
module _ {l1 l2 l3 : Level} (S : species-types l1 l2) (T : species-types l1 l3) where private reassociate : ( X : UU l1) → Σ ( Σ ( binary-coproduct-Decomposition l1 l1 X) ( λ d → ( Relaxed-Σ-Decomposition l1 l1 ( left-summand-binary-coproduct-Decomposition d)) × ( Relaxed-Σ-Decomposition l1 l1 ( right-summand-binary-coproduct-Decomposition d)))) ( λ D → ( ( b : indexing-type-Relaxed-Σ-Decomposition (pr1 (pr2 D))) → S ( cotype-Relaxed-Σ-Decomposition (pr1 (pr2 D)) b)) × ( ( b : indexing-type-Relaxed-Σ-Decomposition (pr2 (pr2 D))) → T ( cotype-Relaxed-Σ-Decomposition (pr2 (pr2 D)) b))) ≃ cauchy-product-species-types ( cauchy-exponential-species-types S) ( cauchy-exponential-species-types T) ( X) pr1 (reassociate X) ((d , dl , dr) , s , t) = ( d , (dl , s) , dr , t) pr2 (reassociate X) = is-equiv-has-inverse ( λ ( d , (dl , s) , dr , t) → ((d , dl , dr) , s , t)) ( refl-htpy) ( refl-htpy) equiv-cauchy-exponential-sum-species-types : equiv-species-types ( cauchy-exponential-species-types (coproduct-species-types S T)) ( cauchy-product-species-types ( cauchy-exponential-species-types S) ( cauchy-exponential-species-types T)) equiv-cauchy-exponential-sum-species-types X = ( reassociate X) ∘e ( ( equiv-Σ ( λ D → ( ( b : indexing-type-Relaxed-Σ-Decomposition (pr1 (pr2 D))) → S (cotype-Relaxed-Σ-Decomposition (pr1 (pr2 D)) b)) × ( ( b : indexing-type-Relaxed-Σ-Decomposition (pr2 (pr2 D))) → T (cotype-Relaxed-Σ-Decomposition (pr2 (pr2 D)) b))) ( equiv-binary-coproduct-Decomposition-Σ-Decomposition) ( λ D → equiv-prod ( equiv-map-Π ( λ a' → equiv-eq ( ap S ( inv ( compute-left-equiv-binary-coproduct-Decomposition-Σ-Decomposition ( D) ( a')))))) ( equiv-map-Π ( λ b' → equiv-eq ( ap T ( inv ( compute-right-equiv-binary-coproduct-Decomposition-Σ-Decomposition ( D) ( b')))))))) ∘e ( ( inv-associative-Σ ( Relaxed-Σ-Decomposition l1 l1 X) ( λ d → binary-coproduct-Decomposition l1 l1 ( indexing-type-Relaxed-Σ-Decomposition d)) ( _)) ∘e ( equiv-tot ( λ d → distributive-Π-coprod-binary-coproduct-Decomposition))))