The large locale of subtypes
module foundation.large-locale-of-subtypes where
Imports
open import foundation.large-locale-of-propositions open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.sets open import foundation-core.universe-levels open import order-theory.greatest-lower-bounds-large-posets open import order-theory.large-locales open import order-theory.large-meet-semilattices open import order-theory.large-posets open import order-theory.large-suplattices open import order-theory.least-upper-bounds-large-posets open import order-theory.powers-of-large-locales
Idea
The large locale of subtypes of a type A
is the
power locale A → Prop-Large-Locale
.
Definition
module _ {l1 : Level} (A : UU l1) where power-set-Large-Locale : Large-Locale (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ (l2 ⊔ l3)) power-set-Large-Locale = power-Large-Locale A Prop-Large-Locale large-poset-power-set-Large-Locale : Large-Poset (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ (l2 ⊔ l3)) large-poset-power-set-Large-Locale = large-poset-Large-Locale power-set-Large-Locale set-power-set-Large-Locale : (l : Level) → Set (l1 ⊔ lsuc l) set-power-set-Large-Locale = set-Large-Locale power-set-Large-Locale type-power-set-Large-Locale : (l : Level) → UU (l1 ⊔ lsuc l) type-power-set-Large-Locale = type-Large-Locale power-set-Large-Locale is-set-type-power-set-Large-Locale : {l : Level} → is-set (type-power-set-Large-Locale l) is-set-type-power-set-Large-Locale = is-set-type-Large-Locale power-set-Large-Locale large-meet-semilattice-power-set-Large-Locale : Large-Meet-Semilattice (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ (l2 ⊔ l3)) large-meet-semilattice-power-set-Large-Locale = large-meet-semilattice-Large-Locale power-set-Large-Locale large-suplattice-power-set-Large-Locale : Large-Suplattice (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ (l2 ⊔ l3)) large-suplattice-power-set-Large-Locale = large-suplattice-Large-Locale power-set-Large-Locale module _ {l1 : Level} {A : UU l1} where leq-power-set-Large-Locale-Prop : {l2 l3 : Level} → type-power-set-Large-Locale A l2 → type-power-set-Large-Locale A l3 → Prop (l1 ⊔ l2 ⊔ l3) leq-power-set-Large-Locale-Prop = leq-Large-Locale-Prop (power-set-Large-Locale A) leq-power-set-Large-Locale : {l2 l3 : Level} → type-power-set-Large-Locale A l2 → type-power-set-Large-Locale A l3 → UU (l1 ⊔ l2 ⊔ l3) leq-power-set-Large-Locale = leq-Large-Locale (power-set-Large-Locale A) is-prop-leq-power-set-Large-Locale : {l2 l3 : Level} (x : type-power-set-Large-Locale A l2) (y : type-power-set-Large-Locale A l3) → is-prop (leq-power-set-Large-Locale x y) is-prop-leq-power-set-Large-Locale = is-prop-leq-Large-Locale (power-set-Large-Locale A) refl-leq-power-set-Large-Locale : {l2 : Level} (x : type-power-set-Large-Locale A l2) → leq-power-set-Large-Locale x x refl-leq-power-set-Large-Locale = refl-leq-Large-Locale (power-set-Large-Locale A) antisymmetric-leq-power-set-Large-Locale : {l2 : Level} (x y : type-power-set-Large-Locale A l2) → leq-power-set-Large-Locale x y → leq-power-set-Large-Locale y x → x = y antisymmetric-leq-power-set-Large-Locale = antisymmetric-leq-Large-Locale (power-set-Large-Locale A) transitive-leq-power-set-Large-Locale : {l2 l3 l4 : Level} (x : type-power-set-Large-Locale A l2) (y : type-power-set-Large-Locale A l3) (z : type-power-set-Large-Locale A l4) → leq-power-set-Large-Locale y z → leq-power-set-Large-Locale x y → leq-power-set-Large-Locale x z transitive-leq-power-set-Large-Locale = transitive-leq-Large-Locale (power-set-Large-Locale A) has-meets-power-set-Large-Locale : has-meets-Large-Poset (large-poset-power-set-Large-Locale A) has-meets-power-set-Large-Locale = has-meets-Large-Locale (power-set-Large-Locale A) meet-power-set-Large-Locale : {l2 l3 : Level} → type-power-set-Large-Locale A l2 → type-power-set-Large-Locale A l3 → type-power-set-Large-Locale A (l2 ⊔ l3) meet-power-set-Large-Locale = meet-Large-Locale (power-set-Large-Locale A) is-greatest-binary-lower-bound-meet-power-set-Large-Locale : {l2 l3 : Level} (x : type-power-set-Large-Locale A l2) (y : type-power-set-Large-Locale A l3) → is-greatest-binary-lower-bound-Large-Poset ( large-poset-power-set-Large-Locale A) ( x) ( y) ( meet-power-set-Large-Locale x y) is-greatest-binary-lower-bound-meet-power-set-Large-Locale = is-greatest-binary-lower-bound-meet-Large-Locale (power-set-Large-Locale A) is-large-suplattice-power-set-Large-Locale : is-large-suplattice-Large-Poset (large-poset-power-set-Large-Locale A) is-large-suplattice-power-set-Large-Locale = is-large-suplattice-Large-Locale (power-set-Large-Locale A) sup-power-set-Large-Locale : {l2 l3 : Level} {J : UU l2} (x : J → type-power-set-Large-Locale A l3) → type-power-set-Large-Locale A (l2 ⊔ l3) sup-power-set-Large-Locale = sup-Large-Locale (power-set-Large-Locale A) is-least-upper-bound-sup-power-set-Large-Locale : {l2 l3 : Level} {J : UU l2} (x : J → type-power-set-Large-Locale A l3) → is-least-upper-bound-family-of-elements-Large-Poset ( large-poset-power-set-Large-Locale A) ( x) ( sup-power-set-Large-Locale x) is-least-upper-bound-sup-power-set-Large-Locale = is-least-upper-bound-sup-Large-Locale (power-set-Large-Locale A) distributive-meet-sup-power-set-Large-Locale : {l2 l3 l4 : Level} (x : type-power-set-Large-Locale A l2) {J : UU l3} (y : J → type-power-set-Large-Locale A l4) → meet-power-set-Large-Locale x (sup-power-set-Large-Locale y) = sup-power-set-Large-Locale (λ j → meet-power-set-Large-Locale x (y j)) distributive-meet-sup-power-set-Large-Locale = distributive-meet-sup-Large-Locale (power-set-Large-Locale A)