Reflexive relations
module foundation.reflexive-relations where
Imports
open import foundation.binary-relations open import foundation-core.dependent-pair-types open import foundation-core.universe-levels
Idea
A reflexive relation on a type A
is a type-valued binary relation
R : A → A → U
equipped with a proof `r : (x : A) → R x x
Definition
Reflexive-Relation : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ lsuc l2) Reflexive-Relation l2 A = Σ (Rel l2 A) (λ R → is-reflexive R) module _ {l1 l2 : Level} {A : UU l1} (R : Reflexive-Relation l2 A) where rel-Reflexive-Relation : Rel l2 A rel-Reflexive-Relation = pr1 R is-reflexive-Reflexive-Relation : is-reflexive rel-Reflexive-Relation is-reflexive-Reflexive-Relation = pr2 R