Cauchy products of species of types
module species.cauchy-products-species-of-types where
Imports
open import foundation.cartesian-product-types open import foundation.coproduct-decompositions open import foundation.dependent-pair-types open import foundation.universe-levels open import species.species-of-types
Idea
The Cauchy product of two species of types S
and T
on X
is defined as
Σ (k : UU) (Σ (k' : UU) (Σ (e : k + k' ≃ X) S(k) × T(k')))
Definition
module _ {l1 l2 l3 : Level} (S : species-types l1 l2) (T : species-types l1 l3) where cauchy-product-species-types : species-types l1 (lsuc l1 ⊔ l2 ⊔ l3) cauchy-product-species-types X = Σ ( binary-coproduct-Decomposition l1 l1 X) ( λ d → S (left-summand-binary-coproduct-Decomposition d) × T (right-summand-binary-coproduct-Decomposition d))