Cartesian products of concrete groups

module group-theory.cartesian-products-concrete-groups where
Imports
open import foundation.0-connected-types
open import foundation.1-types
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.mere-equality
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.sets
open import foundation.truncated-types
open import foundation.truncation-levels
open import foundation.universe-levels

open import group-theory.concrete-groups
open import group-theory.groups

open import higher-group-theory.cartesian-products-higher-groups
open import higher-group-theory.higher-groups

open import structured-types.pointed-types

Idea

The cartesian product of two concrete groups is defined as the cartesian product of their underlying ∞-group

Definition

module _
  {l1 l2 : Level} (G : Concrete-Group l1) (R : Concrete-Group l2)
  where

  product-Concrete-Group : Concrete-Group (l1  l2)
  pr1 product-Concrete-Group =
    product-∞-Group
      ( ∞-group-Concrete-Group G)
      ( ∞-group-Concrete-Group R)
  pr2 product-Concrete-Group =
    is-set-equiv
      ( type-∞-Group (pr1 G) ×
        type-∞-Group (pr1 R))
      ( equiv-type-∞-Group-product-∞-Group
          ( ∞-group-Concrete-Group G)
          ( ∞-group-Concrete-Group R))
      ( is-set-prod
          ( is-set-type-Concrete-Group G)
          ( is-set-type-Concrete-Group R))

  ∞-group-product-Concrete-Group : ∞-Group (l1  l2)
  ∞-group-product-Concrete-Group = pr1 product-Concrete-Group

  classifying-pointed-type-product-Concrete-Group : Pointed-Type (l1  l2)
  classifying-pointed-type-product-Concrete-Group =
    classifying-pointed-type-∞-Group ∞-group-product-Concrete-Group

  classifying-type-product-Concrete-Group : UU (l1  l2)
  classifying-type-product-Concrete-Group =
    classifying-type-∞-Group ∞-group-product-Concrete-Group

  shape-product-Concrete-Group : classifying-type-product-Concrete-Group
  shape-product-Concrete-Group =
    shape-∞-Group ∞-group-product-Concrete-Group

  is-0-connected-classifying-type-product-Concrete-Group :
    is-0-connected classifying-type-product-Concrete-Group
  is-0-connected-classifying-type-product-Concrete-Group =
    is-0-connected-classifying-type-∞-Group ∞-group-product-Concrete-Group

  mere-eq-classifying-type-product-Concrete-Group :
    (X Y : classifying-type-product-Concrete-Group)  mere-eq X Y
  mere-eq-classifying-type-product-Concrete-Group =
    mere-eq-classifying-type-∞-Group ∞-group-product-Concrete-Group

  elim-prop-classifying-type-product-Concrete-Group :
    {l2 : Level} (P : classifying-type-product-Concrete-Group  Prop l2) 
    type-Prop (P shape-product-Concrete-Group) 
    ((X : classifying-type-product-Concrete-Group)  type-Prop (P X))
  elim-prop-classifying-type-product-Concrete-Group =
    elim-prop-classifying-type-∞-Group ∞-group-product-Concrete-Group

  type-product-Concrete-Group : UU (l1  l2)
  type-product-Concrete-Group = type-∞-Group ∞-group-product-Concrete-Group

  is-set-type-product-Concrete-Group : is-set type-product-Concrete-Group
  is-set-type-product-Concrete-Group = pr2 product-Concrete-Group

  set-product-Concrete-Group : Set (l1  l2)
  set-product-Concrete-Group =
    pair type-product-Concrete-Group is-set-type-product-Concrete-Group

  is-1-type-classifying-type-product-Concrete-Group :
    is-trunc one-𝕋 classifying-type-product-Concrete-Group
  is-1-type-classifying-type-product-Concrete-Group X Y =
    apply-universal-property-trunc-Prop
      ( mere-eq-classifying-type-product-Concrete-Group
          shape-product-Concrete-Group
          X)
      ( is-set-Prop (Id X Y))
      ( λ { refl 
            apply-universal-property-trunc-Prop
              ( mere-eq-classifying-type-product-Concrete-Group
                  shape-product-Concrete-Group
                  Y)
              ( is-set-Prop (Id shape-product-Concrete-Group Y))
              ( λ { refl  is-set-type-product-Concrete-Group})})

  classifying-1-type-product-Concrete-Group : Truncated-Type (l1  l2) one-𝕋
  classifying-1-type-product-Concrete-Group =
    pair
      classifying-type-product-Concrete-Group
      is-1-type-classifying-type-product-Concrete-Group

  Id-product-BG-Set :
    (X Y : classifying-type-product-Concrete-Group)  Set (l1  l2)
  Id-product-BG-Set X Y = Id-Set classifying-1-type-product-Concrete-Group X Y

  unit-product-Concrete-Group : type-product-Concrete-Group
  unit-product-Concrete-Group = unit-∞-Group ∞-group-product-Concrete-Group

  mul-product-Concrete-Group :
    (x y : type-product-Concrete-Group)  type-product-Concrete-Group
  mul-product-Concrete-Group = mul-∞-Group ∞-group-product-Concrete-Group

  mul-product-Concrete-Group' :
    (x y : type-product-Concrete-Group)  type-product-Concrete-Group
  mul-product-Concrete-Group' x y = mul-product-Concrete-Group y x

  associative-mul-product-Concrete-Group :
    (x y z : type-product-Concrete-Group) 
    Id
      (mul-product-Concrete-Group (mul-product-Concrete-Group x y) z)
      (mul-product-Concrete-Group x (mul-product-Concrete-Group y z))
  associative-mul-product-Concrete-Group =
    associative-mul-∞-Group ∞-group-product-Concrete-Group

  left-unit-law-mul-product-Concrete-Group :
    (x : type-product-Concrete-Group) 
    Id (mul-product-Concrete-Group unit-product-Concrete-Group x) x
  left-unit-law-mul-product-Concrete-Group =
    left-unit-law-mul-∞-Group ∞-group-product-Concrete-Group

  right-unit-law-mul-product-Concrete-Group :
    (y : type-product-Concrete-Group) 
    Id (mul-product-Concrete-Group y unit-product-Concrete-Group) y
  right-unit-law-mul-product-Concrete-Group =
    right-unit-law-mul-∞-Group ∞-group-product-Concrete-Group

  coherence-unit-laws-mul-product-Concrete-Group :
    Id
      ( left-unit-law-mul-product-Concrete-Group unit-product-Concrete-Group)
      ( right-unit-law-mul-product-Concrete-Group unit-product-Concrete-Group)
  coherence-unit-laws-mul-product-Concrete-Group =
    coherence-unit-laws-mul-∞-Group ∞-group-product-Concrete-Group

  inv-product-Concrete-Group :
    type-product-Concrete-Group  type-product-Concrete-Group
  inv-product-Concrete-Group = inv-∞-Group ∞-group-product-Concrete-Group

  left-inverse-law-mul-product-Concrete-Group :
    (x : type-product-Concrete-Group) 
    Id
      ( mul-product-Concrete-Group (inv-product-Concrete-Group x) x)
      ( unit-product-Concrete-Group)
  left-inverse-law-mul-product-Concrete-Group =
    left-inverse-law-mul-∞-Group ∞-group-product-Concrete-Group

  right-inverse-law-mul-product-Concrete-Group :
    (x : type-product-Concrete-Group) 
    Id
      ( mul-product-Concrete-Group x (inv-product-Concrete-Group x))
      ( unit-product-Concrete-Group)
  right-inverse-law-mul-product-Concrete-Group =
    right-inverse-law-mul-∞-Group ∞-group-product-Concrete-Group

  abstract-group-product-Concrete-Group : Group (l1  l2)
  pr1 (pr1 abstract-group-product-Concrete-Group) =
    set-product-Concrete-Group
  pr1 (pr2 (pr1 abstract-group-product-Concrete-Group)) =
    mul-product-Concrete-Group
  pr2 (pr2 (pr1 abstract-group-product-Concrete-Group)) =
    associative-mul-product-Concrete-Group
  pr1 (pr1 (pr2 abstract-group-product-Concrete-Group)) =
    unit-product-Concrete-Group
  pr1 (pr2 (pr1 (pr2 abstract-group-product-Concrete-Group))) =
    left-unit-law-mul-product-Concrete-Group
  pr2 (pr2 (pr1 (pr2 abstract-group-product-Concrete-Group))) =
    right-unit-law-mul-product-Concrete-Group
  pr1 (pr2 (pr2 abstract-group-product-Concrete-Group)) =
    inv-product-Concrete-Group
  pr1 (pr2 (pr2 (pr2 abstract-group-product-Concrete-Group))) =
    left-inverse-law-mul-product-Concrete-Group
  pr2 (pr2 (pr2 (pr2 abstract-group-product-Concrete-Group))) =
    right-inverse-law-mul-product-Concrete-Group

  op-abstract-group-product-Concrete-Group : Group (l1  l2)
  pr1 (pr1 op-abstract-group-product-Concrete-Group) =
    set-product-Concrete-Group
  pr1 (pr2 (pr1 op-abstract-group-product-Concrete-Group)) =
    mul-product-Concrete-Group'
  pr2 (pr2 (pr1 op-abstract-group-product-Concrete-Group)) x y z =
    inv (associative-mul-product-Concrete-Group z y x)
  pr1 (pr1 (pr2 op-abstract-group-product-Concrete-Group)) =
    unit-product-Concrete-Group
  pr1 (pr2 (pr1 (pr2 op-abstract-group-product-Concrete-Group))) =
    right-unit-law-mul-product-Concrete-Group
  pr2 (pr2 (pr1 (pr2 op-abstract-group-product-Concrete-Group))) =
    left-unit-law-mul-product-Concrete-Group
  pr1 (pr2 (pr2 op-abstract-group-product-Concrete-Group)) =
    inv-product-Concrete-Group
  pr1 (pr2 (pr2 (pr2 op-abstract-group-product-Concrete-Group))) =
    right-inverse-law-mul-product-Concrete-Group
  pr2 (pr2 (pr2 (pr2 op-abstract-group-product-Concrete-Group))) =
    left-inverse-law-mul-product-Concrete-Group

Property

  equiv-type-Concrete-Group-product-Concrete-Group :
    type-product-Concrete-Group 
    ( type-Concrete-Group G × type-Concrete-Group R)
  equiv-type-Concrete-Group-product-Concrete-Group =
    equiv-type-∞-Group-product-∞-Group
      ( ∞-group-Concrete-Group G)
      ( ∞-group-Concrete-Group R)