Isotopies of Latin squares
module univalent-combinatorics.isotopies-latin-squares where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.universe-levels open import univalent-combinatorics.latin-squares
Idea
An isotopy of latin squares from L
to K
consists of equivalences of the
rows, columns, and symbols preserving the multiplication tables.
Definition
module _ {l1 l2 l3 l4 l5 l6 : Level} (L : Latin-Square l1 l2 l3) (K : Latin-Square l4 l5 l6) where isotopy-Latin-Square : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6) isotopy-Latin-Square = Σ ( row-Latin-Square L ≃ row-Latin-Square K) ( λ e-row → Σ ( column-Latin-Square L ≃ column-Latin-Square K) ( λ e-column → Σ ( symbol-Latin-Square L ≃ symbol-Latin-Square K) ( λ e-symbol → ( x : row-Latin-Square L) (y : column-Latin-Square L) → Id ( map-equiv e-symbol (mul-Latin-Square L x y)) ( mul-Latin-Square K ( map-equiv e-row x) ( map-equiv e-column y)))))