Reflective subuniverses

module orthogonal-factorization-systems.reflective-subuniverses where
Imports
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.universe-levels

open import orthogonal-factorization-systems.local-types
open import orthogonal-factorization-systems.modal-operators

Idea

A reflective subuniverse is a subuniverse P together with a modal operator such that ○ A is in P for all small types A, and a modal unit with the property that the types in P are local at the modal unit for all small types A. Hence the modal types with respect to are precisely the types in the reflective subuniverse.

Definition

module _
  {l lM : Level} { : operator-modality l l} (unit-○ : unit-modality )
  (is-modal' : UU l  Prop lM)
  where

  is-reflective-subuniverse : UU (lsuc l  lM)
  is-reflective-subuniverse =
    ( (X : UU l)  type-Prop (is-modal' ( X))) ×
    ( (X : UU l)  type-Prop (is-modal' X) 
      (Y : UU l)  is-local-type (unit-○ {Y}) X)

reflective-subuniverse : (l lM : Level)  UU (lsuc l  lsuc lM)
reflective-subuniverse l lM =
  Σ ( operator-modality l l)
    ( λ  
      Σ ( unit-modality )
        ( λ unit-○ 
          Σ ( UU l  Prop lM)
            ( is-reflective-subuniverse unit-○)))

References

  • Egbert Rijke, Michael Shulman, Bas Spitters, Modalities in homotopy type theory, Logical Methods in Computer Science, Volume 16, Issue 1, 2020 (arXiv:1706.07526, doi:10.23638)