Reflective subuniverses
module orthogonal-factorization-systems.reflective-subuniverses where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.propositions open import foundation.universe-levels open import orthogonal-factorization-systems.local-types open import orthogonal-factorization-systems.modal-operators
Idea
A reflective subuniverse is a subuniverse P
together with a modal operator
○
such that ○ A
is in P
for all small types A
, and a modal unit with the
property that the types in P
are local at the modal unit for all small types
A
. Hence the modal types with respect to ○
are precisely the types in the
reflective subuniverse.
Definition
module _ {l lM : Level} {○ : operator-modality l l} (unit-○ : unit-modality ○) (is-modal' : UU l → Prop lM) where is-reflective-subuniverse : UU (lsuc l ⊔ lM) is-reflective-subuniverse = ( (X : UU l) → type-Prop (is-modal' (○ X))) × ( (X : UU l) → type-Prop (is-modal' X) → (Y : UU l) → is-local-type (unit-○ {Y}) X) reflective-subuniverse : (l lM : Level) → UU (lsuc l ⊔ lsuc lM) reflective-subuniverse l lM = Σ ( operator-modality l l) ( λ ○ → Σ ( unit-modality ○) ( λ unit-○ → Σ ( UU l → Prop lM) ( is-reflective-subuniverse unit-○)))
References
- Egbert Rijke, Michael Shulman, Bas Spitters, Modalities in homotopy type theory, Logical Methods in Computer Science, Volume 16, Issue 1, 2020 (arXiv:1706.07526, doi:10.23638)