Commuting cubes of maps
module foundation-core.commuting-cubes-of-maps where
Imports
open import foundation.hexagons-of-identifications open import foundation-core.cones-over-cospans open import foundation-core.dependent-pair-types open import foundation-core.functions open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.universe-levels
Idea
We specify the type of the homotopy witnessing that a cube commutes. Imagine that the cube is presented as a lattice
*
/ | \
/ | \
/ | \
* * *
|\ / \ /|
| \ / |
|/ \ / \|
* * *
\ | /
\ | /
\ | /
*
with all maps pointing in the downwards direction. Presented in this way, a cube
of maps has a top face, a back-left face, a back-right face, a front-left face,
a front-right face, and a bottom face, all of which are homotopies. An element
of type coherence-cube-maps
is a homotopy filling the cube.
Definition
coherence-cube-maps : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → UU (l4 ⊔ l1') coherence-cube-maps f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (((h ·l back-left) ∙h (front-left ·r f')) ∙h (hD ·l top)) ~ ((bottom ·r hA) ∙h ((k ·l back-right) ∙h (front-right ·r g')))
Symmetries of commuting cubes
The symmetry group D₃ acts on a cube. However, the coherence filling a cube needs to be modified to show that the rotated/reflected cube again commutes. In the following definitions we provide the homotopies witnessing that the rotated/reflected cubes again commute.
Note: although in principle it ought to be enough to show this for the generators of the symmetry group D₃, in practice it is more straightforward to just do the work for each of the symmetries separately. One reason is that some of the homotopies witnessing that the faces commute will be inverted as the result of an application of a symmetry. Inverting a homotopy twice results in a new homotopy that is only homotopic to the original homotopy.
module _ {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) (c : coherence-cube-maps f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) where coherence-cube-maps-rotate-120 : coherence-cube-maps hC k' k hD hA f' f hB g' g h' h ( back-left) ( inv-htpy back-right) ( inv-htpy top) ( inv-htpy bottom) ( inv-htpy front-left) ( front-right) coherence-cube-maps-rotate-120 a' = ( ap (λ t → t ∙ (ap h (back-left a'))) ( ap (λ t' → t' ∙ inv (bottom (hA a'))) ( ap-inv k (back-right a')))) ∙ ( ( hexagon-rotate-120 ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) ∙ ( inv ( ap (λ t → (front-right (g' a')) ∙ t) ( ap (λ t' → t' ∙ inv (front-left (f' a'))) ( ap-inv hD (top a')))))) coherence-cube-maps-rotate-240 : coherence-cube-maps h' hB hD h g' hA hC g f' k' f k ( inv-htpy back-right) ( top) ( inv-htpy back-left) ( inv-htpy front-right) ( bottom) ( inv-htpy front-left) coherence-cube-maps-rotate-240 a' = ( ap (λ t → _ ∙ t) (ap-inv k (back-right a'))) ∙ ( ( hexagon-rotate-240 ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) ∙ ( inv ( ap ( λ t → inv (front-left (f' a')) ∙ t) ( ap (λ t' → t' ∙ _) (ap-inv h (back-left a')))))) coherence-cube-maps-mirror-A : coherence-cube-maps g f k h g' f' k' h' hA hC hB hD ( inv-htpy top) ( back-right) ( back-left) ( front-right) ( front-left) ( inv-htpy bottom) coherence-cube-maps-mirror-A a' = ( ap (λ t → _ ∙ t) (ap-inv hD (top a'))) ∙ ( hexagon-mirror-A ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) coherence-cube-maps-mirror-B : coherence-cube-maps hB h' h hD hA g' g hC f' f k' k ( back-right) ( inv-htpy back-left) ( top) ( bottom) ( inv-htpy front-right) ( front-left) coherence-cube-maps-mirror-B a' = ( ap (λ t → t ∙ (ap k (back-right a'))) ( ap (λ t → t ∙ _) (ap-inv h (back-left a')))) ∙ ( hexagon-mirror-B ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) coherence-cube-maps-mirror-C : coherence-cube-maps k' hC hD k f' hA hB f g' h' g h ( inv-htpy back-left) ( inv-htpy top) ( inv-htpy back-right) ( inv-htpy front-left) ( inv-htpy bottom) ( inv-htpy front-right) coherence-cube-maps-mirror-C a' = ( ap ( λ t → (t ∙ inv (front-left (f' a'))) ∙ (ap h (inv (back-left a')))) ( ap-inv hD (top a'))) ∙ ( ( ap (λ t → _ ∙ t) (ap-inv h (back-left a'))) ∙ ( ( hexagon-mirror-C ( ap h (back-left a')) ( front-left (f' a')) ( ap hD (top a')) ( bottom (hA a')) ( ap k (back-right a')) ( front-right (g' a')) ( c a')) ∙ ( inv ( ap ( λ t → inv (front-right (g' a')) ∙ t) ( ap (λ t' → t' ∙ _) (ap-inv k (back-right a')))))))
Rectangles in commuting cubes
rectangle-back-left-front-left-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((h ∘ f) ∘ hA) ~ (hD ∘ (h' ∘ f')) rectangle-back-left-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (h ·l back-left) ∙h (front-left ·r f') rectangle-back-right-front-right-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((k ∘ g) ∘ hA) ~ (hD ∘ (k' ∘ g')) rectangle-back-right-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (k ·l back-right) ∙h (front-right ·r g') coherence-htpy-square-rectangle-bl-fl-rectangle-br-fr-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) (c : coherence-cube-maps f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → coherence-htpy-parallel-cone ( bottom) ( refl-htpy' hD) ( pair hA ( pair ( h' ∘ f') ( rectangle-back-left-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( pair hA ( pair ( k' ∘ g') ( rectangle-back-right-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom))) ( refl-htpy' hA) ( top) coherence-htpy-square-rectangle-bl-fl-rectangle-br-fr-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom c = ( λ a' → ( ap ( concat ( rectangle-back-left-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom a') ( hD (k' (g' a')))) ( right-unit))) ∙h ( c) rectangle-top-front-left-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((h ∘ hB) ∘ f') ~ ((hD ∘ k') ∘ g') rectangle-top-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (front-left ·r f') ∙h (hD ·l top) rectangle-back-right-bottom-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((h ∘ f) ∘ hA) ~ ((k ∘ hC) ∘ g') rectangle-back-right-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = ( bottom ·r hA) ∙h (k ·l back-right) {- coherence-htpy-square-rectangle-top-fl-rectangle-br-bot-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) (c : coherence-cube-maps f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom) → coherence-htpy-square ( inv-htpy front-right) ( refl-htpy' h) ( pair g' (pair (hB ∘ f') ( inv-htpy (rectangle-top-front-left-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom)))) ( pair g' (pair (f ∘ hA) ( inv-htpy ( rectangle-back-right-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom)))) ( refl-htpy' g') ( inv-htpy back-left) coherence-htpy-square-rectangle-top-fl-rectangle-br-bot-cube = {!!} -} rectangle-top-front-right-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g)) → ((hD ∘ h') ∘ f') ~ ((k ∘ hC) ∘ g') rectangle-top-front-right-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (hD ·l top) ∙h (inv-htpy (front-right) ·r g') rectangle-back-left-bottom-cube : {l1 l2 l3 l4 l1' l2' l3' l4' : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : A → C) (h : B → D) (k : C → D) {A' : UU l1'} {B' : UU l2'} {C' : UU l3'} {D' : UU l4'} (f' : A' → B') (g' : A' → C') (h' : B' → D') (k' : C' → D') (hA : A' → A) (hB : B' → B) (hC : C' → C) (hD : D' → D) (top : (h' ∘ f') ~ (k' ∘ g')) (back-left : (f ∘ hA) ~ (hB ∘ f')) (back-right : (g ∘ hA) ~ (hC ∘ g')) (front-left : (h ∘ hB) ~ (hD ∘ h')) (front-right : (k ∘ hC) ~ (hD ∘ k')) (bottom : (h ∘ f) ~ (k ∘ g))→ ((h ∘ hB) ∘ f') ~ ((k ∘ g) ∘ hA) rectangle-back-left-bottom-cube f g h k f' g' h' k' hA hB hC hD top back-left back-right front-left front-right bottom = (h ·l (inv-htpy back-left)) ∙h (bottom ·r hA)