Order preserving maps between large posets
module order-theory.order-preserving-maps-large-posets where
Imports
open import foundation.universe-levels open import order-theory.large-posets open import order-theory.order-preserving-maps-large-preorders
Idea
An order preserving map between large posets from P
to Q
consists of a map
f : type-Large-Poset P l1 → type-Large-Poset Q (γ l1)
for each universe level l1
, such that x ≤ y
implies f x ≤ f y
for any two
elements x y : P
.
Definition
module _ {αP αQ : Level → Level} {βP βQ : Level → Level → Level} (γ : Level → Level) (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ) where hom-Large-Poset : UUω hom-Large-Poset = hom-Large-Preorder γ ( large-preorder-Large-Poset P) ( large-preorder-Large-Poset Q) module _ {αP αQ : Level → Level} {βP βQ : Level → Level → Level} {γ : Level → Level} (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ) (f : hom-Large-Poset γ P Q) where map-hom-Large-Poset : {l1 : Level} → type-Large-Poset P l1 → type-Large-Poset Q (γ l1) map-hom-Large-Poset = map-hom-Large-Preorder f preserves-order-hom-Large-Poset : {l1 l2 : Level} (x : type-Large-Poset P l1) (y : type-Large-Poset P l2) → leq-Large-Poset P x y → leq-Large-Poset Q (map-hom-Large-Poset x) (map-hom-Large-Poset y) preserves-order-hom-Large-Poset = preserves-order-hom-Large-Preorder f