Sums in commutative semirings
module commutative-algebra.sums-commutative-semirings where
Imports
open import commutative-algebra.commutative-semirings open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.functions open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import linear-algebra.vectors open import linear-algebra.vectors-on-commutative-semirings open import ring-theory.sums-semirings open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.standard-finite-types
Idea
The sum operation extends the binary addition operation on a commutative
semiring R
to any family of elements of R
indexed by a standard finite type.
Definition
sum-Commutative-Semiring : {l : Level} (A : Commutative-Semiring l) (n : ℕ) → (functional-vec-Commutative-Semiring A n) → type-Commutative-Semiring A sum-Commutative-Semiring A = sum-Semiring (semiring-Commutative-Semiring A)
Properties
Sums of one and two elements
module _ {l : Level} (A : Commutative-Semiring l) where sum-one-element-Commutative-Semiring : (f : functional-vec-Commutative-Semiring A 1) → sum-Commutative-Semiring A 1 f = head-functional-vec 0 f sum-one-element-Commutative-Semiring = sum-one-element-Semiring (semiring-Commutative-Semiring A) sum-two-elements-Commutative-Semiring : (f : functional-vec-Commutative-Semiring A 2) → sum-Commutative-Semiring A 2 f = add-Commutative-Semiring A (f (zero-Fin 1)) (f (one-Fin 1)) sum-two-elements-Commutative-Semiring = sum-two-elements-Semiring (semiring-Commutative-Semiring A)
Sums are homotopy invariant
module _ {l : Level} (A : Commutative-Semiring l) where htpy-sum-Commutative-Semiring : (n : ℕ) {f g : functional-vec-Commutative-Semiring A n} → (f ~ g) → sum-Commutative-Semiring A n f = sum-Commutative-Semiring A n g htpy-sum-Commutative-Semiring = htpy-sum-Semiring (semiring-Commutative-Semiring A)
Sums are equal to the zero-th term plus the rest
module _ {l : Level} (A : Commutative-Semiring l) where cons-sum-Commutative-Semiring : (n : ℕ) (f : functional-vec-Commutative-Semiring A (succ-ℕ n)) → {x : type-Commutative-Semiring A} → head-functional-vec n f = x → sum-Commutative-Semiring A (succ-ℕ n) f = add-Commutative-Semiring A ( sum-Commutative-Semiring A n (tail-functional-vec n f)) x cons-sum-Commutative-Semiring = cons-sum-Semiring (semiring-Commutative-Semiring A) snoc-sum-Commutative-Semiring : (n : ℕ) (f : functional-vec-Commutative-Semiring A (succ-ℕ n)) → {x : type-Commutative-Semiring A} → f (zero-Fin n) = x → sum-Commutative-Semiring A (succ-ℕ n) f = add-Commutative-Semiring A ( x) ( sum-Commutative-Semiring A n (f ∘ inr-Fin n)) snoc-sum-Commutative-Semiring = snoc-sum-Semiring (semiring-Commutative-Semiring A)
Multiplication distributes over sums
module _ {l : Level} (A : Commutative-Semiring l) where left-distributive-mul-sum-Commutative-Semiring : (n : ℕ) (x : type-Commutative-Semiring A) (f : functional-vec-Commutative-Semiring A n) → mul-Commutative-Semiring A x (sum-Commutative-Semiring A n f) = sum-Commutative-Semiring A n (λ i → mul-Commutative-Semiring A x (f i)) left-distributive-mul-sum-Commutative-Semiring = left-distributive-mul-sum-Semiring (semiring-Commutative-Semiring A) right-distributive-mul-sum-Commutative-Semiring : (n : ℕ) (f : functional-vec-Commutative-Semiring A n) (x : type-Commutative-Semiring A) → mul-Commutative-Semiring A (sum-Commutative-Semiring A n f) x = sum-Commutative-Semiring A n (λ i → mul-Commutative-Semiring A (f i) x) right-distributive-mul-sum-Commutative-Semiring = right-distributive-mul-sum-Semiring (semiring-Commutative-Semiring A)
Interchange law of sums and addition in a commutative semiring
module _ {l : Level} (A : Commutative-Semiring l) where interchange-add-sum-Commutative-Semiring : (n : ℕ) (f g : functional-vec-Commutative-Semiring A n) → add-Commutative-Semiring A ( sum-Commutative-Semiring A n f) ( sum-Commutative-Semiring A n g) = sum-Commutative-Semiring A n ( add-functional-vec-Commutative-Semiring A n f g) interchange-add-sum-Commutative-Semiring = interchange-add-sum-Semiring (semiring-Commutative-Semiring A)
Extending a sum of elements in a commutative semiring
module _ {l : Level} (A : Commutative-Semiring l) where extend-sum-Commutative-Semiring : (n : ℕ) (f : functional-vec-Commutative-Semiring A n) → sum-Commutative-Semiring A ( succ-ℕ n) ( cons-functional-vec-Commutative-Semiring A n ( zero-Commutative-Semiring A) f) = sum-Commutative-Semiring A n f extend-sum-Commutative-Semiring = extend-sum-Semiring (semiring-Commutative-Semiring A)
Shifting a sum of elements in a commutative semiring
module _ {l : Level} (A : Commutative-Semiring l) where shift-sum-Commutative-Semiring : (n : ℕ) (f : functional-vec-Commutative-Semiring A n) → sum-Commutative-Semiring A ( succ-ℕ n) ( snoc-functional-vec-Commutative-Semiring A n f ( zero-Commutative-Semiring A)) = sum-Commutative-Semiring A n f shift-sum-Commutative-Semiring = shift-sum-Semiring (semiring-Commutative-Semiring A)
A sum of zeroes is zero
module _ {l : Level} (A : Commutative-Semiring l) where sum-zero-Commutative-Semiring : (n : ℕ) → sum-Commutative-Semiring A n ( zero-functional-vec-Commutative-Semiring A n) = zero-Commutative-Semiring A sum-zero-Commutative-Semiring = sum-zero-Semiring (semiring-Commutative-Semiring A)
Splitting sums
split-sum-Commutative-Semiring : {l : Level} (A : Commutative-Semiring l) (n m : ℕ) (f : functional-vec-Commutative-Semiring A (n +ℕ m)) → sum-Commutative-Semiring A (n +ℕ m) f = add-Commutative-Semiring A ( sum-Commutative-Semiring A n (f ∘ inl-coprod-Fin n m)) ( sum-Commutative-Semiring A m (f ∘ inr-coprod-Fin n m)) split-sum-Commutative-Semiring A = split-sum-Semiring (semiring-Commutative-Semiring A)