Homomorphisms of suplattices
module order-theory.homomorphisms-sup-lattices where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.functions open import foundation.universe-levels open import order-theory.least-upper-bounds-posets open import order-theory.order-preserving-maps-posets open import order-theory.suplattices
Idea
A homomorphism of suplattices is a order preserving map between the underlying posets that preserves least upper bounds.
Definitions
module _ {l1 l2 l3 l4 l5 l6 : Level} (A : Suplattice l1 l2 l3) (B : Suplattice l4 l5 l6) where preserves-sups : (type-Suplattice A → type-Suplattice B) → UU (l1 ⊔ lsuc l3 ⊔ l4 ⊔ l5) preserves-sups f = {I : UU l3} → (b : I → type-Suplattice A) → is-least-upper-bound-family-of-elements-Poset ( poset-Suplattice B) ( f ∘ b) ( f (sup-Suplattice A b)) hom-Suplattice : UU (l1 ⊔ l2 ⊔ lsuc l3 ⊔ l4 ⊔ l5) hom-Suplattice = Σ ( type-Suplattice A → type-Suplattice B) ( λ f → preserves-order-Poset (poset-Suplattice A) (poset-Suplattice B) f × preserves-sups f) map-hom-Suplattice : hom-Suplattice → type-Suplattice A → type-Suplattice B map-hom-Suplattice = pr1 preserves-order-hom-Suplattice : (H : hom-Suplattice) → preserves-order-Poset ( poset-Suplattice A) ( poset-Suplattice B) ( map-hom-Suplattice H) preserves-order-hom-Suplattice = pr1 ∘ pr2 preserves-sup-hom-Suplattice : (H : hom-Suplattice) → preserves-sups (map-hom-Suplattice H) preserves-sup-hom-Suplattice = pr2 ∘ pr2